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DNA replication initiates from thousands of start sites throughout the Drosophila genome and must be coordinated with
other ongoing nuclear processes such as transcription to ensure genetic and epigenetic inheritance. Considerable progress
has beenmade toward understanding how chromatin modifications regulate the transcription program; in contrast, we know
relatively little about the role of the chromatin landscape in defining how start sites of DNA replication are selected and
regulated. Here, we describe the Drosophila replication program in the context of the chromatin and transcription landscape
for multiple cell lines using data generated by the modENCODE consortium. We find that while the cell lines exhibit similar
replication programs, there are numerous cell line-specific differences that correlate with changes in the chromatin archi-
tecture. We identify chromatin features that are associated with replication timing, early origin usage, and ORC binding.
Primary sequence, activating chromatin marks, and DNA-binding proteins (including chromatin remodelers) contribute in
an additive manner to specify ORC-binding sites. We also generate accurate and predictive models from the chromatin data
to describe origin usage and strength between cell lines. Multiple activating chromatin modifications contribute to the
function and relative strength of replication origins, suggesting that the chromatin environment does not regulate origins of
replication as a simple binary switch, but rather acts as a tunable rheostat to regulate replication initiation events.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession nos. GSE17279–GSE17281, GSE17285–
GSE17287, GSE20887–GSE20889.]

With every cell division, DNA replication must initiate in a co-

ordinated manner from thousands of start sites or origins of DNA

replication. Potential origins of DNA replication are selected by

the heterohexameric origin recognition complex (ORC), which is

conserved in all eukaryotes. The replicative helicase, MCM2-7

complex, is loaded at ORC-binding sites in G1 to form the pre-

replicative complex (pre-RC) (for review, see Bell and Dutta 2002).

In S. cerevisiae, ORC recognizes a degenerate consensus sequence,

the ACS (ARS consensus sequence) (Marahrens and Stillman 1992),

which is necessary, but not sufficient for ORC binding (Breier et al.

2004). In higher eukaryotes, a defined consensus sequence has

yet to emerge, suggesting that additional features such as chro-

matin organization and modification will be critical components

for defining sequences that will function as origins of replication.

The assembly, organization, and modification of histone

octamers on the DNA regulate the accessibility of the DNA to trans-

acting factors such as transcription factors and RNA polymerase II

(RNA Pol II) (for review, see Rando and Chang 2009). Promoter

elements have a specific nucleosome organization with a nucleo-

some-free region immediately upstream of the transcription start

site (TSS) and well-positioned nucleosomes within the gene body

(Lee et al. 2007). Similarly, a number of epigenetic histone modi-

fications modulate the recruitment of transcription factors to DNA

and gene-expression levels in what is often referred to as the his-

tone code hypothesis ( Jenuwein and Allis 2001). While much

progress has been made in our understanding of how chromatin

structure and organization regulate gene expression, we know

comparatively little about their contribution to the DNA replica-

tion program.

In S. cerevisiae, the organization of nucleosomes is an impor-

tant determinant of ORC localization. ORC localizes to nucleo-

some-free regions and is required to precisely position nucleo-

somes flanking the origin of replication (Berbenetz et al. 2010;

Eaton et al. 2010). This precise nucleosome organization is re-

quired for origin function as occluding the ACS within a nucleo-

some or moving the upstream flanking nucleosome abrogates or-

igin function (Simpson 1990; Lipford and Bell 2001). In Drosophila,

nucleosome organization also appears to be a defining feature

of ORC-binding sites. Sites of ORC enrichment are depleted for

bulk nucleosomes and enriched for the histone variant H3.3

(MacAlpine et al. 2010). Recent experiments profiling Drosophila

nucleosome turnover in near real time by ‘‘covalent attachment of

tags to capture histones and identify turnover’’ (CATCH-IT) found

that ORC-associated sites undergo active nucleosome exchange

(Deal et al. 2010). Together, these data suggest that in both yeast

and higher eukaryotes, a primary determinant of ORC localization

is the accessibility of the DNA in higher order chromatin.

Histone acetylation has been positively correlated with rep-

lication origin activity in a variety of experimental systems. In

S. cerevisiae, deletion of the histone deacetylase, RPD3, results in

the earlier activation of a subset of late-firing origins of replication

(Vogelauer et al. 2002; Knott et al. 2009). Similar experiments in

Drosophila have shown that replication initiation during the de-

velopmentally programmed amplification of the chorion locus

is also sensitive to changes in local histone acetylation (Aggarwal

and Calvi 2004). In mammalian cells, differences in local chromatin
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acetylation at the beta-globin locus between erythroid and non-

erythroid cells are reflected in the activity of the beta-globin rep-

lication origin (Goren et al. 2008). Finally, the loading of a tran-

scriptional activator, GAL4-VP16, on a plasmid is sufficient to

localize origin activity in Xenopus extracts (Danis et al. 2004). This

effect is not dependent on active transcription, but instead is cor-

related with the local acetylation of histones at the site of initia-

tion. The role of chromatin modification in the selection of ori-

gins of replication is less clear, although recent studies at a select

number of mammalian origins of replication indicate that HBO1

(also known as MYST2), a histone H4 acetylase, interacts with

CDT1 and is required for the subsequent loading of the MCM

complex to form the pre-RC (Miotto and Struhl 2010).

To better understand how the DNA replication program is

established and regulated, we have examined multiple DNA rep-

lication data sets in the context of the diverse data types generated

by the modENCODE (model organism encyclopedia of DNA

elements) consortium (Celniker et al. 2009). The goal of the

modENCODE project is to identify all functional DNA elements in

the genomes of the model organisms D. melanogaster and C. ele-

gans. Together, the consortium has generated nearly 1000 ge-

nomic data sets, consisting of array and sequencing-based ex-

periments that describe the transcription program, map the

chromatin landscape, identify transcription factor and insulator

binding sites, and characterize the DNA replication program across

multiple cell lines and developmental stages (The modENCODE

Consortium 2010).

Our analysis of the similarities and differences in the DNA

replication program from three Drosophila cell lines has provided

unique insights into the role of chromatin organization and modi-

fications in regulating the DNA replication program. Genome-wide

replication timing and early origins of replication are correlated

with a variety of activating chromatin marks. Similarly, we find

that ORC-binding sites are enriched for a subset of these chroma-

tin marks as well as additional DNA-binding proteins, suggesting

that the selection and regulation of origins may be controlled by

distinct factors. We were unable to identify a simple consensus

sequence analogous to the yeast ACS from the high-resolution

ChIP-seq ORC-binding data. Instead, we were able to use machine-

learning approaches to classify ORC-binding sites based on se-

quence features, chromatin modifications, and DNA-binding pro-

teins. Finally, we generated accurate computational models to

predict origin function based on the chromatin landscape.

