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In biological systems, individual phenotypes are typically adopted by multiple genotypes.
Examples include protein structure phenotypes, where each structure can be adopted by a
myriad individual amino acid sequence genotypes. These genotypes form vast connected
‘neutral networks’ in genotype space. The size of such neutral networks endows biological sys-
tems not only with robustness to genetic change, but also with the ability to evolve a vast
number of novel phenotypes that occur near any one neutral network. Whether technological
systems can be designed to have similar properties is poorly understood. Here we ask this
question for a class of programmable electronic circuits that compute digital logic functions.
The functional flexibility of such circuits is important in many applications, including appli-
cations of evolutionary principles to circuit design. The functions they compute are at the
heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’)
and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the
same logic function are connected in large neutral networks that span circuit space. Their
robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains
circuits with a broad range of novel functions. Two circuits computing different functions can
usually be converted into one another via few changes in their architecture. These obser-
vations show that properties important for the evolvability of biological systems exist in a
commercially important class of electronic circuitry. They also point to generic ways to
generate fault-tolerant, adaptable and evolvable electronic circuitry.

Keywords: evolvable hardware; fault-tolerance; adaptive systems;
neutral networks
1. INTRODUCTION

Biological systems are shaped by mutation and natural
selection. At various levels of organization, they exhibit
robustness to perturbations. That is, they are able to
survive an onslaught of disruptive agents, such as hos-
tile environments and random mutations of their
genetic material. In addition, they show a remarkable
ability to adapt and evolve novel properties through
such random mutations [1]. In other words, biological
systems are evolvable. In contrast, man-made systems
are often a product of rational design, rather than bio-
logical evolution. They are often not as robust as
biological systems [2], particularly to perturbations
that have not been anticipated during the design
stage. In other words, they are often fragile: the modifi-
cation or removal of components often results in
catastrophic failure. As a result, their ability to acquire
novel and useful features through random change is lim-
ited. Nevertheless, there have been many attempts to
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design systems that exhibit high levels of robustness
[3–8].

Biological systems on different levels of organization
share properties important for both their robustness
and their ability to evolve novel features. Biological
macromolecules, such as proteins and RNA, serve to
illustrate these properties. Their genotypes (amino
acid or nucleotide sequences) exist in vast genotype
spaces. In such a space, genotypes are neighbours if
they differ in one system component (amino acids or
nucleotides). A genotype’s neighbourhood consists of
all its neighbours. Genotypes form phenotypes, three-
dimensional conformations of molecules with specific
biological functions. Typically, any one phenotype can
be formed by many different genotypes [9,10]. These
genotypes span one or more vast genotype networks or
neutral networks [9,10], connected sets of genotypes
that span genotype space and that have the same phe-
notype. Each genotype typically has multiple
neighbours with the same phenotype. Genotypes are
thus typically to some extent robust to mutations chan-
ging individual system components. The existence of
such genotype networks means that two molecules
This journal is q 2010 The Royal Society
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Figure 1. (Opposite.) Digital logic circuits and circuit space. (a) The standard symbols for logic gates along with the functions
they represent. (b) An example of a digital logic circuit comprising four (2 � 2) gates, akin to a field-programmable gate array.
The circuit comprises four logic gates, represented by the symbols shown in (a). Each of the gates has two inputs and one output.
The entire array has nI ¼ 4 input ports and nO ¼ 4 output ports; the array maps a Boolean function having four input variables
to four output variables. The connections between the various columns or ‘levels’ in the array are ‘feed-forward’; i.e. the inputs to
each element in a column of the array can come only from the outputs of any of the elements from previous columns. There are
four outputs from the array, which can be mapped to any of the four gate outputs. (c) The concept of neighbours in circuit space.
The panel shows six circuits with 2 � 2 logic gates and two inputs and two outputs per circuit. The figure shows a circuit C1

(thick ellipse) and some of its neighbours in circuit space, that is circuits that differ from it in one of the four possible kinds
of elementary circuit change. For example, C2 differs from C1 in internal wiring, C3 differs in the logic function computed by
one of the four gates, C5 differs in an input mapping to one of the gates and C6, which differs in the output mapping. The circuit
C4 differs from C1 in two elementary changes and is therefore not its neighbour in circuit space; however, it is a neighbour of C3

and C5. The differences between C1 and the other circuits are shown by shaded grey boxes.
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(genotypes G1 and G2) can have identical phenotypes
but very different genotypes. At the same time, mol-
ecules in the neighbourhood of G1 and G2 can adopt
very different novel phenotypes. This means that (i)
small mutational changes can gradually transform G1

into G2, yet leave the phenotype unchanged, while (ii)
mutations that occur during this transformation can
uncover novel phenotypes. These properties exist in
molecules such as proteins [11–13] and RNA [9,14,15],
regulatory circuits [16,17] and metabolic networks
[18]. We here ask whether man-made systems such as
electronic circuits can display similar organizational
principles, or whether there are fundamental differences
between their organization and that of biological sys-
tems. The answers may help design complex yet
robust man-made systems with specific functions,
while facilitating their functional versatility.

