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Abstract

Background: Several studies have mentioned network modularity—that a network can easily be decomposed into
subgraphs that are densely connected within and weakly connected between each other—as a factor affecting metabolic
robustness. In this paper we measure the relation between network modularity and several aspects of robustness directly in
a model system of metabolism.

Methodology/Principal Findings: By using a model for generating chemical reaction systems where one can tune the
network modularity, we find that robustness increases with modularity for changes in the concentrations of metabolites,
whereas it decreases with changes in the expression of enzymes. The same modularity scaling is true for the speed of
relaxation after the perturbations.

Conclusions/Significance: Modularity is not a general principle for making metabolism either more or less robust; this
question needs to be addressed specifically for different types of perturbations of the system.

Citation: Holme P (2011) Metabolic Robustness and Network Modularity: A Model Study. PLoS ONE 6(2): e16605. doi:10.1371/journal.pone.0016605

Editor: Matej Oresic, Governmental Technical Research Centre of Finland, Finland

Received October 10, 2010; Accepted December 22, 2010; Published February 2, 2011

Copyright: � 2011 Petter Holme. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Swedish Foundation for Strategic Research, the Swedish Research Council, and the WCU program through the
National Research Foundation (NRF) of the Republic of Korea funded by the Ministry of Education, Science and Technology (MEST) (R31-2008-000-10029-0). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: petter.holme@physics.umu.se

Introduction

Graph theoretical methods are useful to study the large-scale

organization of biological systems [1]. One such system is the

metabolism—the set of chemical reactions needed to sustain the

normal, healthy state of an organism. We call a graph derived

from a metabolic reaction system a metabolic network. One of the

main findings from statistical studies of metabolic networks is that

the metabolism has larger network modularity [2,3] —the tendency

for a network to be divisible into subgraphs that are densely

connected within, and sparsely connected between each other—

than expected [4]. However, metabolic networks are far from

perfectly modular—no matter how the network modules are

defined, there will be plenty of connections between them [4–8].

The network modules are often interpreted as biological

modules—functionally independent subunits [9]. This interpreta-

tion is a natural consequence of interpreting edges as functional

couplings of relatively equal strength. Despite the lack of

comprehensive experimental evidence, metabolism is assumed to

be robust to e.g. changes in concentration of metabolites [10].

Modularity is often thought to contribute to the robustness of

various biological systems [11–13]. But if this is true for

metabolism too, that modularity contributes to both functionality

and robustness, then how come there are so many cross-modular

couplings? One explanation could be that these couplings are

inevitable—the laws of physics give no way of avoiding

intermodular connections. Another explanation could be that

the intermodular edges actually stabilize the system so that the

organization we observe is a compromise where adding function-

ality increases modularity and adding robustness decreases

modularity. Such a role of modularity relates to the concept of

distributed robustness [14]—if a module fails, many other modules

can collectively compensate for this loss, there need not be any

replacement module. In terms of metabolic networks, this means

that there will be many connections between the modules and thus

that the network modularity will be comparatively low. In this

paper we investigate the role of network modularity in large

chemical reaction systems as directly as possible—by measuring

the system’s response to different types of perturbations in a model

with tunable network modularity.

Our simulations start by generating a chemical reaction

system. This generative algorithm is stochastic and by tuning the

input parameters, we can control the expected network

modularity (Fig. 1) [15]. Then we generate a random

distribution of metabolites and relax the system to equilibrium

(using mass-action kinetics with an implicit enzymatic control).

From this state, we apply a certain type of perturbation to the

system and let it relax to a new equilibrium. To quantify

robustness, we measure how close the two equilibria are to each

other. We also measure the relaxation time, i.e. how fast the

system can respond to the perturbation (and for that reason, we

do not employ faster calculations of the equilibrium state

[16,17]). In Fig. 2 we show an example of these steps. As the

reaction system is generated by a stochastic method we repeat
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the procedure above to obtain averages. For each value of the

input parameters, we measure average values over 500

realizations of all steps above of both the network modularity

and the quantities characterizing robustness. From these data

points we derive trends in the modularity-dependence of

different aspects of robustness.