Results

Characterization of the Drosophila replication program
in three cell lines

As part of the modENCODE consortium, we have utilized multiple

genomic approaches to characterize the Drosophila DNA replica-

tion program in three different cell lines. Two of these cell lines are

of embryonic origin (Kc167 [Kc] and S2-DRSC [S2]), and the third

is derived from neuronal tissue (ML-DmBG3-c2 [Bg3]); together,

they represent some of the most commonly utilized cell lines in

the Drosophila research community. We have taken a top-down

approach, characterizing the replication program by utilizing in-

creasingly high-resolution and complementary assays (Fig. 1A).

Specifically, we used genomic tiling arrays to determine the relative

time of replication for all unique sequences in the Drosophila ge-

nome (Fig. 1A, top), map early activating origins of replication (Fig.

1A, middle), and identify, at near nucleotide resolution, the loca-

tions of ORC binding by using high-throughput sequencing (Fig.

1A, bottom).

Genomic tiling arrays were used to identify the relative time

of DNA replication during S phase for unique sequences in the

Drosophila genome. Briefly, synchronized cells were pulse labeled

with the nucleotide analog, 5-bromo-2-deoxyuridine (BrdU), dur-

ing either early or late S phase, resulting in the differential labeling

of early and late replicating sequences (MacAlpine et al. 2004).

These fractions of early and late replicating sequences were then

hybridized to genomic tiling arrays to determine the relative

time of replication. We found that the relative time of DNA repli-

cation was correlated across the three cell lines (Table 1). The

replication timing of the X chromosome is one notable excep-

tion; it completes replication significantly earlier than the auto-

somes in the male cell lines (Schwaiger et al. 2009; L DeNapoli, M

Eaton, and D MacAlpine, in prep.).

Early origins of replication were identified in the three cell

lines by pulse labeling cells with BrdU in the presence of hy-

droxyurea (HU), a potent inhibitor of nucleotide biosynthesis. HU

treatment results in stalled replication forks and the activation

of the intra-S-phase checkpoint (Santocanale and Diffley 1998;

Shirahige et al. 1998). Thus, only those sequences immediately

adjacent to early activating origins of replication will incorporate

BrdU, allowing the enrichment of early origin proximal sequences

by immunoprecipitation with anti-BrdU antibodies (MacAlpine

et al. 2004). We identified 630, 457, and 433 early origins of rep-

lication in Kc, S2, and Bg3 cells, respectively. To facilitate inter-cell

line comparisons, we assembled a single set of 823 genomic loci

that had evidence for early origin activity in at least one of the

three cell lines. We will refer to this as the set of early origin meta-

peaks, and it represents locations in the Drosophila genome that are

capable of functioning as a replication origin. Almost a quarter of

these early origin meta-peaks (195) were found in all three cell lines

and approximately half (403) were found in at least two cell lines

(Fig. 1B). For each of the three cell lines, at least two-thirds of the

early origins were also found in another cell line (Fig. 1C). Impor-

tantly, 82% of the early origin meta-peaks contained an ORC-asso-

ciated sequence (P # 1 3 10�5, bootstrap R = 100,000; see Methods).

Recent advances in sequencing technology have allowed the

use of high-throughput sequencing to directly sequence DNA

from chromatin immunoprecipitation experiments (ChIP-seq)

(Johnson et al. 2007; Robertson et al. 2007). We have used ChIP-

seq to analyze the genome-wide distribution of ORC. ChIP-seq of

biological replicates from independent experiments was per-

formed on each of the cell lines. We identified 5159, 4230, and

4477 distinct ORC-binding sites in Kc, S2, and Bg3 cells, respec-

tively. We then generated a set of ORC meta-peaks analogous to the

set of early origin meta-peaks described above. We identified 7246

ORC meta-peaks, of which more than a third (2395) have support

in all three cell lines, and more than half of these sites (4045) were

found in at least two cell lines (Fig. 1D). Examination of each of the

individual cell lines revealed almost 75% of the ORC peaks iden-

tified in a particular cell line were also found in at least one other

cell line (Fig. 1E).

Diverse chromatin marks define the replication program

The chromatin landscape clearly impacts both the expression and

the replication of the genome. For example, the transcriptionally

active euchromatin typically replicates prior to the repressed het-

erochromatic sequences (for review, see Gilbert 2010). Studies in

yeast, Drosophila, and mammalian systems have shown that
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changes in histone acetylation (Aggarwal and Calvi 2004; Goren

et al. 2008; Knott et al. 2009) are associated with changes in

the replication program. However, a comprehensive view of the

replication program in the context of chromatin modifications

and DNA-binding proteins is lacking.

The different modENCODE data types across multiple cell

lines (The modENCODE Consortium 2010) allowed us to define

the chromatin and transcription landscape associated with fea-

tures of the DNA replication program. For each replication data

type (replication timing, early origins, and ORC binding), we gen-

erated a 43 3 3 matrix, with each column representing a specific

cell line and each row representing the enrichment or correlations

with chromatin marks, DNA-binding proteins, nucleosome den-

sity, histone variants, nucleosome turnover (CATCH-IT) (Deal et al.

2010), and gene expression (RNA-seq) (Fig. 2). For the replication

timing profiles where we did not have discrete peak calls, we cal-

culated the Spearman’s correlation between each factor with the

whole-genome replication timing profile (Fig. 2A). For early origins

of replication (Fig. 2B) and ORC-binding sites (Fig. 2C), we calcu-

lated the median log2 enrichment of each factor within all BrdU

peaks and within 500 bp of ORC ChIP-seq peak centers, respec-

tively. The rightmost column of each matrix is a summary column

depicting the average signal or correlation for each factor derived

from the three independent cell lines.

We found that the selection and regulation of DNA replica-

tion origins is associated with distinct sets of chromatin marks and

DNA-binding proteins. Prior studies have associated early replica-

tion with active transcription and the presence of ‘‘activating’’

chromatin modifications such as histone acetylation, whereas late

replication is associated with ‘‘repressive’’ chromatin marks such as

those found in the heterochromatin (for review, see Gilbert 2010).