Like biological systems, man-made systems are sub-
ject to two different kinds of change: (i) change in
their external environment, such as changing tempera-
ture, pressure or chemical composition and (ii) change
in their internal system components—the analogue of
mutations. Robustness to the latter kind of change is
of particular importance in biological systems, because
it can facilitate innovation [1]. We will thus focus on
such internal change.

Since the classic work of von Neumann [19] and
McCulloch [20] on the construction of reliable systems
from unreliable components, the design of man-made
‘fault-tolerant’ systems that are robust to internal
change has received much attention [5–8,21,22]. Such
past efforts are not limited to questions about robust
system design. They also show that man-made systems
such as digital circuits can be designed to adapt and
evolve their function [8,23–28]. More generally, the
similarities and differences between the organization
of biological networks and man-made systems have
been a subject of great interest [1,2,29,30].

Evolutionary principles have been applied in compu-
ter science to solve large and complex optimization and
design problems, using techniques broadly classified as
evolutionary computation [31,32]. These techniques
implement various aspects of evolution, such as
random variation, reproduction and selection in silico,
to identify novel solutions to complex problems. In evol-
vable hardware, such techniques are applied to
electronic circuits and devices. These techniques can
automatically generate designs of digital circuits, as
J. R. Soc. Interface (2011)
well as electronic circuits that are robust to noise and
faults [8]. Hardware may be evolved intrinsically, on
hardware itself, or extrinsically, using computer simu-
lations [33]. Intrinsic evolution of hardware is often
done using field-programmable gate arrays (FPGAs)
[34–38].

FPGAs are silicon-based programmable digital logic
circuits built from transistors. They generally consist of
a two-dimensional array of ‘logic gates’, hardware units
that compute elementary logic functions (e.g. OR,
AND, NAND, etc.) Importantly, both the functions
each gate computes, and how the gates are
interconnected can be altered, hence the name ‘field-
programmable’. This ability to dynamically reconfigure
a circuit means that a single FPGA can serve very
different computational purposes. The inputs to the
entire array are binary variables, usually represented
as zeroes and ones. The same holds for the array
output. In other words, FPGAs compute Boolean
logic functions (figure 1a,b). Which logic function a
particular array computes depends on its internal
gates and on its wiring. FPGAs often have a feed-for-
ward architecture, where a gate’s input can be
connected to the output of any preceding gate in the
array. FPGAs are widely used in various fields such as
image processing, digital signal processing and high-
performance computing applications, such as fast
Fourier transforms [39].

Several reasons make FPGAs attractive for our pur-
pose. First, while usually implemented in hardware,
they are conducive to computational modelling.
Second, they can be built to allow a vast number of con-
figurations that compute different functions. Third, the
functions they compute are universally important in
digital computation [28,39,40]. Fourth, the compu-
tational abilities of any one FPGA can be evaluated
rapidly. This property facilitates our analysis below,
which requires examination of vast numbers of such
circuits.

In this contribution, we will systematically explore a
vast set or ‘space’ of FPGA configurations or circuits,
and the logic functions these circuits compute. This cir-
cuit space is an analogue to the genotype space of
biological systems. Each circuit in this space corre-
sponds to a single genotype. A circuit is completely
specified through the identity of all its individual logic
gates, as well as through their interconnections. The
function that any one circuit computes is an analogue
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to a biological phenotype. Since every circuit computes
exactly one function, these definitions specify a
mapping from circuits (genotypes) to functions (pheno-
types). We will call two circuits to be neighbours if their
configuration differs minimally, either through a change
in the identity of a single gate, or through an elemen-
tary change in their wiring (figure 1c). We can thus
think of the circuit space as a graph, where adjacent
nodes correspond to neighbouring circuits. With these
concepts in mind, we will ask questions such as the fol-
lowing. How ‘robust’ is a typical circuit to changes in
the wiring/configuration? Do neutral networks exist in
this configuration space? Can circuits with significantly
different configuration compute the same function?
Does the organization of circuit space facilitate or
hinder the adoption of novel phenotypes (logic function
computations) through small numbers of gate changes?
2. RESULTS

2.1. Circuit spaces and logic functions

The circuits we discuss in detail have nI ¼ 4 input and
nO ¼ 4 output bits, as well as m columns of logic gates,
each of which contain n gates. That is, a circuit consists
of m � n total gates. We allow the five most commonly
different kinds of two-input logic gates, that is OR,
AND, XOR, NAND, NOR (figure 1a). Even for small
numbers of input bits, output bits and internal gates,
these specifications allow a very large number of circuits.
Column 2 of the electronic supplementary material table
S1 shows the size of the circuit space (number of possible
circuits; see electronic supplementary material) for
different circuit sizes. Even the smallest size circuit we
consider (3 � 3 ¼ 9 gates) has an astronomical number
of more than 1024 circuit configurations, a number that
rises to more than 10116, for circuits with 6 � 6 gates.
To represent the circuits, we use a representation based
on the Cartesian genetic programming approach,
developed by [41,42]; see §4.1).