Results

Robustness as a function of network modularity
Robustness is a broad concept that hardly can be condensed

into one measure, even for a system as specific as metabolism. In

general, robustness can be defined as a system’s ability to remain

Figure 1. Example of the reduction from reaction systems to substance graphs and the generation of modular reaction systems. In
A we see how the two substrates and one product (circles) of a reaction (triangle) gets reduced to a substance graph. An arrow going into a reaction
marks the substrate, an arrow going out marks the product. Panel B illustrates a reaction system obtained with the method of the manuscript. The
parameter values for this reaction-system example are R~4, g~3, ng~3, ntrial~100 and c~0:9. The algorithm proceeds by assembling reactions and
metabolites in disjoint clusters (the three larger clusters of distinct colors). Then we add a fraction of metabolites and reactions that can connect to
any parts of the system. The larger this fraction of global reactions is, the lower is the network modularity of the projected network.
doi:10.1371/journal.pone.0016605.g001
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unchanged when perturbed. One can imagine several types of

perturbations. We investigate two rather different classes—

changes in concentrations of metabolites and changes in the

reaction system (new reactions replacing old) by genetic control.

We refer to the first case as metabolic perturbations and the second

as genetic perturbations. We will also distinguish between: if the

perturbations are localized to one module, or if they can appear

anywhere in the network. In total we consider four classes of

perturbations—they can be either localized or global, and

metabolic or genetic.

The main robustness measure, defined in the Methods section,

is basically the relative change in the concentration of a metabolite

averaged over a set of metabolites. We consider two such sets,

either the whole set of metabolites, which gives the system-wide

robustness r, or the metabolites that are perturbed giving the focal

robustness r�.
In Fig. 3, we plot the average values of our robustness measures

as functions of the average network modularity q. The robustness

to global metabolic perturbations increases while the robustness to

perturbations within a module remains fairly constant (Fig. 3A). If

one looks only at the metabolites that were originally perturbed

(Fig. 3A), the situation is different—these metabolites are more

affected by sudden shifts in the concentrations the more modular

the system is. This seems logical—if the modularity is lower, the

coupling to the rest of the network is stronger, so there are more

metabolites to influence the relaxation and to absorb the

perturbation. The fact that the system is more robust to global,

compared to localized, perturbations can be explained in a similar

way—a localized perturbation gives a larger impact on a restricted

subsystem and this subsystem cannot absorb that large impact as

much as the whole system would. But why does the system-wide

robustness increase with modularity? One scenario is that

metabolic perturbations are better absorbed in a distributed

fashion. With global perturbations and high modularity each

module handles its internal perturbations and, if this fails, flows

between the modules are too weak for the perturbation to spread.

For the genetic perturbations all curves are decreasing, meaning

that modularity makes the system less robust. These perturbations

virtually add new reactions and delete old. Even if the

perturbations are designed not to affect the average structure of

the system (keeping e.g. the system size R and the modularity q
constant), they obviously affect r more than the metabolic

perturbations (cf. Fig. 3A and Fig. 3C). A network module can

presumably not handle a genetic perturbation as efficient as a

metabolic perturbation. Another factor for the decreasing q(r)-
curve could be that the interface between the modules can change

from the perturbations and that the interfaces get more influential

with increasing modularity. As seen in Fig. 3D, the localized

perturbations influence the directly affected metabolites (the ones

that are involved in reactions changed by the genetic perturba-

tions) less strongly than the global perturbations. From the changes

at the interfaces, we can understand that localized perturbations

affect the rest of the system to a greater deal here than compared

with metabolic perturbations. r� is larger for the local compared

with global genetic perturbations meaning that for metabolites

within a single module rewired by genetic perturbations the

changes will be larger than if the perturbations are more

distributed.

Relaxation time as a function of network modularity
In Fig. 4, we show the relaxation time t as a function of

modularity. A small t value means that the system reaches its new

equilibrium fast. This dynamic response is different for the two

types of perturbations—the system reaches its new state faster with

Figure 2. The procedure to measure robustness. The figure illustrates a reaction system at equilibrium visualized by its reaction graph A,
getting perturbed by redistributing the mass of (in this case two) metabolites B and how the system relaxes to another equilibrium (c,d). The
concentration is illustrated by the size of the circles (the total mass, not the concentration is conserved, so the total areas of the circles are not the
same in the different panels). The change in concentration is indicated by color. A metabolite unaffected by the perturbation is colored black.
doi:10.1371/journal.pone.0016605.g002
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higher modularity for the metabolic perturbations, but slower with

the genetic ones. The decreasing t(q) curves for metabolic

perturbations is in line with the above mentioned scenario that if

modules handle the perturbations independently, then the more

modular the system is the better (in this case faster) is the recovery.