Indeed, we found that gene expression is positively correlated with

replication timing, as are generally euchromatic marks such as

Table 1. Pearson correlation of whole-genome replication timing
between cell lines

r Bg3 Kc S2

Bg3 1 — —
Kc 0.67 1 —
S2 0.68 0.7 1

Figure 1. The Drosophila replication program across three cell lines. (A) Replication program in S2-DRSC cells. Genome browser track of whole-genome
S-phase replication timing profiles as the log2 ratio of early to late replicating sequences (red), early origin activity as the log2 ratio of BrdU enrichment to
input DNA (blue), ORC-binding sites as input corrected ChIP-seq tag depth (orange), and gene models for a 500-kb region of chromosome 2L. (B) Overlap
of early origins in three cell lines. The Venn diagram shows the overlap in total early origin peaks from each cell line. (C ) Distribution of early origin meta-
peaks per cell line. The percentage of early origin peaks found in three cell lines (light gray), two cell lines (medium gray), or one cell line (dark gray). (D)
Overlap of ORC ChIP-seq peaks in three cell lines. As in B, the Venn diagram depicts the overlap in ORC peaks for each cell line. (E ) Distribution of ORC
meta-peaks per cell line. Same as C for ORC ChIP-seq peaks.
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H3K4me1 and H3K18ac (Fig. 2A). In contrast, heterochromatic

marks such as H3K27me3 and H3K9me2 are negatively correlated

with replication timing. The sequences surrounding early origins

were also enriched for activating chromatin marks as well as spe-

cific DNA-binding proteins, including chromatin remodeling fac-

tors (Fig. 2B).

Because many of the ORC-binding sites colocalized with

promoters of active genes (MacAlpine et al. 2010), we separated the

ORC-binding sites into those that are TSS proximal (within 1 kb of

a TSS) and those that were not at a TSS (distal). We were particu-

larly interested in chromatin features that are shared between ORC-

binding sites both proximal and distal to promoters. Additionally,

marks that are specific to ORC sites distal from a promoter will be

of interest, as these marks may be required for ORC binding or

function in the absence of a promoter.

ORC-binding sites proximal to TSSs were enriched for chro-

matin remodelers such as the NURF complex (NURF301 [also

known as E(BX)], ISWI) as well as other DNA-binding proteins

such as GAF, RNA Pol II, and CHRO (Fig. 2C). These TSS-associated

ORC sites were also enriched for H3K9ac, H3K27ac, H3K4me2,

and H3K4me3—marks frequently found

at promoters. Interestingly, those ORC

sites that did not overlap with a TSS (dis-

tal) were also enriched for chromatin

remodelers ISWI and NURF301, as well as

GAF, which has also been implicated in

chromatin remodeling (Petesch and Lis

2008). Consistent with the idea of ORC

localizing to dynamic and active chroma-

tin, we found an enrichment for CATCH-

IT and H3.3 at ORC sites both proximal

and distal to TSSs, as well as a reduction

in bulk nucleosome occupancy (The

modENCODE Consortium 2010). ORC

sites not located at promoters were en-

riched for many of the same histone

marks as those at promoters, with a few

notable exceptions. We found a decrease

in H3K4me3 at ORC sites distal from

a promoter, as well as an increase in

H3K18ac and H3K4me1.

Chromatin features specific to tran-

scription start sites such as RNA Pol II and

H2Av were decreased at ORC-binding

sites distal to promoter elements. A small

amount of RNA Pol II signal remained in

the TSS distal ORC-binding sites; how-

ever, in comparison to the local enrich-

ment of ISWI and GAF, there was a clear

reduction in local signal (Supplemental

Fig. S1). The remaining signal may be due

to unannotated transcription start sites.

Chromatin marks that are associated

with active transcription through gene

bodies (e.g., H3K79me1, H3K36me1, and

H3K36me3) were not found above back-

ground levels at any ORC-binding sites.

However, H3K36me1 was found specifi-

cally flanking those ORC-binding sites

that did not coincide with a TSS (The

modENCODE Consortium 2010). ORC has

been shown to facilitate the formation of

heterochromatin and HP1 binding (Pak et al. 1997); however, we

found that ORC sites were depleted for heterochromatic histone

modifications such as H3K27me3 and H3K9me2/3 and were only

slightly enriched for HP1. This may be due, in part, to the in-

ability to map distinct ORC-binding sites in repetitive sequences,

a current limitation of high-throughput sequencing approaches.

We also examined the chromatin signatures of promoter el-

ements with and without ORC associated to determine whether

there were unique chromatin signatures specific for ORC associ-

ated promoters. Since those promoters with proximal ORC bind-

ing tend to be far more actively transcribed than those without

ORC (Supplemental Fig. S2), we limited our comparison to active

promoter elements only. We found that ORC-associated promot-

ers had modestly increased chromatin remodeling activities, de-

creased nucleosome occupancy, and greater evidence of nucleo-

some turn-over relative to other active promoters not associated

with ORC (Supplemental Fig. S3). In summary, these results in-

dicate that dynamic chromatin environments may contribute to

ORC localization and the subsequent activation of replication

origins.

Figure 2. The chromatin landscape of the replication program. (A) Chromatin correlations with
replication timing. The genome-wide replication timing profile of each cell line was paired with the
genome-wide array scores for each chromatin factor, and the pairwise correlation of the factor with
replication timing was computed (Spearman’s r). The correlation r ranges from�0.5 (blue) to +.5 (red).
(B) The chromatin landscape of early origins. The log2 enrichment for each factor within early origin
peaks was determined for each cell line. The enrichment ranges from �2 (blue) to +2 (red). (C ) The
chromatin landscape of ORC-binding sites. ORC-associated sequences were divided into TSS proximal
(overlapping a TSS) and TSS distal (not overlapping a TSS). The log2 enrichment for each factor within
500 bp of the ORC peak centers was determined for each cell line. The enrichment ranges from �2
(blue) to +2 (red). In all panels, gray boxes represent an experiment that has not yet been submitted to
modENCODE. See Methods for details.
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Potential cis- and trans-acting elements directing
ORC association

ORC purified from higher eukaryotes exhibits little if any sequence

specificity in vitro (Vashee et al. 2003; Remus et al. 2004). Despite

the apparent lack of specificity, we found that ORC localized to

specific chromosomal locations in three different cell lines. In our

prior ORC ChIP-chip experiments (MacAlpine et al. 2010), we were

unable to identify a single sequence motif that was predictive for

ORC binding, but rather, we were able to identify sequence words

(k-mers) that in combination were able to accurately classify se-

quences as ORC associated or not using support vector machines

(SVMs). We revisited the issue of specific sequences directing ORC

localization with our ORC-binding data derived from the higher

resolution ChIP-seq data sets.

First, we sought to identify potential cis-acting motif elements

in those sequences that were associated with ORC. We identified

3416 sequences representing the intersection of peaks in each of

the three cell lines. The intersection of the ORC peaks was used

rather than the previously described meta-peaks to increase the

nucleotide level resolution. The center of the intersection was used

as the epicenter of the ORC-binding sites and extended 250 bp up-

and downstream to yield a 500-bp fragment. Using the motif

identification tool MEME (Bailey and Elkan 1994), we were only

able to identify simple repetitive elements (CA)n, (CT)n, and (CG)n

that, although enriched (Supplemental Fig. S4), were not particu-

larly predictive of ORC binding (Supplemental Fig. S5).

