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We present an integrative machine learning method, incRNA, for whole-genome identification of noncoding RNAs
(ncRNAs). It combines a large amount of expression data, RNA secondary-structure stability, and evolutionary conser-
vation at the protein and nucleic-acid level. Using the incRNA model and data from the modENCODE consortium, we are
able to separate known C. elegans ncRNAs from coding sequences and other genomic elements with a high level of accuracy
(97% AUC on an independent validation set), and find more than 7000 novel ncRNA candidates, among which more than
1000 are located in the intergenic regions of C. elegans genome. Based on the validation set, we estimate that 91% of the
approximately 7000 novel ncRNA candidates are true positives. We then analyze 15 novel ncRNA candidates by RT-PCR,
detecting the expression for 14. In addition, we characterize the properties of all the novel ncRNA candidates and find that
they have distinct expression patterns across developmental stages and tend to use novel RNA structural families. We also
find that they are often targeted by specific transcription factors (~59% of intergenic novel ncRNA candidates). Overall, our
study identifies many new potential ncRNAs in C. elegans and provides a method that can be adapted to other organisms.

[Supplemental material is available for this article. All data sets, prediction results, and the prediction software are
available at http://incrna.gersteinlab.org/.]

The massive amounts of data from tiling arrays and high-throughput

sequencing (Margulies et al. 2005; Shendure et al. 2005; Fejes-Toth

et al. 2009) have driven the discovery of novel transcripts. Many of

these transcripts are functional without being translated into

proteins and hence are called noncoding RNAs (ncRNAs). ncRNAs

include many well-known RNA types such as rRNA, tRNA, and

snoRNA, as well as small RNAs such as miRNA, siRNA, and piRNA.

They also refer to more recently discovered RNA types, such as

promoter-associated short RNAs (PASRs) (Fejes-Toth et al. 2009),

whose function has not been well studied. Many small ncRNAs,

including miRNAs and siRNAs, contribute to the complexity of

regulatory networks in eukaryotes.

Before large-scale experimental data became available, ge-

nome-wide identification of ncRNAs had relied on computational

approaches. For certain types of ncRNAs, specific databases and

prediction methods are available, such as tRNA-SE and GtRNAdb

for tRNA (Lowe and Eddy 1997; Chan and Lowe 2009), snoscan

and snoRNABase for snoRNA (Schattner et al. 2005; Lestrade and

Weber 2006), and miRBase for miRNA (Griffiths-Jones et al. 2008).

For the more general task of identifying all ncRNAs from a genome,

one common approach is based on comparative genomic analysis.

For example, the methods QRNA, DDBRNA, and MSARI make use

of the conservation of RNA secondary structures in identifying

ncRNAs (Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry

et al. 2004). Newly developed methods using this approach have

been applied to human (Pedersen et al. 2006; Washietl et al. 2007)

and Caenorhabditis elegans (Missal et al. 2006). A large amount of

conserved secondary structures, identified from multiple genomes

by the so-called Infernal method, are organized into structural

families in Rfam (Gardner et al. 2009), which can be used to search

for their structural homologs in other genomes using the Infernal

software package (Nawrocki et al. 2009).

It has been shown that different types of data provide differ-

ent kinds of information to the ncRNA identification process, and
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computational methods could perform better by integrating

multiple data types. For example, when secondary structure sta-

bility and conservation information are combined using ma-

chine learning techniques, integrative methods such as RNAz and

Dynalign/SVM demonstrate improved accuracy in identifying

ncRNAs in various prokaryotic and eukaryotic genomes (Washietl

et al. 2005, 2007; Torarinsson et al. 2006; Uzilov et al. 2006;

Torarinsson et al. 2008).

With the advent of high-throughput technologies, it is now

also possible to experimentally survey novel transcriptomes to

find ncRNAs (He et al. 2007). Other genome-wide experimental

data could also potentially provide additional information about

ncRNAs. For example, in recent studies, chromatin signatures

have been used to identify large conserved ncRNAs (lincRNAs) in

mammals (Guttman et al. 2009), and profiles of small RNA reads

have been used to find novel ncRNAs in the Drosophila genome

( Jung et al. 2010).

In this article, we describe a comprehensive model, incRNA

(integrated ncRNA finder), which integrates sequence, structure,

and expression data. We gathered large-scale expression data sets

from the modENCODE consortium (Celniker et al. 2009; Gerstein

et al. 2010), which were obtained not only by using both tiling

arrays and deep sequencing but also from different tissues and

developmental stages of C. elegans. In addition, our model includes

a carefully selected set of other features useful for separating

ncRNAs from other genomic elements. We demonstrate that our

integrative method significantly improves the accuracy of ncRNA

identification compared with some previous methods. Importantly,

we show that no single feature could achieve the top performance of

the features when combined, which strongly suggests their com-

plementary nature and the advantage of integrative approaches.

We describe how we used incRNA to predict 7237 novel

ncRNA candidates (1678 of them are intergenic ncRNA candidates)

and experimentally validated the expression of a random sample.

We also characterize the novel ncRNA candidates by their genomic

locations, structural properties, expression patterns, binding sites

of RNA polymerase II (Pol II), and 22 transcription factors. Finally,

we summarize these results in a master table to facilitate future

validation and functional characterization of the candidates.

Results

Single features and feature pairs only partially separate
different types of annotated genomic elements

We gathered a large compendium of sequence, structure, and

expression features of C. elegans that could potentially identify

ncRNAs. The expression features were expression signals produced

by small RNA-seq, poly-A+ RNA-seq, total RNA tiling arrays, and

poly-A+ tiling arrays in different developmental stages and con-

ditions. The sequence and structure features include GC content,

genome-wide predictions of DNA and protein conservation, as

well as secondary structure stability and conservation. We ex-

pected that in general, functional ncRNAs would have some ex-

pression signals and stronger GC content and DNA conservation.