That, for genetic perturbations, robustness increases with

modularity is something we interpret as an effect of the changed

couplings across at the boundary. The stronger the modularity is,

the slower is the flow between the modules and the longer does the

system need to find a new equilibrium.

Discussion

We have, in a model framework, directly measured the effects of

network modularity on the robustness of chemical reaction

systems. The main conclusion is that modularity does affect

robustness but not in a unique way. Modularity is thus, it seems,

not a general principle for either strengthening or weakening

robustness, not even in such a specific system as metabolism.

When relating robustness and modularity, one needs to specify

what kind of perturbation we measure robustness against. For

sudden changes icn concentration levels, in our model, more

modular reaction systems are more robust and converge to an

equilibrium state faster than less modular systems. If, on the other

hand, the genetic control is altered—so that other enzymes are

expressed—then modularity decreases robustness. In an evolu-

tionary perspective, this essentially means that we need more

detailed studies. Real metabolic networks are more modular (in

the network-modularity sense) than random networks, but still far

from, say, a system engineered by humans [18]. One scenario is

Figure 3. Robustness vs. modularity. Panels A and B show data for the robustness against metabolic perturbations. A displays robustness of the
system as a whole; B shows the robustness measured over the perturbed metabolites only. Panels C and D show the corresponding plots for
robustness against genetic perturbations. Circles represent perturbations made in one module; crosses indicate data for perturbations made in
different modules. The data is averaged over more than 500 runs (network realizations). The errorbars in the average q are smaller than the symbol
size.
doi:10.1371/journal.pone.0016605.g003
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that robustness is key driving force in evolution of metabolic-

network structure and that this weakly modular structure above

comes from trade-offs between robustness-increasing and robust-

ness-decreasing changes in modularity. However, functionality

and chemical constraint probably also play a major role in this

evolution. Note that if one considers smaller feedback loops as

modules, rather than network clusters, evolution is by necessity

modular in the sense that adding the production of a new

substance often needs the addition of its degradation (this is

because many substances cannot penetrate the cell membrane and

would be toxic if accumulated). The conclusion that modularity

does not affect robustness in a single direction has further

implications for synthetic biology that often, at least theoretically,

strives to design functionality from combination of modules

[19,20]—our study hints the such an approach would not give

robustness for free.

For the future, we anticipate more studies cataloguing the

principles of robustness, and the effects of modularity. We believe

model studies like the present are the best theoretical way to

proceed. An alternative is to compare the modularity of different

organisms [21] to find changes in the modularity over the course

of evolution, but in such an approach it would be hard to tease

apart fundamental physical constraints from evolutionary pressure.

It would of course also be interesting to experimentally compare

the response of different organisms, or cell types, with metabolism

of different network modularity to perturbations. Further into the

future, we hope for experimental methods to measure the

dynamics of the entire chemical composition of cells.

Methods

Notations and mathematical framework
We consider a reaction system of N metabolites M and R

reactions R. A reaction r[R is characterized by its substrates

s1, � � � ,sS(r)[M, their multiplicities s1, � � � ,sS(r), its products

p1, � � � ,pP(r)[M and their multiplicities p1, � � � ,pP(r), and a

reaction coefficient kr. Consider, for example, the reaction

2H2 + O2 ? 2 H2O. Then we have S~2, P~1 s1 is H2, s2 is

O2, s1~2, s2~1, p1 is H2O and p1~2. From a reaction system

one can derive a graph G~(V ,E), where V (V~M in this case) is

the set of vertices of the graph and E is the set of edges. One can

define several types of metabolic graphs. In this work we focus on

substance graphs (claimed to encode more functional information

about the graphs than other simple-graph representations [5,15]),

where the vertices are substances and there is an (undirected) edge

between two vertices if they are either substrates or products of the

same reaction (edges between a vertex to itself is not allowed). In

the example above, the reaction will contribute with three edges—

(s1,s2), (s1,p1) and (s2,p1)—to the substance graph (see Fig. 1A).

Network modularity
We will shortly discuss how network modularity is calculated.

