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Infection of individual cells with more than one HIV particle is an important feature of HIV
replication, which may contribute to HIV pathogenesis via the occurrence of recombination,
viral complementation and other outcomes that influence HIV replication and evolutionary
dynamics. A previous mathematical model of co-infection has shown that the number of
cells infected with ¢ viruses correlates with the ith power of the singly infected cell population,
and this has partly been observed in experiments. This model, however, assumed that virus
spread from cell to cell occurs only via free virus particles, and that viruses and cells mix per-
fectly. Here, we introduce a cellular automaton model that takes into account different modes
of virus spread among cells, including cell to cell transmission via the virological synapse, and
spatially constrained virus spread. In these scenarios, it is found that the number of multiply
infected cells correlates linearly with the number of singly infected cells, meaning that co-
infection plays a greater role at lower virus loads. The model further indicates that current
experimental systems that are used to study co-infection dynamics fail to reflect the true
dynamics of multiply infected cells under these specific assumptions, and that new
experimental techniques need to be designed to distinguish between the different assumptions.
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1. INTRODUCTION

The dynamics of HIV infection during various stages of
the disease have been analysed in detail over the years,
both from an experimental point of view, and with the
help of mathematical models. Most of this work is based
upon the assumption that cells are infected only with
single virus particles and omits from consideration the
possibility that multiple HIV particles frequently
co-infect the same cell. Strong evidence, however, has
accumulated that co-infection occurs frequently
in vivo and that it can contribute significantly to the
dynamics and evolution of the virus in vivo. This evi-
dence is reviewed in detail in §2. Co-infection has a
variety of important consequences for the disease pro-
cess, including the occurrence of viral recombination,
phenotypic complementation between viruses within
the same cell, and in general altered competition and
evolutionary dynamics of the virus [1-8].

Apart from exploring these complex interactions,
however, it is also important to gain an understanding
of the basic dynamics of multiple infection. Previous
studies have provided important first steps in this

*Author for correspondence (dwodarz@uci.edu).

Received 19 May 2010
Accepted 29 June 2010

regard. Using viruses bearing different fluorescent
protein reporter genes, the dynamics of dually infected
cells has been documented during exponential growth
phases in wvitro and in vivo in human thymic tissue
within SCID-hu Thy/Liv mice [1,6,9]. It was found
that the number of dually infected cells correlated
with the square of the overall number of infected cells.
Theoretical studies analysed those dynamics using a
mathematical model [10,11]. This model was based on
ordinary differential equations and reproduced the
experimental observation in specific parameter regions,
and generalized this result by predicting that the
number of cells infected with i viruses correlates with
the ith power of the overall number of infected cells
(more precisely, it correlates with the ith power of
singly infected cells, which is the dominant infected
cell population).

Here, we build on this theoretical study and extend it
to include further biological complexities. As with most
mathematical models that study the dynamics of HIV
infection, the previous models [10,11] assumed that all
virus transmission occurred via free virus and that
cells and viruses mix perfectly. Both assumptions,
however, might be violated to a certain degree in
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HIV-1 infection. There is experimental evidence that
viral spread via cell to cell transmission, brought
about by the formation of the virological synapse [12—
14] is many fold more efficient than infection via cell-
free virus [15] and could play an important role in
HIV dynamics. In addition, it is clear that HIV-1 repli-
cation occurs primarily in the lymphoid tissues, which
are spatially structured and where cells and viruses
are not likely to mix perfectly [16,17]. Hence, we con-
struct a new cellular automaton modelling framework
that examines basic dynamics of co-infection, taking
into account different modes of virus spread through
the target cell population.

In the limit where the cellular automaton assumes
viral spread via free virions and ignores spatial aspects,
the results from the previous differential equation mod-
elling are reproduced. If, however, the model allows for
viral spread via cell to cell transmission or for spatially
restricted virus spread, then the model properties
become different. In these cases, the multiply infected
cell populations tend to correlate linearly with the
singly infected cell population. Hence, co-infection
plays a more significant role in the dynamics already
at lower virus loads. In addition, the model suggests
that experiments based on reporter viruses labelled
with different colours do not reflect the true dynamics
in the context of cell to cell transmission of the virus,
or spatially restricted viral spread. While the true corre-
lation between multiply infected and singly infected
cells is linear in these scenarios, the experiments are pre-
dicted to yield results that are not distinguishable from
the scenario where virus transmission occurs via free
virions and where perfect mixing of cells and viruses
occurs. The reason for this discrepancy is that a dispro-
portionately large number of cells will be infected with
multiple copies of the same type of reporter virus and
these cells are counted as singly infected rather than
multiply infected in those experiments. Hence, new
experimental techniques will have to be devised to dis-
tinguish between the different scenarios and to examine
the dynamics of multiple infection in more detail.