We also expected ncRNAs to be distinguishable from coding

transcripts by having, on average, stronger small RNA-seq sig-

nals, lower poly-A+ signals, and stronger secondary structures but

lower levels of predicted protein-level conservation.

Since functional ncRNAs are likely to be conserved and since

RNA secondary structure prediction is more reliable in conserved

regions, we only considered regions with a high conservation score

(15% of C. elegans genome) from the pairwise alignment between

C. elegans and Caenorhabditis briggsae. Two hundred nineteen known

ncRNAs from WormBase were covered by the conserved regions,

including long (rRNA), small (miRNA), and medium-sized (tRNA,

snoRNA, etc.) ncRNAs. In order to predict local RNA secondary

structure, we divided the pairwise alignment into small bins (each

bin has 150 aligned columns; see details in Methods). Altogether

we generated 439,815 bins, which cover 29,655,415 bases of the

plus and minus strands. We then annotated each bin as coding

sequence (CDS), untranslated region (UTR), ncRNA, or intergenic

if it overlapped with the corresponding annotations from Worm-

Base. These annotated bins were used to construct a gold-standard

set (see definition in Supplemental Methods and numbers in

Supplemental Fig. 3, upper panel) for further analysis. The local

expression, structural, and conservation properties of each geno-

mic element (e.g., ncRNA or CDS) can be reflected by the bins

within it.

We found that different features were useful in identifying

different classes of genomic elements (Fig. 1A). For example,

known ncRNAs have, in general, higher signals from small RNA-

seq experiments than do the other three classes of gnomic ele-

ments. However, there are also ncRNAs with very low signals, as

well as CDSs with signals even stronger than those of most

ncRNAs. In fact, no single feature could distinguish all known

ncRNAs from other genomic elements (Fig. 1A). The four classes of

Figure 1. Distributions of nine genomic feature values. The distribu-
tions of values of the nine features are shown for the gold-standard set (for
the definition of the gold-standard set, see Supplemental Methods) of the
four types of genomic elements: known ncRNAs, coding sequences
(CDSs), untranslated regions (UTRs), and intergenic regions. The values of
each expression feature are the maximum of the corresponding values
from all the expression data sets of the same type. (A) Box plots of in-
dividual features (normalized values). (B) Two-dimensional scatter-plot of
the maximum small RNA-seq signal against the maximum poly-A+ RNA-
seq signal. (C ) Two-dimensional scatter-plot of the maximum poly-A+
RNA tiling array signal against the predicted secondary structure conser-
vation. Expression values in B and C are the log-transformed normalized
read counts (DCPM, depth of coverage per million reads).
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genomic elements became more separated

by considering pairs of features (Fig. 1B,C);

yet in all cases, some ncRNAs are still in-

distinguishable from the other classes.

ncRNAs are clearly separated
from other genomic elements
by machine learning methods
using the integrated features

Since the different features capture differ-

ent kinds of information about genomic

elements, we perceived that our ability to

identify ncRNAs would be maximized if

we integrated all the features. A systematic

way to perform this integration is to em-

ploy machine-learning methods to model

the subtle interactions between the fea-

tures in annotated data. The learned sta-

tistical models can then be used to identify

novel ncRNA candidates from the un-

annotated genomic regions.

We implemented a machine learn-

ing module for this purpose and inte-

grated it into the pipeline of incRNA with

additional modules for preprocessing data

and characterizing our predictions (Fig.

2A). The annotated bins from the gold-

standard set were used to train machine

learning models and predict ncRNAs from

the unannotated bins. We took the bins

predicted with higher confidence and

merged them with adjacent bins that

could belong to the same ncRNAs into

genomic regions we call candidate ncRNA

fragments. We then characterized them

using various types of information. The

details will be given in the coming sections.

To ensure an unbiased evaluation of

the effectiveness of our machine learning

model, we used a rigorous procedure that

involves a cross-validation step for choos-

ing the best model from those produced

by a chosen set of learning methods, and

a final evaluation step using an inde-

pendent validation set not involved in

model learning (Fig. 2B; see Supplemental

Methods). The procedure recommended

Random Forest as the best learning method.

When instructed to separate ncRNAs from

the other genomic elements in the inde-

pendent evaluation set, Random Forest

showed high accuracy both in absolute

terms and in comparison with Rfam/In-

fernal (Gardner et al. 2009) and RNAz

(Washietl et al. 2005), two methods that

identify sequences with potential RNA secondary structures (Fig.

3A, Supplemental Fig. 1b). The area under the receiver-operator

characteristic curve (AUC) for our predictions was 97%, which

indicates that our method was able to identify most of the ncRNAs

in the validation set before making any false predictions. We have

also separated the ncRNA examples in the independent validation

set into four subsets according to their sequence identity and GC

content values (lower/higher than median for the two features).

The resulting AUC values of the best case (high identity, high

GC) and the worst case (high identity, low GC) differ by only

0.01, which shows the robustness of our method (Supplemental

Table 1b).