We decided to build upon our earlier success using support

vector machines (SVM) to classify ORC-binding sites based on

primary sequence (MacAlpine et al. 2010) by including additional

information such as chromatin modifications and DNA-binding

proteins. An SVM is a classification algorithm that is trained on

a set of labeled samples represented as feature vectors (e.g., ORC

bound or unbound sequences), and after training is able to accu-

rately distinguish between samples in a test data set. In accordance

with this, we generated a feature vector describing each ORC-

binding site and an equal number of random loci using unique

sequence k-mers (where k is 1–6, excluding reverse complements),

15 chromatin marks, and 20 DNA-binding proteins, for a total of

2765 features from the S2 data set. Given the input training set,

which consisted of an equal number of ORC bound and random

loci (balanced for promoter occupancy) from chromosomes 2L, 3L,

and 3R, we generated an SVM model using 10-fold cross-validation

of the training data set. The X and fourth chromosomes possess

unique chromatin environments and were excluded from the

training and test data sets. Specifically, the single male X chro-

mosome is hyperacetylated on H4K16 (Lucchesi et al. 2005) and

the 1.2-Mb fourth chromosome has a high-transposon density

and a prevalence of repressive heterochromatin marks (Riddle et al.

2009).

After training the SVM, we identified those features with the

most discriminatory power (F-score > 0.075) and thus reduced the

length of our feature vector from 2765 features to only 34 features.

The model generated from this reduced feature set was then used to

classify ORC-bound sequences on chromosome 2R, which was

deliberately left out of the training. The results of the testing are

presented as receiver operator characteristic (ROC) curves, with the

y-axis representing the sensitivity of the assay (true-positive rate) as

a function of 1-specificity (false-positive rate). We found that we

could accurately predict ORC-binding sites using either sequence,

chromatin modifications, or DNA-binding proteins (Fig. 3A).

However, combining the different features resulted in a marked

increase in accuracy of the predictions. For example, at a sensitivity

of 83% the false-positive rate was ;8%. Although there were fewer

chromatin factors available for the other two cell lines, the SVM

was still able to accurately classify origins in both Kc and Bg3

(Supplemental Fig. S6).

To better understand the specific features that contributed to

the discriminatory accuracy of the SVM, we plotted the class

proximity (defined as a t-statistic obtained from comparing the

feature counts between positive and negative sets) for each feature

against the F-score (Fig. 3B). In each case, the t-statistic denoted the

class to which each feature most correlated, and the discriminatory

power indicated its overall importance in classifying ORC sites.

Our analysis showed that binding proteins were by far the most

discriminative feature type, followed closely by chromatin marks.

Sequence features were neither very discriminative nor strongly

correlated to either class. This analysis was therefore able to iden-

tify those features most highly correlated with ORC-binding sites

across all cell lines (Supplemental Fig. S10), namely, WDS (which

interacts with complexes whose functions include histone acety-

lation and enabling ISWI to remodel chromatin) (Suganuma et al.

Figure 3. Sequence, chromatin, and DNA-binding proteins classify ORC-binding sites. (A) SVM performance was gauged by the ROC curve resulting
from separately using sequence features, chromatin mark features, binding protein features, or a combination of all three. In each case, the SVM was
trained using 10-fold cross validation on three chromosome arms (2L, 3L, and 3R) and tested on a fourth chromosome arm (2R). (B) The importance of
individual features was determined by plotting the F-score as a function of class proximity represented here as a t-statistic.
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2008), chromatin remodelers (NURF301, ISWI) and ‘‘activating’’

chromatin modifications (H3K4me2, H3K4me3, H3K27ac, etc.).

Predicting early origin usage from the chromatin landscape

Genome-wide and locus-specific experiments have revealed that

early replicating regions of the genome typically correlate with

‘‘activating’’ chromatin marks and that changing the local acetyla-

tion pattern of surrounding sequences can modulate replication

activity (Aggarwal and Calvi 2004; The ENCODE Project Consortium

2007; Karnani et al. 2007; Knott et al. 2009). However, genome-

wide experiments have simply revealed global correlations and the

observations taken from locus-specific examples may not apply to

all origins on a genome-wide scale. Finally, it is difficult to discern

specific and nonspecific effects from altering global patterns of

histone acetylation. For example, deletion of the global histone

deacetylase RPD3 in yeast results in the earlier activation of a sub-

set of late-firing origins (Knott et al. 2009); however, the global

reduction in histone H3 acetylation levels may also impact the

transcriptional control of key replication initiation factors.

The chromatin modENCODE data sets derived from multiple

cell lines (Kharchenko et al. 2011) provided a unique opportunity

to identify chromatin factors and DNA-binding proteins that

might distinguish differential origin usage or ORC occupancy be-

tween cell lines. Using S2 and Bg3 cells, we first identified ORC-

binding sites that were only found in Bg3 cells, but not S2 cells.

Comparison of the chromatin signatures between Bg3 and S2 cells

for those locations that were only bound by ORC in Bg3 cells re-

vealed only subtle changes in chromatin factors between the cell

lines (Supplemental Fig. S7A). For example, very modest decreases

were observed for ISWI and RNA Pol II in S2 cells at the ORC lo-

cations that were only utilized in Bg3 cells. Similar modest changes

were also observed between S2 and Bg3 cells when ORC locations

specific to S2 cells were examined.

We also examined the chromatin signatures of early origins of

replication in a similar manner (Supplemental Fig. S7B). Again,

early origins specific to Bg3 cells exhibited only a subtle difference

in chromatin signatures between Bg3 and S2 cells. A slight increase

in repressive heterochromatin marks (H3K9me2 and H3K9me3)

was observed at those sites in S2 cells. More dramatic differences in

chromatin factors were observed for early origins specific to S2

cells. Specifically, a loss of chromatin remodelers, RNA Pol II, and

activating marks were observed in Bg3 cells at those locations.

Together, these results suggest that early origins specific to S2 cells

are likely defined by increased activating chromatin marks, RNA

Pol II, and chromatin remodeling activities. However, Bg3-specific

origins of replication exhibited much more subtle differences in

the local chromatin environment between cell lines, suggesting

that even minor changes in chromatin environment may impact

origin usage.

The fact that there was not a single chromatin mark or DNA-

binding protein that was highly correlative with origin function by

itself prompted us to test the hypothesis that perhaps a complex

integration of diverse chromatin marks and DNA-binding proteins

was defining a local chromatin ‘‘terroir’’ favorable to origin usage.