For a more comprehensive review, see Refs. [2,3]. Let the vertex

set be partitioned into groups and let eij denote the fraction of

edges between group i and j. The modularity of this partition is

defined as

Q~
X

i

eii{
X

j

eij

 !2
2
4

3
5, ð1Þ

where the sum is over all the vertex groups. The term
P

j eij

� �2

is

the expectation value of eii in a random graph. The measure for

graph modularity that we use is q(G)—Q maximized over all

partitions (by a heuristics proposed in Ref. [3]). Comparing q of

graphs with different sizes and degree distributions is not

completely straightforward. Even for networks generated by one

particular model (that one would from construction expect to have

the same modularity) q can vary with the network size [22].

Fortunately, for this work, such changes are monotonous. This

means that we can use q to detect changes in robustness in

response to changes in modularity even though the particular

Figure 4. Relaxation time vs. modularity. Panel A displays the corresponding data for perturbations in the concentrations of metabolites. Panel
B shows the relaxation time for genetic perturbations within one module (circles) or the whole system (crosses). The data represents averages over
more than 500 runs (the same runs as in Fig. 3).
doi:10.1371/journal.pone.0016605.g004
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functional forms of the curves of robustness vs. q are hard to

interpret.

Model reaction systems with tunable network modularity
In this section, we will sketch the model of reaction systems with

tunable network modularity. The model we use treats atoms of the

molecular species explicitly. The set of all atoms is divided into g
groups (or proto-modules) of equal size ng. R reactions are added to

the system such that they obey mass conservation (for all atom

species, the number of individuals is the same for substrates and

products). cr reactions are added between molecules consisting of

atoms from the same group. The remaining (1{c)r reactions are

added between molecules of any atomic composition. For low c-

values, relatively few reactions will connect different groups and

therefore the derived network modularity will be low. If c is close to

one, the derived graphs will be more modular. The molecules are

constructed by randomly combining atoms of a group. Reactions

are generated by randomly splitting and recombining molecules. If

the mass conservation is broken, or the reaction already exists in the

data set, then the molecule construction is repeated. If no reaction

fulfilling mass conservation has been found after ntrial iterations,

then this is done by defining new molecules. With a larger value of

ntrial, the substance graphs will thus be both denser and have fewer

metabolites (N is, perhaps a little unusually, an output of the model,

whereas R is a control parameter).

There are a number of other technicalities, like how the

molecules are constructed from the atoms etc., that are explained

in detail in Ref. [15]. We also modify the algorithm of Ref. [15]

when it comes to inter-group reactions. In Ref. [15] these always

act as sources and sinks (so that there is never a flow between

modules); here all inter-group reactions are bridges between the

modules (so that these reactions have at least one substrate in one

group and one product in the other).

In this work we use the parameter values R~500, g~10, ng~5
and ntrial~100 (the values of the other parameters, related to the

details in Ref. [15] are the same as in that paper).

Reaction kinetics
To simulate the biochemical dynamics, we use simple mass-

action kinetics. This approach is, technically speaking, assuming all

enzymatic effects can be encoded into the reaction coefficients and

the reaction system itself. The main reason for this simplification is

that, when speaking about network modularity, enzymes are usually

only included implicitly (via the active reactions), so to relate the

robustness to network modularity we need a kinetic description of

the same level of description. Given a reaction system generated by

the scheme above we assign a rate constant kr to each reaction r
drawn from a normal distribution N(mrate,srate) (the sign of mrate

defines the direction of the reaction) and initial concentration ci of a

substance i in N(mconc,sconc) (setting negative concentrations to

zero). From this starting point, we use the kinetic equation

dci

dt
~
X

r

krpr(i) P
S(r)

j~1
s

sj
j , ð2Þ

where the sum is over all reactions r with i as a product, where pr(i) is

i’s multiplicity in the reaction r. To simulate the metabolic flux we

also add source and sink terms to Eq. 2 for some metabolites. We let

all the metabolites that are not substrates of any reaction be sinks

(otherwise their mass would just accumulate) and all metabolites that

are not a product of any reaction to be sources. In practice there will

always be both sources and sinks in the generated reaction systems. (If

the reaction systems would be generated in some other way one

would need to put in sources and sinks explicitly.) We model the

outflux by letting the sink-metabolites flow out of the system with a

rate proportional to a times the concentration of the metabolite. In

our simulations we use a~0:5. We keep the inflow rate the same as

the outflow rate so that the total mass is conserved. The inflow is

distributed to the inflow metabolites in proportion to bi, a random

variable for each inflow metabolite drawn from a N(min=out,sin=out)

distribution when the reaction system is generated.