Figure 2. A flowchart of incRNA (integrated ncRNA finder) for predicting and characterizing novel
ncRNA candidates in C. elegans. (A) We looked for ncRNAs from conserved regions from the genome
alignment between C. elegans and C. briggsae and divided them into small bins. Annotated bins from
the gold-standard set were used to build a machine learning model based on nine expression, sequence,
and structural features. The model was then used to score each unannotated bin by its likelihood of
belonging to four genomic element classes (ncRNA, CDS, UTR, and unexpressed intergenic region).
Adjacent bins predicted to be novel ncRNA candidates with high or medium confidence were merged
into candidate ncRNA fragments, which were further characterized by their predicted RNA secondary
structures, expression patterns, and the binding signals of Pol II and different transcription factors. (B)
We used an unbiased procedure to build and evaluate our machine model. Multiple models were
trained and tested using cross-validation, and the one with the highest cross-validation accuracy was
evaluated using an independent validation set. For details, see Methods and Supplemental Methods.
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We noticed that while Rfam/Infernal could very accurately

identify about 80% of known ncRNAs in the gold-standard set, it

was unable to distinguish the remaining 20% from the other ge-

nomic elements (Fig. 3A), which suggests potential undiscovered

ncRNA structural families. The comparison with Rfam/Infernal

and RNAz also suggests that information about RNA secondary

structure alone is not sufficient to separate all ncRNAs from other

genomic elements. This is possibly related to a previous finding

that local RNA structures can also occur in coding regions (Katz

and Burge 2003). We also need to note that Rfam/Infernal and

RNAz could also pick up structured regulatory elements in UTRs,

since these two programs aim to detect structured RNA sequences

instead of ncRNA genes only. The comparison has some caveats

because the specificities of Rfam/Infernal and RNAz will not be

high by definition (UTRs containing no known ncRNA genes are

negatives in our training set).

To ensure the robustness of our analysis, we repeated the

machine learning procedure using various definitions of negative

sets and various combinations of genomic element types (see

Supplemental Methods). Our prediction accuracy for ncRNAs was

very stable in the different cases (Supplemental Fig. 1a; Supple-

mental Table 1A). Interestingly, we observe that some ncRNA types

form distinct clusters in the feature space (Supplemental Fig. 2). For

example, rRNAs have a unique signature of high conservation and

high expression values in both poly-A+ and small RNA-seq ex-

periments; miRNAs have high small RNA-seq signals but relatively

low poly-A+ RNA-seq signals; snoRNAs have small ranges of me-

dium expression values in both types of RNA-seq experiments; and

tRNAs form several distinct clusters, with different RNA-seq signals

and levels of conservation. Integrating different types of data could

thus not only distinguish ncRNAs from other classes of genomic

elements but also potentially differentiate between different

ncRNA types. Prediction at this granularity is currently limited by

the small number of examples of certain types of ncRNAs.

Top prediction performance requires the integration
of all features

We next studied the relative importance of the different features by

checking the resulting accuracy of our machine learning pro-

cedures when we used only a subset of features. We found that the

expression features were better at identifying ncRNAs than struc-

tural- and sequence-based information (Fig. 3B), yet combining

both types of features gives an additional 5%–10% precision at a

wide range of false-positive rates. It is thus useful to include both

types of data in identifying ncRNAs.

As a way to reduce the cost of experiments, it is interesting to

see if it is sufficient to only include the expression data from

a single type of experiment. We found that no single type of ex-

pression data could completely substitute for the others (Fig. 3C),

suggesting that each type of experiment is able to identify some

unique ncRNAs.

We also used the weights of the different features in the

learned Logistic Regression model as a second indicator of the

importance of the features (Table 1). Consistent with the above

analysis, we find that while small RNA-seq and RNA secondary

structure conservation have the heaviest absolute weights in the

ncRNA class, some other features, such as poly-A+ RNA-seq and

tiling array data, are also heavily weighted in other classes, in-

dicating their different roles in separating ncRNAs from other ge-

nomic element classes.

Using incRNA to predict novel ncRNA candidates

Having verified the predictive power of incRNA on the gold-stan-

dard set, we then extended our predictions to all the bins. For each

(annotated and unannotated) bin, our model gives an ‘‘ncRNA

score’’ that indicates the likelihood that the bin lies in an ncRNA

gene. It also gives a CDS score, a UTR score, and an intergenic re-

gion score in similar ways. From the bins in the gold-standard set,

Figure 3. Prediction performance of incRNA. (A) Comparison between
the performance of incRNA and two previously published methods, Rfam/
Infernal and RNAz. (B) Comparison between the performance of our
method using all features, only expression data (tiling array and RNA-seq
features), and sequence and structural features only (GC%, DNA conser-
vation, RNA secondary structure, and protein conservation). (C ) Com-
parison between the performance of our method using all features, and
sequence and structural features in addition to only small RNA-seq, tiling
array, or poly-A+ RNA-seq data. (D) Predicted ncRNA scores and CDS
scores of annotated genomic elements (gold-standard set) assigned by
our full model. All known ncRNA bins have ncRNA scores of at least Phigh

and all other genomic elements (bins) have ncRNA scores of, at most, Plow.
(E ) Unannotated bins with ncRNA scores of at least Phigh form our high-
confidence candidate ncRNA bins, while bins with ncRNA scores between
Plow and Phigh form our medium-confidence candidate ncRNA bins. All
predictions are applied on the pairwise alignments of C. elegans and C.
briggsae.
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we find that our model separated known ncRNAs from the other

bins by a large score margin (Fig. 3D). These results stand in sharp

contrast to the unsatisfactory differentiations made by individual

features and feature pairs (Fig. 1), and provide more proof of the

robustness of our method.