Our goal was to develop a predictive model of origin function

based on chromatin and DNA-binding protein input. Specifically,

given the set of early origin meta-peaks spanning all cell lines,

could we accurately classify cell line-specific early origins based on

the chromatin landscape and, furthermore, could we also predict

the change in relative strength or activity of early origins between

cell lines?

To simplify our description of the chromatin environment at

early origins, we sought to identify representative classes of chro-

matin modifications and DNA-binding proteins that were highly

correlated within early activating origins of replication. We first

constructed a correlation matrix between each of the normalized

chromatin factors and DNA-binding proteins from Bg3 cells, and

using hierarchical clustering (Supplemental Fig. S8) we identified

five clusters of highly correlated chromatin marks (Fig. 4A, green-

red heatmap). Two of these clusters contained predominantly

‘‘activating’’ marks, nucleosome remodelers such as ISWI, and

DNA-binding proteins such as RNA Pol II (clusters 2 and 5). In

contrast, clusters 1 and 3 were largely composed of repressive

chromatin marks and heterochromatin-binding proteins. Finally,

insulator elements were also clustered together (cluster 4). These

clusters describe the general trends of co-occurrence of chromatin

marks and binding factors at the subset of the genome covered by

potential early origins. Given the correlations between chromatin

marks within each cluster and the redundancy of the ‘‘histone

code’’ ( Jenuwein and Allis 2001), we reduced the complexity of the

39 modifications and DNA-binding proteins to the integrated

signal for each cluster. Specifically, we collapsed the feature vector

of marks for each early origin meta-peak down to their mean signal

across each of the clusters. A summary of the log2 enrichments for

each cluster as a function of origin activity in Bg3 cells is presented

in Figure 4A (red-blue heatmap). Of the individual clusters, the

mean signals of 2 and 5 correlated highly with early origin strength

in Bg3 cells (Pearson’s r = 0.43 and 0.56, respectively, Supplemental

Fig. S9), while the other clusters showed only weak correlations.

To determine whether the local chromatin environment of the

early origin meta-peaks contains enough information to specify

which will be active in a given cell line, we built a logistic re-

gression model based on the chromatin clusters to classify the

meta-peaks into Bg3-active and Bg3-inactive early origins. To avoid

the unique and distinct chromatin signatures of the fourth and

the X chromosomes (heterochromatin and hyperacetylation of

H4K16, respectively) we restricted our analysis to chromosomes

2L, 2R, 3L, and 3R. Of the 594 early origin meta-peaks on these

chromosomes, only 255 were utilized in Bg3 cells (Bg3-active), and

the remainder (339) were specific to S2 or Kc cells (Bg3-inactive).

Logistic regression allowed the classification of early origin meta-

peaks into Bg3-active and Bg3-inactive classes based on a set of

predictor variables (the mean cluster strength per meta-peak). We

trained our logistic regression model on chromosomes 2L, 2R, and

3L, while holding 3R back for testing. Initially, we trained our

model using one chromatin cluster at a time, and found that,

unsurprisingly, while all of the clusters were able to predict early

origin usage more accurately than a random classifier (Fig. 4B, in-

set, dashed line), clusters 2 and 5 on their own had the highest

accuracy in predicting which of the early origins would be utilized

on 3R (Fig. 4B, inset). However, considering all of the clusters in

a single logistic regression yielded a classifier with the highest ac-

curacy of all (;78%; P # 2 3 10�16). We plotted the mean early

origin score against the predicted probability of an early origin

being Bg3 active, with the actual Bg3-active classifications shown

in blue (Fig. 4B).

We next investigated whether we could predict the changes in

early origin strength, as determined by mean BrdU incorporation,

at early origin meta-peaks between cell lines based solely on

chromatin information. We collected chromatin information for

the early origin meta-peaks as above for both Bg3 and S2. We then

assigned each meta-peak a feature vector containing the change in

mean microarray signal for each chromatin cluster between Bg3
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and S2. Each meta-peak was also assigned a response variable based

on the change in early origin strength between Bg3 and S2 cells. A

linear regression model was applied to these data enabling the

prediction of change in early origin strength by the change in

chromatin cluster strength.

As in the logistic regression above, we trained on 2L, 2R, and

3L, while testing on 3R. We first built initial models using each

cluster singly as the input to gauge their individual predictive

power. We found that each cluster on its own was capable of out-

performing random predictions based on a reduction in root mean

squared error (RMSE). However, not surprisingly, we found that

changes in clusters 2 and 5 were the most predictive of changes in

early origin strength (Fig. 4C, inset). The full linear regression

model, taking into account all five of the cluster scores for each

early origin, reported the greatest reduction in RMSE, reducing it to

;0.69. The Pearson correlation between the actual and predicted

change in early origin strength for the full model was r » 0.7. The

actual change in chromosome 3R early origin strength was plotted

against the predicted change with the cell line-specific origins

represented by the color of the points (red: active in S2 only, blue:

active in Bg3 only) (Fig. 4C). Thus, differences in the local chro-

matin environment between the two cell lines could account for

changes in relative origin activity.

Discussion
Although much progress has been made in understanding how the

structure and organization of chromatin regulates the transcrip-

tion program, we know very little about how start sites of DNA

replication are selected and regulated in the context of chromatin.

Here, we have used multiple modENCODE data sets to characterize

the Drosophila replication program in the context of the sur-

rounding chromatin environment. The computational integration

of these diverse data types across multiple cell lines has revealed

new insights into how the chromatin landscape influences the

selection and regulation of replication origins. Importantly, these

insights have allowed us to generate accurate predictive models on

the regulation of specific replication origins between cell types.

Potential origins of replication are established in highly dy-

namic and accessible regions of the genome. We have previously

Figure 4. Chromatin signatures are predictive of early origin activity.
(A) Subsets of factors are highly correlated at early origins. (Left heatmap)
The pairwise correlation between every factor based on their mean signal
at early origin meta-peaks in Bg3 cells was computed (where green in-
dicates a negative correlation and red indicates a positive correlation, with
values ranging from �0.76 to 1). Five groups of correlated marks were
identified by hierarchical clustering. (Right heatmap) The mean enrich-
ment of each cluster in Bg3 active (+) and Bg3 inactive (�) early origin
meta-peaks. (B) Classification of Bg3 early origin usage from the full set of
early origin meta-peaks by logistic regression. A logistic regression model
using the average chromatin scores of each of the five clusters in Bg3 cells
is able to classify (above and below the 0.5 horizontal dashed line as true
and false, respectively) with 78% accuracy those meta-peaks that are used
in Bg3 on chromosome 3R (blue) and those that are not (gray). (Inset)
Predictive power for each cluster individually and the ensemble model.
(C ) Predicting relative origin strength between Bg3 and S2 cells by linear
regression. A linear regression using the change in strength of the chro-
matin signal from five clusters between Bg3 and S2 is able to predict the
change in strength of the early origin meta-peaks between the two cell
lines. Predicted change in early origin strength between Bg3 and S2 is
plotted as function of actual change. Early origins active in S2 (red) or Bg3
(blue) are indicated. The Pearson correlation is ;0.7. (Inset) The RMSE
over random (horizontal dashed line) for each cluster individually and the
ensemble model.
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shown that Drosophila ORC-binding sites are surrounded by ac-