As mentioned earlier, a circuit space can be viewed as
a graph. Two circuits (nodes) are neighbours or con-
nected by an edge, if they vary only by an elementary
change in configuration (figure 1c). Such elementary
changes affect the identity of a single logic gate (circuit
C3 in figure 1c), a change in one of the inputs to a gate
(C2), or a (single) change in the array input mappings
(C5) or output mappings (C6). We define the shortest
distance between two different circuits as the number
of edges (elementary changes) in the shortest path sep-
arating them. Circuit configurations can be represented
as vectors of integers that describe the inputs to each of
the logic gates, the logic function computed by each
gate, as well as the circuit output (see the electronic
supplementary material). For a circuit of size m � n
with nO outputs, the size of this representation is
3mn þ nO, which is also the maximal distance (diam-
eter) of the circuit space. For example, the maximal
circuit distance of 4 � 4 circuits with four outputs is
given by 52 elementary changes.

Below, we highlight our observations for circuits of
size 4 � 4, since this number strikes a balance between
circuit complexity and computational tractability.
J. R. Soc. Interface (2011)
However, we will also explore how our observations
depend on circuit size, by examining a broader class of
circuits whose sizes range from 3 � 3 to 6 � 6 gates.
We note that the complexity of the systems we study,
both in terms of circuit numbers and functions, is com-
parable to that of genotypes and phenotypes in complex
biological systems [9,11,15].
2.2. Some logic functions are frequent, others
rare in circuit space

In analogy to biological systems, we define a logic
function’s circuit set or neutral set as the set of circuits
that compute this function. Any one circuit set can
consist of one or more connected neutral networks,
which we define as connected subsets computing the
same function. Since the circuit space for our focal cir-
cuits is very large (approx. 1045), an exhaustive
analysis is impossible. We thus sample circuits from
this space at random and uniformly, that is, with
equal probability. To assess the size distribution of cir-
cuit sets for different logic functions, we sampled a
large number of 2 � 107 circuits from the genotype
space at random (see the electronic supplementary
material) and recorded the function each circuit com-
puted. Figure 2a shows a rank histogram for the logic
functions a 4 � 4 circuit computes. For this plot, we
assigned each function a rank based on the number
of circuits in our sample that compute it. The most
frequent function is assigned rank 1. The vertical
axis of the figure indicates the frequency of the func-
tion, defined as the number of times the function
arose divided by the sample size (2 � 107). We see
that a small number of functions are computed by
many circuits, whereas many functions are computed
by only few circuits in the sample. Electronic sup-
plementary material, figure S1 shows analogous
histograms for circuits of other sizes.

For the majority of the following analyses, we
consider a set of 1000 logic functions, and a representa-
tive circuit computing each function. These 1000
functions include 750 of the functions with the highest
frequency, and 250 functions selected at random. The
latter comprise mostly functions that occurred only
once in our sample, because such functions dominate
our sample. An analysis of circuits computing these
functions helps understand generic properties of circuit
space. To compare these generic properties with proper-
ties of individual functions, we analyse circuits
computing two specific functions, the right-shift and
the circular left-shift function (see the electronic sup-
plementary material) below. We chose these two
functions, because they are broadly important in a
wide range of applications [43], such as image proces-
sing [44] and cryptography [45]. We note that neither
function appeared in our samples of 2 � 107 circuits of
any size. We generated 100 distinct random circuits
computing the right-shift and circular left-shift func-
tions as described in the electronic supplementary
material, and analysed properties of these sets of
circuits below.
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Figure 2. (a) Frequency of various logic functions across all
sampled 4 � 4 circuits. Note that both axes have a logarith-
mic scale; the ‘tail’ in the panel indicates that the vast
majority of functions have a very low frequency; they
appear only once in the circuits sampled. The distribution
resembles a Zipf distribution [70]. Similar distributions
have been observed earlier for RNA [9]. (b) Very different
circuits can compute the same function. Shown are the dis-
tributions of the maximum distance from a starting circuit
(as a fraction of circuit space diameter), at the end of a
random walk of 2000 steps. (c) Functions with larger circuit
sets can be computed by more distant circuits. The vertical
axis indicates the maximum distance from the starting cir-
cuit at the end of a random walk of 2000 steps (as a
fraction of circuit space diameter). The horizontal axis indi-
cates the frequency of the logic function. The sizes of the
circles are proportional to the number of data points with
a given distance D and frequency.
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2.3. Circuits computing the same function form
large connected networks

The different circuits computing a particular function
might comprise a fragmented collection of circuits,
where it is impossible to reach one circuit from another
through small function-preserving changes. Conversely,
all the circuits might lie on a single neutral network. In
this case, it would be possible to navigate between cir-
cuits through small function-preserving changes. Since
the entire circuit set for each function may be very
large, we cannot exhaustively identify all its circuits
and their connectivity in circuit space. However, we
can analyse whether it is possible to reach one circuit
from other circuits in the same circuit set through a
number of elementary changes that leave the computed
function unchanged. To examine the connectedness of
circuit sets, we attempted to connect two circuits in a
neutral set by means of a function-preserving random
walk, as described in the electronic supplementary
material. We did so for the circuit sets of the 1000 func-
tions mentioned above. More precisely, in this analysis
we focused on those functions for which our sample of
2 � 107 circuits had contained more than one circuit
per function. We found for each such function that all
of the circuits computing the function lie on the same
neutral network. In a similar fashion, we also examined
the connectedness of the neutral sets of the right-shift
and circular left-shift functions. Again, we found that
the sets of 100 circuits that compute the right- and cir-
cular left-shift functions each belonged to the same
neutral network, for 3 � 3, 4 � 4 and 5 � 5 circuits.
For larger circuits (6 � 6), the amount of computation
to ascertain circuit connectedness became intractable.