In particular, we found that all known ncRNA bins had pre-

dicted ncRNA scores of at least 0.69, while all the other elements

had scores of 0.18 at most (Fig. 3D). We called these values Phigh

and Plow, respectively, and used them as thresholds for defining

novel ncRNA candidates. Specifically, we defined each unannotated

bin with an ncRNA score of Phigh or higher as a high-confidence

candidate ncRNA bin and each unannotated bin with a ncRNA

score between Plow and Phigh as a medium-confidence candidate

ncRNA bin (Fig. 3E, see also Fig. 2A). Altogether, the two sets contain

10,994 bins (covering 1,045,795 bases in total), among which 1413

are high-confidence predictions and 9581 are medium-confidence

predictions.

To estimate the accuracy of these candidate ncRNA bins, we

repeated the above procedure of defining the two thresholds using

only the cross-validation set and then examined the ncRNA scores

of the bins in the independent validation set. We found that all the

bins with ncRNA scores higher than Phigh, and 221 out of 242 bins

with ncRNA scores higher than Plow, were known ncRNA bins,

corresponding to positive predictive values (PPVs) of 100% and

91%, respectively. On the other hand, since there are a total of 247

known ncRNA bins in the validation set, the two thresholds lead to

prediction sensitivities of 66% and 89%, respectively.

The two sets of candidate ncRNA bins thus serve different

purposes. The high-confidence set is expected to have few false-

positives, while the medium-confidence set provides additional

coverage so that the two sets together have relatively few false-

negatives. We expect some of the medium-confidence candidates

to be novel ncRNAs with properties different from those of known

ncRNAs.

We have examined the 9% of the bins included in the me-

dium-confidence set but are not annotated as ncRNAs (the false-

positives) and the 11% ncRNAs not included in the medium-

confidence set (the false-negatives). Among the false-positives,

58% are CDSs and 42% are UTRs. They are characterized by a par-

ticularly weak tiling array and poly-A+ RNA-seq signals. The false-

negatives are characterized by particularly strong poly-A+ RNA-seq

signals, weak predicted structures, and low sequence identities.

For bins with ncRNA scores below Plow, we further divide

them into two sets. The bins with very low ncRNA, CDS, and UTR

scores are grouped into a predicted set of unexpressed intergenic

regions. The remaining bins form a low confidence set of ambig-

uous regions, which could be CDS or UTR (see Supplemental

Methods; Fig. 2A). We summarize the number of bins in each set in

Supplemental Figure 3.

Since different predicted bins may come from the same

ncRNA genes, we merged adjacent bins into longer regions. We call

them candidate ncRNA fragments, as they represent candidate

regions of novel ncRNA but may not cover the full-length genes.

Altogether we produced 7237 such fragments from the high-con-

fidence and medium-confidence sets of candidate ncRNA bins.

The length distribution of these fragments is comparable to that of

full-length known ncRNA transcripts (Supplemental Fig. 4).

Many candidate ncRNA fragments are inside the introns of

coding genes, at the antisense strand of exons or close to coding

sequences (see Supplemental Methods). Among the 7237 candi-

date ncRNA fragments, 1678 of them (merged from 2469 bins) are

located in strictly defined intergenic regions based on our gold-

standard annotations (see Supplemental Methods), which occupy

1223 distinct genomic locations, not considering the strand in-

formation. These intergenic candidates are most likely to be novel

ncRNAs, as their expression is unlikely to be due to nearby coding

genes. On the other hand, the other candidates could also be au-

thentic ncRNAs, as many ncRNAs have been found inside introns

(Bartel 2004; Li et al. 2007) and antisense to exons (Mercer et al.

2008).

About 20% of the candidate ncRNA fragments are overlapped

with repeats or inverted repeat regions. It is well known that many

pi-RNAs are transcribed from transposons and other repeated se-

quence elements (Klattenhoff and Theurkauf 2008). Recent anal-

ysis has also identified telomeric repeat-containing RNA (TERRA)

in animals and fungi (Luke and Lingner 2009). We therefore de-

cided to keep these predictions in our set.

We overlapped our intergenic candidate ncRNA fragments

with the novel genelets generated by the modENCODE consor-

tium (Gerstein et al. 2010), where all the splice junctions and all

the splice leader sites were incorporated in order to map spliced

poly-A+ RNA-seq reads. A small fraction of our intergenic candi-

date ncRNA fragments (44 of the 1678) are overlapped with the

genelets. This is expected because most of our novel ncRNA can-

didates are probably not having poly-A tails. Further experiments

are needed to confirm if they are unannotated coding exons or

novel ncRNAs.

Experimental validation of predicted novel ncRNA candidates

In addition to computational validation of our predictions, using

an independent set of annotated regions not involved in model

learning, we also validated a random sample of our candidate

ncRNA fragments located inside intergenic regions by means of

RT-PCR experiments. To get a better sense of the lengths of these

potential noncoding transcripts, we overlapped our candidate

ncRNA fragments with the transcriptionally active regions (TARs)

obtained from the tiling array data sets of the modENCODE con-

sortium (Gerstein et al. 2010). We call the resulting overlapped

regions the candidate ncRNA TARs. As the TARs were defined from

Table 1. Weights of nine genomic features in the trained logistic
regression models for known ncRNA, CDS, and UTR