tively transcribed genes, enriched for the histone variant H3.3 and

depleted for bulk nucleosomes (MacAlpine et al. 2010). Under-

scoring the importance of nucleosome occupancy in the selection

of replication origins, recent studies in S. cerevisiae have shown that

nucleosome occupancy is a determinant for ORC binding and that

the precise ORC-dependent positioning of nucleosomes flanking

the origin is critical for origin function (Berbenetz et al. 2010;

Eaton et al. 2010). In both yeast and Drosophila, the nucleosomes

surrounding potential origins of replication marked by ORC are

dynamic and undergo rapid nucleosome exchange (Kaplan et al.

2008; Deal et al. 2010). This chromatin turnover may involve

specific chromatin remodeling activities.

Consistent with the idea of chromatin remodelers altering

chromatin organization at origins of replication, we found that

Drosophila ORC-binding sites are highly enriched for the ATP-de-

pendent chromatin remodeler ISWI. ISWI can act as part of the

NURF complex, specific subunits of which were also enriched

(NURF301) (Längst and Becker 2001). The chromatin-binding

proteins WDS and GAF were also enriched at ORC-binding sites

and have both been implicated in facilitating nucleosome dy-

namics (Petesch and Lis 2008; Suganuma et al. 2008). Finally, DNA-

binding proteins with chromatin remodeling activities or func-

tions were among the most discriminatory features for ORC

binding in our SVM analysis. We propose that active chromatin

dynamics facilitated by remodeling activities will be a conserved

feature of replication origins in all eukaryotes. In support of this

hypothesis, mammalian replication origins are also enriched in

the vicinity of active promoters (Cadoret et al. 2008; Sequeira-

Mendes et al. 2009; Karnani et al. 2010).

In S. cerevisiae, the precise nucleosome positioning observed

at origins of replication can be reconstituted in vitro with purified

ORC, recombinant histones, and ISWI (Eaton et al. 2010). At this

point, we do not know whether ORC is directly interacting with

remodeling enzymes and recruiting them to origins of replication

or, alternatively, if ORC is being recruited to dynamic and open

chromatin facilitated by the chromatin remodeling activity. Future

experiments will address these questions.

Despite the simplicity and mostly invariant nature of the

underlying DNA code, the transcription program is able to respond

to almost limitless developmental and environmental perturba-

tions. It is the complex interactions between regulatory networks

of chromatin modifications, transcription factors, nucleosome

positioning, and DNA accessibility that provide for the remarkable

plasticity in gene expression derived from the genome. It is be-

coming increasingly clear that the replication program responds to

many of the same epigenetic cues that regulate the transcription

program. For example, X chromosome dosage compensation in

the fly results not only in the H4K16ac-dependent transcriptional

up-regulation of X-specific genes in male cells (Laverty et al. 2010),

but also a sex chromosome-specific change in replication timing

(Schwaiger et al. 2009). Similarly, we find that ORC, early origins,

and early replicating regions of the genome are highly enriched for

activating chromatin marks (H3K4me, H3K18ac, H3K27ac, etc.).

This coordination between the transcription and replication pro-

grams is likely critical for the expression and inheritance of genetic

and epigenetic information.

The integration of multiple modENCODE data sets across

three different Drosophila cell lines has allowed us to generate pre-

dictive models of ORC binding, origin usage, and origin strength.

Sequence, chromatin modifications, and DNA-binding proteins all

contribute in an additive manner to our ability to identify ORC-

binding sites in the genome. Additionally, our data suggest that the

competency of a genomic location to replicate in the presence

of HU (i.e., to act as an early origin of replication) is determined by

the local chromatin landscape. By integrating the chromatin sig-

nals near early activating origins of replication, we were able to use

logistic regression models to classify with a high degree of accu-

racy (;78%) which potential early origins would be utilized within

a cell line. Not only were we able to predict origin utilization, but

the same chromatin marks were also used to build linear regression

models that could predict the relative strength or activity of early

origins between two cell lines. Our ability to predict the strength of

origin usage between cell lines based on the surrounding chro-

matin environment suggests that the chromatin environment acts

as a rheostat and not a binary switch. That is, the signals from

multiple activating and repressive chromatin marks are assimilated

to provide a relative index of the potential for a sequence to func-

tion as an origin of replication. Finally, although we describe the

replication program as responding to the local chromatin envi-

ronment, there is increasing evidence that the replication program

is also important for epigenetic memory (Zhang et al. 2002; Lande-

Diner et al. 2009).

Methods

Cell growth
Kc167 and S2-DRSC cells were cultured in 150-mm plates in
Schneider’s Insect Cell Medium (Invitrogen) supplemented with
10% FBS and 1% penicillin/streptomycin/glutamine (Invitrogen).
ML-DmBG3-c2 cells were cultured as above with 10 mg/mL human
insulin (Sigma). All cell growth was conducted at 25°C. Cell cycle
position was determined by flow cytometry.

ChIP-seq

Chromatin immunoprecipitations were performed as in MacAlpine
et al. (2010) using a polyclonal ORC2 antibody (Austin et al.
1999). Sequencing libraries were generated using the ChIP-Seq
sample prep kit and protocol (Illumina, http://grcf.jhmi.edu/hts/
protocols/). Libraries were sequenced on a GAII Illumina sequencer
and processed using SCS2.6 software.

Read mapping and peak calling

MAQ (Li et al. 2008) was used to map the reads back to release 5 of
the D. melanogaster genome. Reads with a quality score $35 were
considered in the subsequent analysis to filter out the reads that
could not be mapped uniquely. ORC ChIP-seq peaks were called
using PeakSeq (Rozowsky et al. 2009) with default parameters.
Input sequencing libraries were used to control for sequencing
specific biases. Replicates were combined by intersection; over-
lapping peak calls were considered verified and were reduced in
a per-nucleotide union. Replicates passed quality control if 80% of
the top 40% of peaks (by strength) in one experiment existed in the
other and vice-versa. Whole-genome background-subtracted den-
sity tracks were produced by the R package SPP (Kharchenko et al.
2008).