Overall, these analyses indicate that a large number
of circuits computing the same function are accessible
from one another through a series of function-preser-
ving changes to a circuit. Even for the relatively ‘rare’
right-shift and circular left-shift functions, circuit sets
are highly connected.
2.4. Very different circuits can compute the
same function

The above analysis shows that neutral networks exist
and connect most circuits computing a given function.
We now ask how far neutral networks extend through
circuit space. As mentioned above, the distance between
two circuits in circuit space corresponds to the number
of elementary changes required to transform one circuit
to another. Within a neutral network, the maximal dis-
tance between two circuits measures how different two
circuits that compute the same function can be in their
organization. To estimate this maximum distance, we
performed a random walk that started from a particular
circuit, and subjected it to a series of small circuit
changes (figure 1c) that were required to preserve the
computed function. Figure 2b shows the distribution
of the distance D from the starting 4 � 4 circuit, at
the end of 2000 steps of a function-preserving random
walk for 1000 circuits discussed above, which compute
1000 different functions. Almost 80 per cent of these
random walks reach a maximal distance of circuit
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space diameter (D ¼ 1). The mean distance reached by
all random walks is given by D ¼ 0.978. This means
that the neutral networks of 4 � 4 circuits typically
span approximately 98 per cent of the circuit space’s
diameter. The inset in figure 2b shows the mean and
standard deviation for the other circuit sizes we con-
sidered. In all examined cases, neutral networks span
a very large fraction of circuit space. Figure 2c shows
the association of the maximal circuit distance (D),
computed as described above, with the frequency of
the logic function, for the 1000 circuits discussed
above. The figure shows that the maximal distance of
circuits computing the same function is generally
high, regardless of the function’s frequency. This maxi-
mal distance increases modestly for functions with
higher frequency. In other words, functions with
larger circuit sets (horizontal axis) can be computed
by circuits that show greater differences in their archi-
tecture (vertical axis). Electronic supplementary
material, figure S2 reveals the same pattern for circuits
of other sizes. These patterns are consistent with our
observation that most circuits in a circuit set belong
to the same neutral network.

A vivid example of the large diameter of neutral net-
works is given in the electronic supplementary material,
figure S3a, which shows the distribution of circuit dis-
tance after a function-preserving random walk of 2000
steps for 3 � 3 circuits computing the circular left-
shift function. For 87 of the 100 circuits, this distance
was equal to the circuit space’s diameter. Larger circuits
show the same phenomenon, as indicated by the num-
bers in the inset. As an example, electronic
supplementary material, figure S3b shows two 3 � 3 cir-
cuits that both compute the circular left-shift function.
Careful examination shows that these two circuits are
maximally different. They differ in every gate, input
mapping, internal wiring and output mapping, yet
belong to the same neutral network. Electronic sup-
plementary material, figure S4 shows analogous
observations for circuits computing the right-shift
function.
10−7 10−6 10−5 10−40

frequency of the logic function

Figure 3. (a) Robustness of circuits is typically high. Circuits
computing frequent functions have higher robustness, but this
association is not strong. (b) Larger circuits computing circu-
lar left-shift are more robust. Note that the distribution of
robustness is quite broad. (c) Circuits computing functions
with higher frequency are more robust to gate failure. The dis-
tributions of robustness to gate failure, for 4 � 4 circuits
computing functions of different frequencies are shown. The
1000 4 � 4 circuits have been grouped into seven bins based
on the frequency of the logic functions they compute. The
errors bars indicate 1 s.d.
2.5. Larger circuits are more robust to
configuration changes and gate failure

Neighbouring circuits in circuit space that compute the
same function are neutral neighbours. We define the
robustness of a circuit as the fraction of its neighbours
that are neutral neighbours. This quantity is an ana-
logue of mutational robustness in biological systems
[1,15], as well as of fault-tolerance in engineering
[46,47]. Figure 3a shows that the robustness of circuits
computing different functions is generally high. Typi-
cally, more than half of a circuit’s neighbours are
neutral neighbours. Figure 3a also illustrates that cir-
cuits computing frequent functions (with large circuit
sets) tend to have higher robustness, although this
association is not strong. For example, function fre-
quency and robustness of circuits computing a
function show a weak positive Spearman rank corre-
lation of r ¼ 0.32 ( p , 102300; n ¼ 1000) for the 4 � 4
circuits shown in the figure. Similar observations hold
for circuits of other sizes (electronic supplementary
J. R. Soc. Interface (2011)
material, figure S5). We also observed that different cir-
cuits computing the same function have a broad
distribution of robustness, with some circuits being
much more robust than others. Figure 3b shows this dis-
tribution for circuits of different size that compute the
circular left-shift function. This broad distribution of
robustness exists for a wide variety of functions (also
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see the electronic supplementary material). Some but
not all of this robustness is caused by changes in gates
that do not participate in a computation, because cir-
cuits are also robust when we consider only changes in
gates that do contribute to a computation (electronic
supplementary material, figure S6). We also analysed
the robustness of circuits towards a single gate failure
and observed similar trends (see figure 3c and electronic
supplementary material). To illustrate how different
the robustness of two circuits can be, electronic sup-
plementary material, figure S7 shows two examples of
a 3 � 3 circuit, one with low robustness of R ¼ 0.272,
another with high robustness of R ¼ 0.753. Electronic
supplementary material, figure S8 shows that the
mean robustness of circuits generally increases with cir-
cuit size, for a wide range of functions with varying
circuit set sizes.
2.6. Many new functions are accessible in the
neighbourhood of ‘evolving’ circuits