Known ncRNA CDS UTR

GC% 0.58 1.56 0.18
DNA conservationa 0.03 0.12 0.19
Secondary structure free energyb �0.50 0.03 0.16
Secondary structure conservationc 1.78 �0.53 �0.50
Protein sequence conservationd 0.81 2.31 0.64
Poly-A+ RNA-seq (max)e 0.49 2.47 3.46
Small RNA-seq (max)e 2.23 0.49 0.14
Total RNA tiling array (max)e 1.57 0.29 �0.62
Poly-A+ RNA tiling array (max)e 1.75 4.47 4.67

aDNA conservation is the nucleotide identity in each window of the ge-
nome alignment between C. elegans and C. briggsae.
bThe free energy of RNA secondary structure is measured by the Z-score of
RNA’s folding DG°37 calculated by Dynalign. A stable structure favors low
free energy.
cRNA secondary structure conservation is measured by the SCI (structure
conservation index) between C. elegans and C. briggsae.
dProtein sequence conservation is the tblastx score divided by DNA
identity in the C. elegans and C. briggsae DNA alignment.
eThe maximum expression value from different biological samples pro-
duced by the same technology is used.
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expressed regions of at least 100 nucleotides (nt) long, many novel

ncRNA candidates from short transcripts are not covered by our

TARs. Only 730 of the longer fragments among our 1678 intergenic

candidate ncRNA fragments overlap with the TARs in at least one

of the 41 tiling array data sets. Among them, 54 overlap in late

embryos. We then picked 15 candidate ncRNA TARs (Supplemen-

tal Table 2) for RT-PCR validation using total RNA from N2 late

embryos (see Methods). We detected clear bands on 2% agarose

gel for 14 of the 15 candidate ncRNA TARs, and of those, 13 had

significantly greater amplification than the control reactions to

which no reverse transcriptase was added (Fig. 4A). All the RT-PCR

products were confirmed by direct DNA sequencing (see Methods).

The results confirmed that the expression of our predictions (es-

pecially repeat-related ncRNA candidates 1 and 3) is not likely due

to cross-hybridization in tiling arrays.

We further estimated the expression and size of five out of 15

candidate ncRNA TARs (Supplemental Table 2) using the Northern

blot analysis. Because the high-throughput data we used are very

sensitive, our model is able to predict many lowly expressed

ncRNA candidates (Supplemental File 1). The Northern blot

method is less sensitive than the RT-PCR analysis, and can only

detect three out of five candidates (Supplemental Fig. 5a). We es-

timated from the Northern blot that two of them are larger than

500 bases. We also checked their genome location and did not find

any annotated genes close to them (within ;2 kb). This proves that

our model has the potential to identify novel long ncRNAs. Be-

cause of the complicated process in ncRNA (e.g., miRNA pre-

cursor), it is hard to estimate the real length of the ncRNA precursor

or mature product using tiling array TARs. This is one of the reasons

for the low sensitivity of the Northern blot, since the probe we

selected may miss the highly expressed part (e.g., mature sequence

part of miRNA).

Furthermore, we found that many novel ncRNA candidates

are supported by multiple information sources. An example is

shown in Figure 4B for one candidate (lane 7 in RT-PCR gel), which

is located inside a transcribed region detected by the tiling array in

late embryo. No significant expression was detected from Poly-A+

RNA sequencing or small RNA sequencing, indicating that it is

unlikely to be a coding gene or a small interfering RNA. From ChIP-

seq data, we observe a Pol II binding peak immediately upstream of

ncRNA (lane 7) and strong binding signals of PHA-4 across the

region. These binding signals suggest potential regulation of

ncRNA7 by Pol II and PHA-4. Since PHA-4 is a key factor that

regulates the development of the pharynx/foregut during em-

bryogenesis, this candidate ncRNA could potentially play a role in

development during the embryonic stage. Two more examples are

shown in Supplemental Figure 5b,c.

Characterizing novel ncRNA candidates with RNA secondary
structure and DNA conservation

We next studied various properties of the novel ncRNA candidates.

We first examined the local structural and expression properties

using the candidate ncRNA bins and then analyzed Pol II and

transcription factor binding signals using the candidate ncRNA

fragments (merged bins), as the positional relationship between

binding sites and ncRNAs are better captured by the fragments. All

these results are presented in the coming sections.

As known ncRNAs generally have stable secondary structures

(Fig. 1), we first calculated the potential consensus free energy for

both the known ncRNA bins and candidate ncRNA bins with the

Dynalign program (Harmanci et al. 2007). We predicted about two-

thirds of the known ncRNA bins and high-confidence candidate

ncRNA bins to be highly structured (Fig. 5). The fraction is lower

for the medium-confidence bins (about one-fourth), yet it is still

much higher than the bins predicted to be unexpressed (13%) or

ambiguous (6.5%).

We checked if the highly structured novel ncRNA candidates

have secondary structures similar to the known ncRNAs. When we

used Infernal to predict structural homologs of known families in

the C. elegans genome cataloged in Rfam (Gardner et al. 2009), 84%

of the highly structured known ncRNA bins (56% of 67.7%) were

found to overlap with the Rfam/Infernal predictions (Fig. 5), which

is consistent with our earlier observation that Rfam/Infernal could

only predict approximately 80% of the known ncRNAs before

producing substantial false-positives (Fig. 3A). In contrast, about

80% of the candidate ncRNA bins we predicted to be highly

structured did not overlap with the Rfam/Infernal predictions (Fig.

5), which suggests potential novel structural families of ncRNAs.

The enrichment of novel structures is also observed for the subset

of novel ncRNA candidates inside intergenic regions (Supple-

mental Fig. 6).