Replication timing

Approximately 2.7 3 108 Kc167, S2-DRSC, or ML-DmBg3-C2 cells
were treated with HU to a final concentration of 1 mM and allowed
to incubate for 3 h. BrdU was then added to 50 mg/mL final
concentration to half the cells, and both cell populations were
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incubated for an additional 21 h. Cells treated only with HU are the
late timing samples, while cells treated with HU and BrdU are
considered the early timing samples. All cells were then washed
one time with cold 13 PBS and replated. Early timing cells were
treated with an additional 50 mg/mL BrdU for 1 h and then har-
vested for DNA extraction. The late timing cells were incubated
for 4 h after washing, followed by a 2-h incubation with 50 mg/mL
BrdU before being harvested for genomic DNA extraction.

Early origin mapping

Approximately 3.5 3 108 Kc167, S2-DRSC, or ML-DmBg3-C2 cells
were treated with hydroxyurea (HU) (Sigma) to a final concentra-
tion of 1 mM and incubated for 3 h. 5-bromo-2-deoxyuridine
(BrdU) (Roche) was then added to a final concentration of 50 mg/
mL for 18–20 h. Cells treated solely with HU served as the control
sample. Cells were harvested, centrifuged at 1000g for 5 min, and
washed once with cold 13 PBS, and the resulting pellets were used
for genomic DNA extraction.

DNA extraction

For early origin experiments, pellets were resuspended in 2 mL of
10 mM Tris (pH 9.5) and 2 mL of NDS (10 mM Tris at pH 9.5,
500 mM EDTA at pH 9.5, 1% SDS); after addition of 0.5 mL of
20 mg/mL proteinase K, samples were inverted to mix and in-
cubated at 37°C for 2 h. Samples were phenol/chloroform extrac-
ted twice and allowed to precipitate overnight at 25°C. DNA was
pelleted at 3500 rpm for 12 min, washed in 70% ethanol, and
resuspended in 4 mL of 13 TE. A total of 20 mL of 10 mg/mL
RNaseA was added to samples and allowed to incubate at 37°C
for 1–2 h. DNA was precipitated with 3 M NaOAc and cold ethanol
and resuspended in 500 mL of 13 TE. DNA was sheared to an
average size of 1 kb. For timing experiments, DNA was extracted
as above, but in the following volumes: 0.7 mL of 10 mM Tris
(pH 9.5), 0.7 mL of NDS, 0.1 mL of 20 mg/mL proteinase K. DNA was
resuspended in 250 mL of 13 TE.

BrdU immunoprecipitation

A total of 50 mL of Dynabeads M-280 sheep anti-mouse IgG beads
(Invitrogen) per sample were washed three times in 1 mL of cold
13 PBS/5 mg/mL BSA using a magnetic concentrator and resus-
pended in the same. Next, 5 mL of 0.5 mg/mL anti-BrdU antibody
(Roche) was added and allowed to incubate with rotation over-
night at 4°C. Beads were washed as above and resuspended in
50 mL of the same; 15 mg of DNA was added to new tubes, in-
cubated at 100°C for 5 min, and cooled on ice. Then, 450 mL of
RIPA (50 mM Hepes-KOH at pH 7.6, 500 mM LiCl, 1 mM EDTA, 1%
NP-40, 0.7% Na-deoxycholate) was added to the DNA with the
prepped beads and allowed to incubate overnight with rotation
at 4°C. Beads were collected using a magnetic concentrator and
the supernatant saved as the INPUT. Beads were washed four times
in 1 mL of cold RIPA and one time in 1 mL of 13 TE, with 5-min
room temperature rotations between washes. Beads were resus-
pended in 150 mL of TE/1% SDS and incubated at 65°C for 10 min
with two to three quick vortexes. Supernatants were saved, to
which 150 mL of TE, 300 ng/L glycogen, and 1 mg/mL proteinase K
were added, and incubated for 1 h at 37°C. A total of 12 mL of 5 M
NaCl was added to the samples and subsequently phenol/chloro-
form extracted. DNA was resuspended in 15 mL of dH2O.

Array hybridization and analysis

Labeling of DNA was performed as in MacAlpine et al. (2010). All
experiments were performed using biological triplicates. Labeled

DNA was hybridized on custom whole-genome, 244K tiling
microarrays (Agilent). Slides were hybridized and washed as per
Agilent recommendations. The array data was processed and ana-
lyzed as previously described (MacAlpine et al. 2010).

The P-value cited for the number of early origin peaks over-
lapping an ORC peak was derived by generating R = 100,000 sets of
random segments that mirrored the early origin peaks in width,
number, and chromosome membership, and by counting how
many of those segments overlapped an ORC peak. We then found
n, the number of samples in this bootstrap distribution that had
greater than or equal to the number of ORC peaks overlapped in
the early origin meta-peak set. Then, P = (n + 1)/(R + 1).

Meta-peaks

To construct a set of regions in the genome with the potential to
bind ORC or to host early origin activity, we constructed a set of
ORC meta-peaks and early origin meta-peaks, respectively. These
meta-peaks are contiguous nucleotides that were covered by a peak
in at least one cell line. To conservatively account for the possi-
bility of one peak in a particular cell line overlapping multiple
peaks in another cell line, we built the Venn diagram using the set
of ORC meta-peaks, such that multiple peaks in a meta-peak were
scored as a single overlap.

SVM analysis

SVM analysis was performed on the set of annotated ORC-binding
sites for each cell line using the LIBSVM suite (Chang and Lin
2001). The SVM was trained and tested on a positive and negative
sequence set. The former consisted of 500-nt sequences centered
on the ORC-binding sites. The latter (random set) contained an
equal number of 500-nt sequences selected randomly from the
genome, with the condition that they exclude the positive set and
that the chromosome frequency and proportion of promoter
proximal instances match that of its positive counterpart. Three
feature sets were used: sequence 1–6 mers, chromatin marks, and
protein-binding sites. The k-mer feature values were compiled as
frequencies of each k-mer in each 500-nt sequence (counting each
k-mer and its reverse complement as the same feature), then scaled
relative to the rest of the sequence set to the range 0 # x # 1. Both
the chromatin marks and protein-binding sites were given binary
values 0.1 depending on whether they fell on each 500-nt se-
quence. The entire feature set was then split into a training set
consisting of sequences on chromosomes 2L, 3L, and 3R, and
a testing set containing sequences on chromosome 2R. The SVM
was then trained on the training set with 10-fold cross validation.
Testing was performed on 2R, and the performance of the classifier
was evaluated based on the resulting ROC curve. This analysis was
carried out using each of the three feature types individually, as
well as all of the features simultaneously. In addition, the discrim-
inative power of each individual feature was determined by rank-
ing them based on their F-score and their predilection toward one
class over another determined by the class proximity, defined here
as t-statistic obtained from a Student’s t-test comparing feature
counts in the positive and negative sets.