From the above setup, we run the system is until it converges

(which it always does for the dynamic systems in question). We

integrate the system with the Euler method (with time step

dt~10{5 until the time t when

jci(t){ci(t’)jvE for all i and t’[½t,tzT �: ð3Þ

We use E~10{5 in this simulations. Higher precision in dt or e
does not change the outcome significantly. In this paper we use the

parameter values mrate~0, srate~1, mconc~0, sconc~1,

min=out~1, T~1 and sin=out~1.

Genetic perturbations
Since we exclude genetic control and explicit enzymes in our

reaction-system kinetics, we have to model the genetic perturba-

tions indirectly. This is on the other hand quite straightforward.

We replace Rpert randomly chosen reactions following the same

rules as when the reaction system was first constructed. For local

perturbations, the reactions are chosen from one randomly

selected cluster (identified by the cluster-detection algorithm

above). A reaction is associated to the module to which a majority

of its metabolites are categorized (if there is a tie, we select a cluster

randomly). In this process, new metabolites will inevitably be

generated and others possibly deleted. To conserve mass in case

the number of metabolites changes, we split the mass of the deleted

metabolites equally among the new. We also go over the system

and update the sources and sinks in the same way as when the

reaction system was constructed.

Metabolic perturbations
Analogously to the genetic perturbations, we also require the

metabolic perturbations to conserve the total mass. We control the

magnitude of the perturbation by a parameter J by requiring that

P
i[V m

^
i{m̂mi

��� ���P
i[M m̂mi

~J ð4Þ

where m̂mi is the total mass of metabolite i before the perturbation

and m
^

i is the total mass after, and V is a set of metabolites. In

practice the masses have a right-skewed, heavy tailed distribution

(as observed in real systems [23]). This means that if we just

continue adding metabolites randomly until the condition Eq. (4) is

fulfilled, and J is not very small (we use J~5%), we will have to

perturb a rather large fraction of the metabolites. To get around

this problem, consider a set c of metabolite pairs. For the local

perturbations, we choose a cluster (as detected by the algorithm

above) at random as V and add pairs of metabolites picked at

random to c until the condition is met or all there are no

metabolites left in the cluster1. For the global perturbations we let

V~M and split the metabolites into two sets Mz and M{

1To facilitate the analysis, the model parameters need to be chosen so that this is
a rare event.
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where the total mass of any metabolite in Mz is larger than any

metabolite in M{ and Mz is as small as possible such that the

total mass of Mz is larger than 2J. In our simulations M{

always has more elements than Mz. Then we add pairs where

one metabolite is randomly selected from Mz and one is

randomly selected from M{ until Eq. (4) is true.

Robustness measures
Any measure of robustness should increase the more similar the

system is before and after a perturbation. For biological

functionality, it could be just as important to keep the

concentrations of rare metabolites steady as those of the most

abundant ones. Let ĉci be the concentration of metabolite i before

the perturbation and ci
_

be the concentration after. A natural

choice would be to take the average over the metabolites of the

change j ci
_

{ĉcij rescaled by the typical concentration of i as a

measure of unrobustness (and thus its reciprocal value as a

measure of robustness). As ‘‘typical concentration’’ one choice is

the average. In practice, the metabolites that are very close to zero

in concentration can give a rather large signal due just to

numerical errors. To suppress such numerical noise, we rather use

the quadratic mean, which decreases the expression’s sensitivity to

fluctuations in the denominator in the frequent situation that the

concentrations are close to zero, thus putting a lower weight on the

more uncertain terms. Our robustness measure thus becomes

r~
1

jVj
X
i[V

j ci
_

{ĉcijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
_

i
2zĉc2

i

r
0
BB@

1
CCA

{1

ð5Þ

where V is a set of metabolites and j : j denotes the absolute value

of a number or the number of elements of a set. We consider two

versions of this measure, one averaged over the whole set of

metabolites, which we call system-wide perturbations r, and one

averaged over the metabolites directly affected by the perturba-

tions (the metabolites participating in a reaction catalyzed by a

perturbed enzyme in the case of genetic perturbations or, trivially,

the perturbed metabolites of a metabolic perturbation), which we

refer to as focal robustness r�.
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