In a biological system where a phenotype has a large
genotype network, genotypes can change substantially
without changing this phenotype. However, the pheno-
types in different neighbourhoods of a genotype
network can be quite different. In biological systems,
this feature facilitates the exploration of new pheno-
types [15,16]. If it exists in technological systems,
this feature has implications on the diversity of func-
tions that can be executed with a given amount of
configuration (circuit) change, but also for the ease
with which evolvable hardware can acquire new
functions.

To determine whether the circuits we study have this
feature, let us first define a circuit’s neighbourhood as
comprising all its neighbours, circuits that differ from
it by a single elementary change. We explored different
neighbourhoods on a neutral network through function-
preserving random walks that start with a circuit C0.
During each step (circuit) of such a random walk, we
first recorded the novel functions encountered in the cir-
cuit’s neighbourhood. For this analysis, we defined a
function as novel if it is computed by some neighbour
of a circuit Ck in step k, but was not found in the neigh-
bourhood of any previous circuit (Ci, i , k), during the
random walk. Figure 4a shows the cumulative number
of novel functions that becomes accessible during the
random walk. This number is large and ever-increasing.
The property we observe here is a typical characteristic
of neutral networks in circuit space, and not a
peculiarity of the neutral network of one function. For
instance, electronic supplementary material, figure S9
shows the cumulative number of novel functions
encountered in a function-preserving random walk for
eight different circuits computing functions with
widely varying frequencies.

In a next, complementary analysis, we determined
the fraction of functions that are computed in the
neighbourhood of a circuit during the random walk,
but that are not found in the neighbourhood of the
starting circuit. Specifically, we determined the frac-
tion u, of functions that are computed by neighbours
of one circuit (Ci), but not the starting circuit, C0,
J. R. Soc. Interface (2011)
as u(C0, Ci) ¼ 1 2 (j N0 > Nij/jN0 < Nij). Here, N0

and Ni represent the sets of different functions com-
puted by circuits in the neighbourhood of the
circuits C0 and Ci, respectively, and jNj denotes the
number of functions in the set N. Figure 4b shows a
steep increase in this fraction at the beginning of the
random walk. Even after as few as six changes of the
starting circuit C0, over two-thirds of the functions
found in the neighbourhood are new, that is, they do
not occur in the neighbourhood of C0. Beyond the dis-
tance of one circuit space diameter of 52 changes, more
than 80 per cent of functions are new. This property
also holds for the neutral networks of functions with
a wide range of frequencies as illustrated in the elec-
tronic supplementary material, figure S10. It is clear
from these observations that a large number of differ-
ent functions can be computed by the neighbours of a
circuit encountered during a function-preserving
random walk, even at small distances from the starting
circuit.
2.7. Different neutral sets are often nearby in
circuit space

We next asked how far one must travel in circuit space
from one neutral set to find another neutral set whose
members compute a specific function. To this end, we
estimated the minimal distance between circuits comput-
ing different functions (see the electronic supplementary
material). On the one hand, if this distance is typically
large, then it would be rather difficult to reach a circuit
computing a new function from another circuit through a
small series of changes to the circuit’s configuration. On
the other hand, if this distance is generally small, then it
would typically be possible to find a specific new function
through a relatively small number of elementary changes
to a given circuit.