We also compared the characteristics of known ncRNA and

novel ncRNA candidates using other genomic features (Supple-

mental Fig. 7; Supplemental Table 3). The high-confidence can-

didate ncRNA bins are found to share many common properties

with known ncRNA bins, including high conservation between

Figure 4. Validation of our novel ncRNA candidates. (A) Fifteen novel
ncRNA candidates were tested using RT-PCR. Lanes 1–15 on the left (+RT)
correspond to the PCR results of the novel ncRNA candidates, and lane 16
is the positive control, HEX-3. The right lanes (�RT) are the negative
controls without reverse transcriptase. The PCR sizes are ;150 bp in
length. Fourteen of the candidates (except lane 15) were detected on the
gel, among which 13 (except lane 11) showed a clear enrichment of ex-
pression signals in contrast to the negative control. (B) Example of a vali-
dated novel ncRNA candidate (ncRNA at lane 7 in A) with support from
multiple information sources. The first and second rows (from top) corre-
spond to the ChIP-seq reads from PHA-4 and Pol II, respectively. The
heights of signals are normalized by their total mapped reads. The fourth
and fifth rows are the log-transformed values of the tiling array in late
embryo and its TARs. The bottom two rows are the reads from small RNA
sequencing and the reads from poly-A+ RNA sequencing. The last row is
the annotated genes from RefSeq.
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C. elegans and C. briggsae at DNA and RNA level. The conservation

of the medium-confidence candidate ncRNA bins is relatively low

(Supplemental Fig. 7).

As conservation is an indicator of potential function of

ncRNAs, we also used a multiple sequence alignment between five

nematode species to double-check the conservation of our pre-

dictions. We found that 94% of our candidate ncRNA bins overlap

the conserved aligned regions (see Supplemental Methods), which

provides extra support for these predictions.

Characterizing novel ncRNA candidates
with expression patterns

Next, we compared the expression profiles of the known ncRNA

transcripts and novel ncRNA candidates. In particular, we analyzed

whether they exhibit developmental stage-specific expression

patterns. Since our small RNA-seq data cover the largest number

of developmental stages (see Supplemental Methods), in this part

of analysis we focus on this type of expression data. Also, since

miRNAs form a major class of small RNAs among all known

ncRNAs, we separate them from other known ncRNAs to de-

termine whether they have distinct expression patterns as reported

by the small RNA-seq experiments.

By clustering the bins according to their expression patterns

across the developmental stages, we observe that there are three

subclasses of ncRNAs (Fig. 6A):

1. ncRNAs that are universally expressed in all stages. This subclass

contains 58% of the known ncRNAs, with a slight enrichment of

miRNAs. Some of the ncRNAs in this subclass exhibit fluctua-

tions of expression levels across stages (Fig. 6A, right panel).

2. ncRNAs that are expressed only in some stages. This subclass

contains only 2% of the known ncRNAs, with a significant en-

richment of novel ncRNA candidates (P-value from Fisher’s ex-

act test less than 1 3 10�15).

3. ncRNAs with no detectable expression by small RNA-seq in all

stages.

The numbers of high-confidence and medium-confidence candi-

date ncRNA bins in the three subclasses are shown in Supple-

mental Table 4, with the numbers of candidates inside intergenic

regions shown separately in the table. In general, the expression

levels of novel ncRNA candidates are lower than the universally

expressed known ncRNAs, such as rRNAs and tRNAs. The finding

that most differentially expressed ncRNAs come from the novel

candidates is intriguing. It could suggest that the novel ncRNA

candidates play more specialized roles in specific stages.

To gain more insight into how differential expression affects

the identification of ncRNAs, we identified the bins with detect-

able expressions in each combination of developmental stages (see

Supplemental Methods). Then for each combination of stages

(e.g., L2 + L4 + Young Adult), we computed the fractions of ex-

pressed known miRNAs, other known ncRNAs, and candidate

ncRNA bins. Finally, we grouped all combinations with the same

number of stages (e.g., both L2 + L3 and L4 + Young Adult have two

stages) to form a distribution of expressed fractions. The resulting

plot, called the saturation plot, is shown in Figure 6B.

We observe that the amount of novel ncRNA candidates with

detectable expressions keeps increasing when small RNA-seq data

sets of more stages are added, suggesting that for each stage there is

a set of novel ncRNA candidates that express only in that stage (Fig.

6B). The same trend is observed when we consider all our ex-

pression data sets (Supplemental Fig. 8). In contrast, for known

ncRNAs, saturation is reached when only a few stages are consid-

ered, regardless of the exact combination of the stages (Fig. 6B).

We notice that in the embryonic stage there is a much larger

fraction of expressed novel ncRNA candidates (Fig. 6B). This ob-

servation is consistent with a finding in a previous study (Kato

et al. 2009) showing that 65.6% of small RNA sequencing reads in

embryos could not be mapped to known miRNAs or 21U-RNAs,

whereas the percentages of unmapped reads in other hermaphro-

dite stages were only 27%–38%. Additional experiments in embryo

replicas are needed to provide further confirmation.

Characterizing intergenic novel ncRNA candidates with
binding sites of Pol II and different transcription factors

As a first step to understanding the underlying mechanisms that

caused the observed expression patterns, we studied the potential

regulation of the novel ncRNA candidates by Pol II and transcrip-

tion factors. We obtained the binding signals of Pol II and 22

transcription factors from ChIP-seq experiments produced by the

modENCODE consortium (Gerstein et al. 2010). We looked for Pol

II binding signals near the starting site (6150 bp) of the intergenic

candidate ncRNA fragments (see Methods) and found that about

15% of them had significant Pol II binding signals in at least one of

the seven developmental stages (Supplemental Fig. 9). Using pre-

vious results from the modENCODE consortium, we also located

the binding sites of 22 transcription factors, with a total of 27 ex-

periments across different developmental stages (see Methods).

Many of these binding sites are located at potential promoter re-

gions of about 59% of intergenic candidate ncRNA fragments (Fig.