Motif analysis

Motifs were discovered in the 500-nt sequences containing the
ORC-binding sites via MEME (Bailey and Elkan 1994), then ranked
according to their P-value. The top three motifs were then re-
covered from the whole-genome using MAST (Bailey and Gribskov
1998). The motif loci delivered by MAST were then ranked by
P-value, and those that fell on the ORC-binding site-containing
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sequences were marked. The presence of these motifs was corre-
lated to ORC-binding sites by generating a ROC curve denoting the
false and true positive rate of their appearance in the ORC set over
random genomic loci.

Chromatin enrichment heatmaps

The list of 39 factors from the Karpen group (Kharchenko et al.
2011) includes the following: EZ, MRG15, H3K36me3, SU(VAR)3-9,
PCL, CHRO, H3K27ac, PSC, H3K79me1, H3K9ac, RNA Pol II,
H3K27me3, H4K16ac, CTCF, ISWI, H3K4me2, JIL1, HP1C, HP1,
WDS, H3K4me1, H3K36me1, HP2, H3K9me2, dRING, CP190,
H3K4me3, H3K79me2, BEAF-70, H3K9me3, H3K18ac, GAF, H3K23ac,
MOD2.2, NURF301, SU(HW), PC, H2B-ubiq, and SU(VAR)3-7. We
also used cell-line-specific RNA-seq data from the Celniker group
(Graveley et al. 2011) and the 20-min CATCH-IT data, H2Av, H3.3,
and nucleosome density data from the Henikoff group in S2 cells
(Henikoff et al. 2009; Deal et al. 2010).

ORC and early origin heatmaps

Each factor available for comparison (nucleosome dynamics,
RNA-seq, chromatin binders, and histone marks) was quantile
normalized per-probe or per-transcript between cell lines. Each
factor was already mean shifted and loess smoothed appropriately
by its originating group. Each factor’s distribution was then scaled
to unit variance, and the median of the scores in 1-kb windows
centered on ORC peaks or directly under early origin peaks was
calculated for the ORC matrix (Fig. 2C) and the early origin matrix
(Fig. 2B), respectively.

Replication timing heatmap

To generate the replication timing correlations for the nucleosome
dynamics, chromatin mark, and factor data, each replication
timing probe was paired with a collection of factor probes that it
overlapped. These factor probes were averaged per timing probe,
and a Spearman’s r correlation was taken between the timing probe
values and the mean factor probe values. For the RNA-seq data, each
transcript was assigned a timing score based on the median probe
value of the timing probes that it overlapped, and a Spearman’s
r was taken of these paired samples.

Regression analysis

The early origin meta-peak set was created by taking a per-nucle-
otide union of the three cell lines’ early origin peak sets and then
combining contiguous nucleotides into meta-peaks. This yielded
a set of 823 ‘‘early origin meta-peaks.’’ These early origin meta-
peaks were given a score for each cell line corresponding to the
mean early origin microarray signal within the meta-peak. Each
meta-peak was also given a vector of scores corresponding to the
microarray signal for each of the 36 factors produced by the Karpen
group (Kharchenko et al. 2011). In selecting factors from the
Karpen group, we limited ourselves to those that were common
between Bg3 and S2. The list of factors was as follows: EZ, MRG15,
H3K36me3, SU(VAR)3-9, PCL, CHRO, H3K27ac, PSC, RNA Pol II,
H3K79me1, H4K16ac, CTCF, ISWI, H3K4me2, JIL1, HP1C, HP1,
H3K4me1, H3K36me1, HP2, H3K9me2, DRING, CP190, H3K27me3,
H3K79me2, BEAF-70, H3K4me3, H3K9me3, H3K18ac, GAF,
H3K23ac, MOD2.2, SU(HW), PC, H2B-ubiq, and SU(VAR)3-7. Every
factor was quantile normalized between cell lines and then mean
centered and divided by the standard deviation (Z-score trans-
formation). To produce the correlation heatmap in Figure 4A, a
pairwise correlation matrix was constructed using Pearson’s cor-
relation (r) and then clustered using (1-[r]) as the distance matrix

with Ward’s method for hierarchical clustering (Ward 1963). The
enrichment heatmap in Figure 4A represents the mean enrichment
for all Bg3 factors in a cluster within Bg3 active (+) and Bg3 inactive
(�) early origins.

Logistic regression

The early origin meta-peak set was split into a training set (chro-
mosomes 2L, 2R, and 3L; 441 meta early origins) and a test set (3R;
153 meta early origins). Each early origin meta-peak was given a set
of five predictors corresponding to the mean of the factors within
each of the five clusters. Each early origin meta-peak was also given
a logical response variable, which was true when the early origin
meta-peak was active in Bg3 (i.e., if the early origin meta-peak
overlapped a called early origin peak from Bg3) and false if it was
inactive in Bg3. We then used logistic regression to regress from the
mean cluster scores to the Bg3-active response variable using the
glm function of R (R Development Core Team 2008) with a bi-
nomial logit link function. The model parameters were fit using
100-fold cross validation. This regression was then put through
a stepwise model selection process minimizing the Akaike in-
formation criterion (AIC), during which clusters 1, 2, and 5 were
selected for the final model. Accuracy was gauged on 3R as (True
Positives + True Negatives)/n, where n was the total number of early
origin meta-peaks.

Linear regression

The early origin meta-peak set was split into training and test sets
as above. The response variable in this case was the difference in
mean microarray signal within each early origin meta-peak be-
tween Bg3 and S2. Likewise, the five predictor variables took the
form of the difference in mean signal strength between each of
the five clusters between Bg3 and S2. We then used standard lin-
ear regression using all five clusters with parameters again fit by
100-fold cross validation to predict the difference in early origin
strength via the difference in cluster strengths. Accuracy was judged
by a reduction in RMSE and compared with a background RMSE
determined by the mean RMSE of 1000 random permutations of the
pairing between the predicted change in early origin strength and
the actual change in early origin strength.

Data accession

All data has been deposited at GEO. GSE17281, ML-DmBG3-c2
Replication Timing; GSE17279, Kc167 Replication Timing;
GSE17280, S2-DSRC Replication Timing; GSE17287, ML-DmBG3-
c2 Replication Origins; GSE17285, Kc167 Replication Origins;
GSE17286 S2-DRSC, Replication Origins; GSE20888, ORC2 ML-
DmBG3-c2 ChIP-Seq; GSE20889, ORC2 KC-167 ChIP-Seq; GSE20887,
ORC2 S2-DSRC ChIP-Seq.
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