We first estimated the minimum distance for 1000
pairs of random circuits, where one circuit computed
the right-shift function, and the other computed the cir-
cular left-shift function. Figure 4c shows the
distribution of the resulting distances. This distribution
has a mean of D ¼ 0.13 and is skewed towards small dis-
tances. The smallest distance in this distribution was
D ¼ 0.058, corresponding to three elementary changes.
In other words, it is possible to change a circuit comput-
ing the right-shift function to one computing the
circular left-shift function (and vice versa) via merely
three changes. We also determined the minimal dis-
tances between circuits for 5000 function pairs with
low frequency in our sample (see the electronic sup-
plementary material). Figure 4d indicates the
distribution of these minimal distances. The median
of this distribution is D ¼ 0.19, implying that most dis-
tances are smaller than one-fifth of the diameter of the
circuit space. This corresponds to a vanishingly small
fraction of the circuit space, much less than 10216.
For comparison, the median distance of randomly
chosen circuits is given by D ¼ 0.85. The minimum dis-
tances we observed are thus typically quite small,
especially considering that the maximum distance
between any two circuits within a neutral set is often
as high as the circuit space’s diameter. These
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Figure 4. (a) Many novel functions are encountered in a circuit’s neighbourhood during a function-preserving random walk. The
data are based on a 4 � 4 circuit computing a function with frequency f ¼ 5.1 � 1025, the highest observed frequency in our
sample. The horizontal axis represents the number of steps of the random walk, while the vertical axis shows the cumulative
number of novel functions encountered in the neighbourhood. The evolutionary dynamics of such a random walker is identical
to that of a population of circuits Nm , 1, where N is the population size and m is the mutation rate, the rate at which a circuit’s
configuration changes per circuit and generation. Such a population is monomorphic most of the time, and would visit every cir-
cuit in a neutral network with equal probability. (b) The fraction of unique functions in a neighbourhood is very high, even at
small distances from the starting circuit. The horizontal axis represents the number of steps of the random walk, while the vertical
axis shows the fraction u of unique functions found in the neighbourhood of Ci, at the ith step of the random walk, relative to the
starting circuit C0. (c,d) The distribution of minimal distances between neutral networks. (c) Pairs of networks computing
right-shift and circular left-shift functions. (d) Pairs of networks computing other functions. See text for details.

276 Evolvability of programmable hardware K. Raman and A. Wagner
observations imply that a large number of new func-
tions are accessible by making few elementary changes
to any one circuit.
3. DISCUSSION

We studied here a computational model of digital elec-
tronic circuits with various sizes. These circuits form
an enormous circuit space that contains an astronomical
number of circuits with different internal architecture.
Circuits in this space can compute very large numbers
of logic functions. Circuits computing any one function
typically form large connected neutral networks that
span circuit space. In other words, one can navigate
from one circuit on the network to another through a
series of small function-preserving changes in circuit con-
figuration. Some functions have larger neutral networks
than others. Typical member circuits of a neutral net-
work have many neighbours that compute the same
function. They are therefore robust or fault-tolerant to
J. R. Soc. Interface (2011)
small changes in their architecture. A circuit that
changes its architecture randomly while preserving its
function explores a neutral network through a random
walk. In its neighbourhood, such a random walker
encounters ever-increasing numbers of novel functions.
Different neutral networks are typically close-by in cir-
cuit space. That is, a few steps away from a neutral
network are typically sufficient to generate a circuit
that can compute an arbitrary new function.

Analogous properties have earlier been identified in
biological systems on various levels of organization,
such as proteins [11–13] and RNA [9,14,15], regulatory
networks [16,17] and metabolic networks [18]. These
properties are important for the robustness of biological
systems to genetic change, and for their ability to
acquire new functions (phenotypes) through random
change of system parts. Our work shows that techno-
logical systems can be designed to take advantage of
such properties, an observation that has multiple impli-
cations for designing evolvable hardware, as we will
discuss below.
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A number of limitations of our work are worth high-
lighting. In applications, physical factors such as
temperature and voltage also play a role: there are
even many fine differences between two silicon chips,
such that circuits evolved on one silicon chip are not
guaranteed to work on another [34]. Second, there are
differences between computer simulation of a circuit
and its implementation in hardware. For example,
issues such as power consumption, robustness to temp-
erature variations and trade-offs between functional
flexibility and performance play a role in choosing an
electronic circuit for a given task. There are also
subtle aspects of semiconductor physics that circuits
evolved on hardware may exploit, but that are usually
avoided by designers and not considered in software
simulations [34]. Our work does not address these
issues. Third, some properties of our (or any other)
study system may depend on the choice of represen-
tation for a circuit’s architecture. An exploration of
this dependency is beyond the scope of this work.
Fourth, we do not know how our observations scale to
much larger circuits comprising thousands to millions
of gates. Fifth, because of the astronomical numbers
of circuits and functions, one needs to resort to
sampling to understand circuit space. The last concern
is not limiting if one is interested in generic properties of
this space, as we are.

Past work suggested that neutral, that is, function-
preserving change is important for the ability to
evolve new functions in digital logic circuitry, software
and Boolean function landscapes [27,37,41,42,48–56].
Harvey & Thompson [37] have evolved circuit configur-
ations for a tone-recognition task on hardware
(FPGAs). They have also illustrated the existence of
neutral networks for the specific circuit they consider.
Neutrality has also been studied in cellular signalling
circuits represented as Boolean networks [57]. This
work illustrates various similarities of a signalling cir-
cuit’s genotype–phenotype map with corresponding
maps of other systems. Our work goes beyond these
contributions by systematically exploring circuit space
and characterizing generic features of this space, the cir-
cuits it contains and the functions they compute. It
thus allows us to demonstrate the generic fault-toler-
ance and evolvability of an important class of
technological systems.