6C; Supplemental Fig. 9). Compared to random genome locations

with the same size, the binding of TFs has twofold enrichment

for the intergenic candidate ncRNA fragments (P-value < 0.001;

Figure 5. Structural properties of the known ncRNAs and novel ncRNA
candidates. The percentages of highly structured ncRNA bins (with
predicted Z-score of folding free energy less than the mean by at least
one standard deviation) are shown for the known ncRNA bins and
for high-confidence and medium-confidence candidate ncRNA bins.
Among the highly structured bins, the percentages that overlap with
structural homologs of Rfam families are also shown. The same calcu-
lations were performed for the bins predicted to be unexpressed inter-
genic regions and the low-confidence ambiguous regions (bins) for
comparison.
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Fig. 6C). However, the enrichment or depletion of Pol II binding is

not significant (P-value > 0.05; Supplemental Fig. 9). This is con-

sistent with the known ncRNAs, where only certain types of ncRNAs

(e.g., miRNA) are transcribed by Pol II. The binding sites of Pol II as

found from ChIP-seq data may still be true, although we did not find

any enrichment.

Master table of novel ncRNA candidates

We summarize our whole list of novel ncRNA candidates (Sup-

plemental Table 5) predicted from incRNA in a master table (Sup-

plemental File 1), and the subset in intergenic regions in another

table (Supplemental File 2). Each candidate is associated with its

prediction scores, predicted class, feature values, genomic co-

ordinate and location (such as inside intron or intergenic region),

structural properties, expression pattern class, binding signals of

Pol II and transcription factors, and the conservation score among

the five nematodes. In order to facilitate follow-up studies, we have

ranked our predictions into nine levels based on these associated

pieces of evidence (see Supplemental Methods). The predictions in

higher levels are more likely to be functional ncRNAs.

Discussion
We have shown that none of the in-

dividual expression, sequence, and struc-

tural features is able to clearly separate

known ncRNAs from protein coding se-

quences and UTRs. Instead, by integrating

all the features using a machine learning

framework, incRNA, we were able to iden-

tify ncRNAs with high accuracy. The

learned model is robust, with prediction

accuracy above 97% AUC, regardless of

the expression thresholds for defining

the unexpressed intergenic regions (Sup-

plemental Fig. 1a). The massive experi-

mental data from the modENCODE con-

sortium (Gerstein et al. 2010) contributed

significantly to our model.

We have validated our predictions

by multiple means. The validation RT-PCR

experiments have confirmed that the ex-

pression levels of our novel ncRNA can-

didates are not likely due to the cross-hy-

bridization of the tiling array or a mapping

error in RNA-seq. The sequences of the RT-

PCR products were verified by direct DNA

sequencing, and sizes of the candidate

ncRNA transcripts were estimated by

Northern blots. Most of our candidate

ncRNA bins (94%) were found to be con-

served based on a multiple sequence

alignment of five nematodes that was not

used in model learning. We have also used

cross-validation and an independent vali-

dation set of known ncRNAs to show that

our models are able to identify known

ncRNAs that were not included in the

model training process. To further iden-

tify the subset of our predictions corre-

sponding to functional noncoding genes,

more biological functional assays need to

be performed in addition to these computational and biochemical

validations.

The accuracy of RNA secondary structure predictions (per-

centage of known base pairs that are correctly predicted) using

Dynalign (Harmanci et al. 2007) and RNAz (Washietl et al. 2005)

depends heavily on the quality of the genome alignment. Research

has shown that the sensitivity of ncRNA sequence identification

gets worse as the DNA sequence identity drops below 60% in the

alignment (Gorodkin et al. 2009). Among our aligned bins, 26.5%

have a sequence identity of less than 60%. However, we still suc-

cessfully identified most ncRNAs (Fig. 3), because other features

involved in the machine learning models are not directly affected

by the degree of conservation. We also remark that methods that

use local alignments, such as FOLDALIGN (Havgaard et al. 2007),

have the potential of making better structure predictions for short

RNAs, which may in turn increase the relative contribution of the

structural features in the overall ncRNA identification process.

In the C. elegans genome, only a small portion (13%–15%)

could be aligned with C. briggsae (Missal et al. 2006) at a quality

level sufficient for Dynalign or RNAz to make meaningful pre-

dictions. The small portion of aligned genome illustrates a tradeoff

Figure 6. Expression patterns of the novel ncRNA candidates and binding signals of Pol II and 22
transcription factors around their genomic regions. (A) Expression patterns of known miRNA transcripts,
other known ncRNA transcripts, and the candidate ncRNA bins based on our small RNA sequencing data
at 11 developmental stages. Expression values are the log-transformed normalized read counts (DCPM,
depth of coverage per million reads). Three subclasses formed according to the expression patterns are
shown in the bottom row in three different colors. All known ncRNA transcripts are shown, while 1000
bins were randomly sampled from a total of 10,994 candidate ncRNA bins for this heat map visuali-
zation. The right panel shows a magnified view of class 1, with the colors rescaled to show the fluctuation
of expression patterns across the different developmental stages. (B) Saturation plots of expressed
known ncRNA transcripts and candidate ncRNA bin in different developmental stages. The fractions of
expressed regions (with small RNA-seq signals stronger than the average signal of gold-standard
intergenic regions) at the 11 developmental stages are computed using all possible combinations of the
stages. The x-axis corresponds to the number of stages considered, and each point at a given number of
stages corresponds to a different combination of stages. (C ) Fractions of intergenic candidate ncRNA
fragments potentially targeted by a selected subset of transcription factors. The total fractions targeted
by any of the transcription factors in any of the stages are also shown. Each bar is labeled by the name of
the transcription factor followed by the stage at which the binding experiment was performed. The
bindings on random genome locations with the same size are also shown. EMB, embryo; YA, young
adult.
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between precision and coverage; although the information about

secondary structures and conservation could improve prediction

accuracy (Fig. 3B), it also excluded a lot of genomic regions that

could potentially contain novel ncRNA candidates. In this study

our goal is to identify ncRNA candidates with high confidence, and

thus we decided to focus on the highly conserved regions with

a 73% median DNA identity. For studies that aim at high coverage,

one possible alternative approach is to use weakly aligned regions

from the multiple alignment of MULTIZ, which provides a better

coverage (;25% of the genome) (Kiontke and Fitch 2005), with

the tradeoff of a lower conservation (66% median DNA identity).