2. THE BIOLOGY OF HIV CO-INFECTION

Until fairly recently, the concept of co-infection has not
played a prominent role in HIV research. This probably
stems at least in part from the early observation that
infection leads to the down-modulation of the CD4
receptor (reviewed in [18,19]), and the more recent
observation that HIV also downmodulates the CCR5
and CXCRA4 viral coreceptors [20] from the cell surface,
reducing the susceptibility of cells to reinfection over
time. In fact, three separate HIV proteins—Nef, Vpu
and Env—mediate CD4 down-modulation [21,22],
emphasizing its biological significance. Furthermore, it
was also observed quite early in the epidemic that infec-
tion frequency of cells in blood is low, of the order of 1 in
1000 to 1 in 100 000, leading to the incorrect assump-
tion that the probability of two infection events in the
same cell must be exponentially lower.

Over time it has become clear that this picture is not
correct and that co-infection with two or more viruses,
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i.e. multiple infection of cells, is a frequent phenomenon
that plays an important role in the natural history of
HIV. First and perhaps foremost, HIV-1 replication
occurs predominantly in the lymphoid tissues, where
the concentration of target cells is higher than in the
blood, and cell to cell contact facilitates transmission
of multiple virions between cells. Even when few
infected cells can be identified in mucosal tissues, they
are observed to be infected with multiple viruses [16],
and in situ staining in splenocytes of HIV-1 patients
observed an average of three to four integrated pro-
viruses per cell and sequencing of HIV-1 nucleic acids
in these cells confirms multiple infection with divergent
viruses and recombination between them [23]. During
acute infection of macaques with a pathogenic strain
of SIV, an average of 1.5 viruses per cell was observed,
indicating co-infection of a large fraction of cells [24].
The recent description of cell to cell transmission of
HIV via virological synapse formation [12—14] dramati-
cally illustrates how multiple infection of cells can be
locally generated.

Although CD4 loss from the cell surface is a conse-
quence of HIV-1 infection, it is not clear that its
primary function is to prevent reinfection (superinfec-
tion) of cells prior to virion production. Instead,
removal of CD4 from the cell surface has been shown
by several groups to increase the infectivity of the
newly produced virions [25,26], allowing more Env
protein to associate with virions and increasing viral
pathogenesis [27]. Further, there is an 18—24 h delay
between infection of a cell and production of viral pro-
teins that modulates CD4 expression, during which
the cell remains susceptible to reinfection (reviewed in
[18,28]). Thus, inhibition of superinfection is only oper-
ative during the productive phase of infection. Since the
lifespan of a productively infected T cell in vivo is only
about 0.5—-1 day, once virus production is underway in
the cell, superinfection at this late stage would most
likely be unhelpful to the virus.

Experimental systems to study the dynamics of mul-
tiple infection have frequently used recombinant viruses
bearing different reporter genes, allowing quantification
of cells infected with one or both viruses [1,6,9]. These
studies, carried out in tissue culture or in vivo within
human thymic tissue in SCID mice (SCID-hu Thy/
Liv mice) have made it abundantly clear that multiple
infection is a natural consequence of HIV-1 replication.
Over many rounds of replication in tissue culture or in
the SCID-hu Thy/Liv system, multiple infection pro-
ceeds without apparent inhibition, despite the ability
of HIV-1 to inhibit reinfection, resulting in frequent
recombination [1]. The inference is that the pace of
HIV-1 replication exceeds the inhibition effect, and
that fostering multiple infection, rather than inhibiting
it, may be to the benefit of the virus.