One such general statement regards circuit robust-
ness. The design of robust circuits using evolutionary
principles has received much attention recently
[4,8,22,47]. For instance, Keymeulen and collaborators
evolved electronic circuits to compute the XNOR logic
function. By forcing their circuits to operate in the pres-
ence of failure of individual circuit elements, they evolved
circuits that were increasingly tolerant against these
faults. Similarly, Hartmann & Haddow [8] used evol-
utionary algorithms to identify circuits that are
tolerant to faults such as random gate failures and
noise. These studies focus on specific circuit functions.
Our work shows that the ability to design robust and
fault-tolerant circuitry is a generic property and holds
for many different functions. Circuits computing the
same function are typically quite robust to change, but
this robustness shows a broad distribution among
J. R. Soc. Interface (2011)
different circuits. This means that for any one function
it is possible to identify circuits that are vastly more
fault-tolerant than others, as our example of circuits dif-
fering in their robustness by nearly threefold illustrated
(electronic supplementary material, figure S7). Such
robustness originates in the distributed architecture of
a circuit and it does not require additional components
such as redundant gates [22,58]. A circuit that is much
more robust or fault-tolerant than another circuit thus
need not have higher complexity, as measured by its
number of logic gates. A related insight emerges from
the observation that circuits of the same function form
neutral networks in circuit space. It means that evol-
utionary approaches will be generally useful to identify
highly robust circuits. The reason is that sufficiently
large populations of circuits that evolve on a neutral net-
work are known to accumulate in regions of the network
characterized by high robustness [59,60].

A second general insight regards a circuit’s ability to
compute new functions. In some evolvable hardware
applications, circuits that can easily change to compute
new functions are highly desirable. For example,
YaMoR is a modular robot composed of mechanically
homogeneous modules, each of which contains a
reconfigurable circuit that allows on-board self-
reconfiguration [33,61]. In general, modular robots are
capable of dynamically reconfiguring their structure.
They are helpful in navigating unknown environments
without human intervention and perform versatile
tasks, such as those required during space exploration,
deep sea mining, or urban search and rescue operations,
essentially to navigate extreme environments inaccess-
ible to humans [62], where the ability to reconfigure
navigation circuitry would be useful. Its reconfigurable
circuits endow the robots with the ability to learn.
The classes of circuits we study would be especially
amenable to this task, especially when it is tackled
with evolutionary principles. This is because they
encounter a rich diversity of novel functions in the
neighbourhood of a changing circuit, even if this circuit
preserves its function while undergoing random
configuration change. Circuit configurations that can
access more novel functions in their vicinity may be
especially useful in designing systems with adaptive
behaviour. Our observation that neutral networks of
different functions are located close together in circuit
space is also relevant in this regard. Another potential
application of such adaptive hardware could be in
self-repairing circuitry [63,64], where the ability of
reconfiguration can be exploited to fix faults and fail-
ures. The existence of large connected neutral
networks is also likely to facilitate repairs to maintain
function, despite the failure of one or more parts.

The reconfiguration of FPGAs comes with an over-
head, which primarily involves the reconfiguration
time and reconfiguration data storage space [65].
These two reconfiguration costs are directly related to
the extent of reconfiguration required. FPGAs are
amenable to partial reconfiguration, where only some
of their internal architecture is changed. Such partial
reconfiguration can reduce the time required for repro-
gramming and speed up reconfiguration [66,67]. An
FPGA design like ours, with its closeness of different
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neutral networks, can serve to minimize the number of
changes necessary to compute a new function. It thus
minimizes reconfiguration costs, and also permits an
uninterrupted operation of the circuit, which is not
possible in the case of a complete reconfiguration.

A third general observation follows from the fact
that important circuit features depend on circuit com-
plexity, as measured by the number of gates. For
example, more complex circuits tend to be more
robust. Electronic supplementary material, figure S11
illustrates two circuits that compute the same function.
While the smaller four-gate circuit is sufficient to
compute the function, it lacks robustness. The larger
16-gate circuit is much more robust. In addition, the
neutral networks of larger circuits may extend farther
through genotype space. Large circuits that are evolving
also tend to encounter more novel functions in their
neighbourhoods. Furthermore, simpler circuits may
not be able to compute some logic functions. A case
in point is again the space of four-gate circuits. This
space comprises 4.67 � 108 circuits. These circuits can
compute only 4.05 � 106 different functions, a small
fraction of the possible 1.8 � 1019 Boolean functions
with four inputs and four outputs. There are no four-
gate circuits that compute the right-shift or the circular
left-shift functions. These considerations show that
robustness and evolvability of programmable hardware
have a price: increasing system complexity.

A fourth observation regards the role of non-func-
tional gates, system parts that are not involved in the
computation a given circuit carries out. In biological
systems, analogies of such parts exist. For example,
many amino acids in a protein, many regulatory inter-
actions in a gene regulation circuit and many
metabolic reactions in a metabolic reaction network
may appear as ‘non-functional’ or ‘dispensable’
[16,18,68,69]. One might be tempted to call such
system parts to be ‘junk’ parts. However, we now
know that such parts play a crucial role for evolvability,
and it is precisely their ability to vary freely in some
environments that allows biological systems to evolve
novel phenotypes. For example, in laboratory evolution
experiments, proteins with new function evolve often
through changes that do not affect the protein’s princi-
pal function [68]. Unused parts in our circuits have
precisely the same role, and they should thus not be
named junk. These observations also agree with our
analysis of circuit complexity. Circuits of a minimal
size may have the merit of computing a function in an
elegant and simple way. At the same time, they would
be utterly unevolvable. This is why evolvability comes
at the price of high complexity.