This approach would generate a more permissive set of ncRNA

candidates.

One direct consequence of using a genome alignment is the

possibility of having a novel ncRNA only partially covered by the

aligned regions. We expect the potential ncRNA fragments we

constructed by merging candidate ncRNA bins to be shorter than

the full-length ncRNA transcripts. Nevertheless, these fragments

form a detailed map of genomic regions that could be used to lo-

cate novel ncRNAs at a more refined level.

A significant portion of our novel ncRNA candidates are

overlapped with repeats and introns, or are antisense to exons.

This is partially due to the compactness of the C. elegans genome.

While many interesting ncRNA candidates have been previously

found in these kinds of regions, caution should be taken when

studying them, as the expression levels of intronic or antisense

ncRNA candidates could have been affected by the enclosing

genes. In order to facilitate follow-up studies that require a more

conservative set of predictions with high precision, we have de-

fined a set of intergenic novel ncRNA candidates, which are far

away from annotated coding sequences (see Supplemental

Methods).

The tradeoff between precision and coverage is also illus-

trated by our choice of unannotated regions. In order to minimize

the number of false-positives in our predicted set of inter-

genic ncRNAs, we used a permissive set of genome annotations,

such that bins that overlap with any confirmed, unconfirmed,

and predicted genes from multiple models were all excluded from

our final set of predictions.

Since our machine learning models were trained on known

types of ncRNAs, they tend to predict novel ncRNA candidates that

exhibit properties similar to these types of annotated ncRNAs.

Expressed regions with more distinct properties are likely predicted

as CDS-like or UTR-like ambiguous regions. For instance, since the

annotated ncRNAs have low poly-A+ RNA signals in general (Fig.

1), this feature was used as a negative indicator of ncRNAs, as

reflected by its negative weight in the Logistic Regression model

(Table 1). As a result, our novel ncRNA candidates tend to have

weak poly-A+ RNA signals. Also, while the majority of known

ncRNAs are small- or medium-sized, we also included some non-

mRNA-like long ncRNAs (i.e., rRNAs) in our training set. In our

predictions, there are indeed fragments of long candidate ncRNA

transcripts (>500 nt) (Northern blot result in Supplemental

Fig. 5a).

Methods

Machine learning methods
We combined the sequence, structure, and expression data sets and
generated nine genomic features for training the machine models
and making the predictions. Among the nine genomic features,

four of them are expression features, corresponding to the maxi-
mum signals of (1) the six poly-A+ RNA-seq experiments, (2) the 11
small RNA-seq experiments, (3) the 29 total RNA tiling arrays, and
(4) the 12 poly-A+ RNA tiling arrays. Three of the features are re-
lated to sequence information, including GC%, DNA conserva-
tion, and predicted protein sequence conservation. The remaining
two features are related to RNA structures, namely, predicted
secondary structure free energy and predicted secondary structure
conservation. The details of the nine gnomic features and
machine learning method are described in the Supplemental
materials.

RT-PCR and Northern blot confirmation

We used a three-step process to pick candidate ncRNAs for vali-
dation. First, we overlapped candidate ncRNA bins with the tiling
array TARs defined and optimized by the modENCODE consor-
tium (Agarwal et al. 2010; Gerstein et al. 2010). We then discarded
TARs that overlap with any exonic or intronic regions using a per-
missive set of annotations from WormBase, and those predicted as
ncRNAs by Rfam. Finally, we retained only TARs with a positive
small RNA-seq read count or with a log2-transformed, normalized
total RNA tiling array signal larger than 8 at late embryo. Sub-
sequently, 15 candidates (Supplemental Table 3) were randomly
picked from the remaining set for validation.

Total RNA was isolated from N2 late embryos and treated
with DNase I from Ambion. Reverse transcription was then per-
formed using random hexamers following the Omniscript RT kit
instruction from QIAGEN. Subsequently, primers were designed
within the candidate regions and amplified by PCR. The RT-PCR
products were purified using the PCR purification kit (QIAGEN).
The purified products (10–20 ng DNA) were then sent to the Keck
Biotechnology Resource Laboratory (Yale University, New Haven,
CT) for direct sequencing. The details of sequences, PCR primers,
and products are provided in Supplemental materials.

We then manually picked five ncRNA candidates (out of 15
candidates validated above) with clear signals on the PCR gel to
undergo a Northern blot assay. The total RNA was extracted from
late embryos and hybridized with labeled probes (see detail in
Supplemental materials).

Scoring novel ncRNA candidates with Pol II and transcription
factor signals

Pol II and transcription factor binding data from ChIP-seq exper-
iments were scored using the method from the modENCODE
consortium (Gerstein et al. 2010) with a default PeakSeq q-value
cut-off (Rozowsky et al. 2009) of 0.001. We defined the sets of
candidate ncRNA fragments potentially targeted by Pol II and the
various transcription factors using a previous target calling method
(Zhong et al. 2010). Random locations from the genome with the
same size as candidate ncRNA fragments were tested using the
same binding peaks. We repeated the random process 20 times,
and the average chances of being targeted were plotted in Figure 6C
and Supplemental Figure 9.
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