Recombination is the best studied outcome of mul-
tiple infection. It can have important implications for
the evolution of HIV in vivo. Recombination can poten-
tially speed up the rate of evolution by bringing
together different advantageous alleles into a single
genome. On the negative side (from the virus’ stand-
point), recombination can also break up existing
advantageous allelic combinations or it can lead to
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the inactivation of viable viruses if they are co-infected
and recombine with defective viruses. The effect of
recombination on the evolutionary dynamics in vivo is
complex, and can depend on several population genetic
phenomena, such as the degree of epistasis. This
has been studied in a variety of theoretical papers
[8,29—-33].

There are other important consequences of co-infec-
tion for virus dynamics. Viruses defective in vital
functions can be phenotypically complemented during
co-infection, resulting in chimeric virions bearing mix-
tures of genes and proteins from more than one
parental strain [6,7], and recombination can repair the
defect at the genetic level [6,7]. Viruses with essentially
zero fitness can replicate as a result of complementation
during co-infection [6].

3. THE MODEL

We employ a stochastic simulation in the form of a cel-
lular automaton (figure 1). In the most basic setting,
the rules of the simulation are as follows. Assume a
two-dimensional square grid that consists of n x n
spots. Each spot can either be empty, occupied by an
uninfected cell, or occupied by an infected cell. The
infected cell can harbour ¢ viruses, where i=1...n.
At each time step, the grid is randomly sampled n?
times. Depending on the status of the chosen spots,
the following events can happen. If a spot is empty, pro-
duction of an uninfected cell can occur with a
probability L. If a spot contains an uninfected cell,
death occurs with a probability d, and the spot becomes
empty. If the spot contains an infected cell, two events
can occur. The cell can die with a probability a, result-
ing in an empty spot. With a probability B, the infected
cell can transmit a virus particle to a susceptible cell.
Both uninfected and infected cells are susceptible to
new infection. If an uninfected cell becomes infected,
it contains one virus. If a cell bearing 4 viruses becomes
infected, it contains 7+ 1 viruses. Note, however, that
not each infection event is necessarily successful. The
destination spot in which the offspring virus is put is
chosen randomly from some set of neighbouring spots
(the size of this set can vary and could contain all
spots, see below). The virus is only passed on to another
cell if that destination spot contains a susceptible cell.
Otherwise, no infection event occurs.

This is the basic setting in which to explore the effect
of co-infection on the dynamics of HIV infection. Further
assumptions that underlie the infection events are as fol-
lows. In the simplest setting, we assume mass action or
perfect mixing in the context of infection. That is, an
infected producer cell can pass its virus to any other sus-
ceptible cell with equal probability. (In this case, the
spatial arrangement of the n x n spots is irrelevant).
At the other end of the spectrum, an infected cell can
pass on the virus only to its nearest neighbours. In the
two-dimensional setting, a cell has eight nearest neigh-
bours (figure 1). In between these extremes, it can be
assumed that the probability to infect a cell is a function
of the distance between the producer cell and the target
cell (details described below).
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Figure 1. Schematic explanation of the cellular automaton
model. We assume the existence of a grid that contains n x
n spots. These spots can either contain uninfected cells
(grey), infected cells (black) or be empty. In the case of
spatially restricted virus growth, an infected cell can pass its
virus only to its nearest neighbouring target cells, as shown.
If we assume perfect mixing, then an infected cell can pass
its virus to any cell in the system with equal probability
(not shown), and the two-dimensional spatial arrangement
becomes irrelevant. See text for details.

Related to spatial restrictions in virus spread, data
indicate that besides transmission of free virus, cell to
cell transmission might be an important means of
virus spread, brought about by the formation of the vir-
ological synapse [12-14]. We will incorporate this by
assuming that two individual cells can pair up with
each other for a defined period of time, enabling the
virus to pass from one cell to the other. Details are
presented in the relevant section.

We start by exploring the model in the form
described so far. Subsequently, we add further biologi-
cal complexities and examine their effects. In
particular, we include virus-induced receptor down-
modulation, where permissiveness to reinfection
decays over time, as well as heterogeneity in
susceptibility to infection among cells.