A choice of circuit size is only one of many choices
one has to make in designing reconfigurable hardware.
We have explored a particular class of circuits with a
limited number of logic gates and feed-forward con-
nections. Many other choices are possible. Some of
them may facilitate fault-tolerance and adaptability,
others may impair it. The exploration of such
system classes, as well as completely different techno-
logical systems with complex architectures and diverse
functionality provides a fertile ground for future
research.
J. R. Soc. Interface (2011)
4. METHODS

4.1. Representation of FPGAs

We employ a simple vector representation of an FPGA
that involves the use of three integers per gate to ident-
ify the two inputs and the gate’s logic function. To this
list we append a list of outputs from the array. The
length of this representation is therefore 3mn þ nO, for
an FPGA of size m � n with nO outputs, i.e. computing
an nO-bit Boolean function. This is also the diameter of
the circuit space. The array inputs are numbered from
1, . . . , nI, while the output of each gate is numbered
sequentially, from nI þ 1, . . . , nI þ mn. We consider
five gates, viz. OR, AND, XOR, NAND, NOR, which
are the most commonly used two-input logic gates.
These five gates are represented by integers from 1 to
5. The list of outputs merely indicates which of the
mn gate outputs (numbered nI þ 1, . . . , nI þ mn) are
mapped to each of the FPGA array output bits. This
representation is similar to the one that is convention-
ally used in Cartesian genetic programming [25]. The
following is a vector representation of the circuit
shown in the top panel of the electronic supplementary
material, figure S3b:

4 2 3

L11

1 1 5

L12

3 2 2

L13

2 2 5

L21

1 7 2

L22

5 2 3

L23

10 5 3

L31

3 3 1

L32

6 6 4

L33

11 12 10 13

outputs

where Lij represents a logic gate in the array in column i
and row j. This vector representation also enables us to
easily compute the distance between two circuits—it is
the number of ‘bits’ in the representation that differ
between the two circuits, or the Hamming distance
between the two vectors. Neighbours of a circuit rep-
resent elementary changes to the wiring of the FPGA.
Specifically, the neighbours of a circuit differ exactly
in one of the bits of the vector representation
(a Hamming distance of one).
4.2. Random sampling of circuits

We consider circuits of size m � n that map nI inputs to
nO outputs. Each of the mn logic gates can compute one
of the five logic functions (nG ¼ 5), which are listed in
figure 1a. The circuits we study can be represented by
a vector of length 3mn þ nO (see the electronic sup-
plementary material). We generate a random circuit
by selecting input mappings, gate configurations and
output mappings at random, with uniform probability
among the set of all possible choices. That is, to each
digit in the representation, we assign a value based on
an integer drawn from the discrete uniform distribution
of all permissible values. This ensures that each circuit
in the space is equally likely to appear during sampling.
Specifically, we first choose an input mapping from 2n
uniformly distributed random integers in [1,nI]; map-
pings that do not use all the nI inputs are not
permissible. Second, we choose the logic function of
each gate via a random integer in [1,nG]. For a circuit
of size m � n, we choose the mn gates function indepen-
dently. Third, we choose the two inputs of each gate
such that for an element in column c, the permissible
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inputs correspond to integers in [1,n(c 2 1)], and are
chosen uniformly from this set.
4.3. Fraction of neutral neighbours

We consider two circuits to be neighbours of one
another if they differ by an elementary configuration
change, i.e. the change in logic function computed by
one of the gates of the array, or the change in an
input to one of the elements of the array, or a single
change in the mapping of inputs or outputs
(figure 1c). The vector representation that we have
described earlier facilitates the enumeration of neigh-
bours of a particular circuit—each neighbour of a
circuit differs in exactly one digit of the representation.

Every circuit has a large number of neighbours; for
example, there are mn(nG 2 1) neighbours for an m �
n circuit, which vary only in the configuration of one
of the mn gates. This large number arises from the
fact that each of the mn gates can be varied, one at a
time, to any of the remaining nG 2 1 possible gate con-
figurations. There are many additional neighbouring
circuits that differ in wiring or input–output mappings.
To identify the fraction of a circuit’s neutral neigh-
bours, that is, neighbours that compute the same
function, we simply enumerated all neighbours and
determined the function each neighbour computed.
We performed this analysis for 1000 circuits, each com-
puting one of the 1000 logic functions we considered.

To estimate a circuit’s robustness to gate failure, we
generated neighbours of the circuit that differ from it by
the failure of a single gate. We define a failed gate as a
gate that produces an output value of zero for any poss-
ible input. A circuit of size m � n has mn circuit
variants with a single gate failure. We computed the
fraction of these variants that computed the same func-
tion as the circuit, despite their failed gate.

Details on methods for the estimation of the connect-
edness of two circuits in circuit space and the
computation of the minimal distance between two neu-
tral networks are described in the electronic
supplementary material.
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