The model has been analysed by extensive numerical
simulations. Because the simulations are stochastic in
nature, the averages over many runs are considered
for each parameter set, and the variation is expressed
in terms of the standard deviation. Details of particular
runs are given in the figure legends. To make sure that
results are robust, the parameter space was sampled by
randomly drawing the log;y of individual parameter
values from a uniform distribution between —6 and 0.
In the basic setting, there are four parameters: (i) the
probability to produce a new target cell, L; (ii) the
probability for an uninfected cell to die, d; (iii) the prob-
ability for an infected cell to pass on its offspring virus
to another cell, B; and (iv) the probability for an
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Figure 2. Computer simulation results assuming perfect mixing of cells. Average population sizes are plotted, and the dotted line
represents the standard deviations. (a) Basic growth pattern. The overall virus population on average grows exponentially and
subsequently converges to an equilibrium. The graph demonstrating the growth curves for singly and doubly infected cells shows
a similar pattern. The population of doubly infected cells grows faster than the population of singly infected cells. (b) During
growth, the number of doubly infected cells correlates with the square of the number of singly infected cells. The graph shows
the growth phase during which both populations grow exponentially on average. Linear regression during the exponential
growth phase was used to obtain the correlations. At very low numbers, the growth pattern is more stochastic and this is not
shown. Parameters were chosen as follows: grid size, 800 x 800; L =0.5; d=0.001; B=0.5; a = 0.1.

infected cell to die, a. The probabilities were varied,
with the obvious restriction that the probabilities for
events occurring with infected cells, a + B < 1. In the
more complex model versions that include further prob-
abilities (e.g. for cell to cell transmission of the virus),
those parameters were sampled according to the same
principles. Parameter combinations in which the virus
failed to establish a persistent infection were ignored.
Ten thousand simulations were run this way for each
model version across a computer cluster.

Two different grid sizes were used: 800 x 800 and
1000 x 1000. The simulations were generally started
with a grid that was filled with uninfected cells. A cer-
tain number N, of initially infected cells were
distributed randomly across this grid. The value of N,
was randomly varied between one infected cell and 20
per cent of the grid being filled with infected cells. It
will be discussed how the results depend on the initial
conditions.

Note that so far we have not been able obtain crucial
parameter estimates for this model, since this requires
further experimental work. Hence, in the figures, par-
ameter values were chosen for the purpose of
illustration. The sampling of the parameter space, how-
ever, indicates that the described results are mostly
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robust and do not depend on the particular parameter
combinations. Results that were only observed in
specific parameter ranges or in the context of specific
initial conditions are clearly identified as such.
The results for the different scenarios will be described
in turn.

4. RESULTS AND DISCUSSION
4.1. Perfect mixing of viruses and cells

Here, we ignore any spatial restrictions on virus spread
and assume that viruses and cells mix perfectly. This
scenario should be closest to the previous modelling
approaches discussed above, which are based on ordin-
ary differential equations [11]. We observe that the
virus population grows exponentially on average, and
subsequently converges towards a stable equilibrium
(figure 2). This may or may not involve damped oscil-
lations, depending on the parameter values. We find
that during the growth phase and at equilibrium, the
abundance of the individual infected cell populations
correlates with the number of viruses present in cells
(figure 3). That is, cells infected with one virus are
most abundant, followed by cells infected with two,



Multiply infected cells in HIV infection D. Wodarz and D. N. Levy

293

—~
Q
<
—
N
—_
S
=

—_
O BN O
o
=
WA
[e)\W,BENOS] T

log cells infected
with i viruses

/|
/|
[

ot/ ]

0 1020 3040 50 60 70 80 90100

7 singly infected 14

0 10 20 30 40 50 60 70 80 90100

multiply infected

multiply infected

14 ;
el 12
2 10 T e 12 f
2 8 / /" multiply infected o // singly infected 8 / singly infected
Z= 6 7 6 61/ |
°co 4 / 4 / 4 /
2 2 / N / 2
g 0 0 of/
= / / F
-2 2t/ 21U
0 1020 3040 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
time time time
Figure 3. Equilibrium properties. The time course for cells infected with 1, 2, 3, ..., 6 viruses is plotted, depending on the overall

rate of viral spread (determined by the balance of the viral replication rate and the death rate of infected cells). (a) For slow viral
spread rates, the difference in the abundance of the individual infected cell subpopulations is relatively large, and the singly
infected cell population is more abundant than the sum of all multiply infected cells. (b) Increasing the viral spread rate
brings the abundance of the individual infected cell subpopulations closer, and now the overall number of multiply infected
cells is higher than the number of singly infected cells. (¢) For faster viral spread rates, the abundances of the individual infected
cell subpopulations become even closer to each other. In the limit for infinitely fast viral spread, the infected cell subpopulations
will converge to becoming identical. As in the previous parameter region, the overall number of multiply infected cells is higher
than the number of singly infected cells. Standard deviations were not plotted in order to make the graphs easier to read.
Parameters were chosen as follows: grid size, 800 x 800; L = 0.5; d=0.001; B= 0.5. For (a) a= 0.3, (b) a= 0.1, (¢) a=0.01.

three viruses, etc. If the replication rate of the virus is
relatively fast, then this dominance hierarchy can be
temporarily altered during the virus decline phase fol-
lowing peak virus load, when the number of
uninfected target cells becomes limiting relative to the
amount of virus present (figure 3).

During exponential growth, the model confirms the
observation derived from the previous differential
equation model [11] regarding the correlation between
multiply and singly infected cells. That is, the number
of doubly infected cells correlates with the square of
the number of singly infected cells (figure 2). In general,
the number of cells infected with ¢ viruses correlates with
the ith power of the number of singly infected cells. That
is, as virus load rises, the number of co-infected cells rises
relative to the number of singly infected cells.

At equilibrium, the abundance of the different
infected cell subpopulations depends largely on the
overall rate of virus spread (figure 3a—c). This is deter-
mined by the viral replication kinetics (rate of virus
production and rate of infection), as well as by the
death rate of infected cells. The faster the rate of
virus replication and the lower the death rate of infected
cells, the faster the virus spreads through the popu-
lation of host cells. For relatively slow rates of viral
spread, the difference in abundance of the infected cell
subpopulations is relatively large (figure 3a). The
faster the rate of virus spread, the less is the difference
in the abundance of the infected cell subpopulations
(figure 3b,c). In the limit, for fast virus spread rates,
the abundances of the infected cell subpopulations

J. R. Soc. Interface (2011)

converge to becoming identical (not shown). We can
also look at the overall number of multiply infected
cells (infected with two, three, four viruses, etc.) rela-
tive to the number of singly infected cells (figure 3).
During the growth phase, the overall number of multi-
ply infected cells rises relative to the number of singly
infected cells. At equilibrium, the relative abundances
depend on the rate of virus spread. For slow virus
spread, the singly infected cells are more abundant
than the overall population of multiply infected cells.
For faster viral spread, the population of multiply
infected cells becomes more abundant than the
population of singly infected cells (figure 3b,c).

We also analysed the model that considers viruses
labelled with two different colours [1], tracking the
number of cells infected with dual-colour viruses
rather than tracking the ‘true’ number of co-infected
cells (which include cells infected with two viruses of
the same colour). As with the previously published
differential equation model [11], the results when track-
ing cells infected with both colours are qualitatively
identical to those obtained when tracking all infected
cells containing two viruses (not plotted here). These
results hold true if cells and viruses mix perfectly. In
the following sections, we will examine the model
behaviour if this assumption is violated.

4.2. Spatially constrained virus spread

Here, we consider the scenario where virus spread is
spatially restricted, in particular we assume that an
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Figure 4. Computer simulation results assuming highest spatial restriction with regard to infection. Average population sizes are
plotted, and the dotted line represents the standard deviations. (a) Basic growth pattern. The infected cells grow slower than
exponential because of the spatial restriction. Only cells on the surface of an infected cell cluster can pass on the virus to new
target cells. With this growth law, the square root of the number of infected cells grows linearly in time (not shown here).
The same pattern applies to the subpopulations of infected cells. The number of doubly infected cells grows with the same
rate as the number of singly infected cells. (b) The number of doubly infected cells correlates directly with the number of
singly infected cells during the growth phase. This graph also plots the correlation between cells infected with single-colour
virus and cells infected with dual-colour virus, derived from a simulation of dual-colour virus experiments [1]. In contrast to
the ‘true’ picture, the number of cells infected with single-colour virus correlates almost with the square of the number of
cells infected with dual-colour virus. Linear regression during the exponential growth phase was used to obtain the correlations.
See text for further details. Parameters were chosen as follows: grid size, 800 x 800; L = 0.5; d = 0.001; B=0.5; a=0.1.

infected cell can pass its offspring virus only to its direct During the growth phase in this scenario, we observe a
neighbours (eight cells in our set-up). As has been different correlation between the number of co-infected
observed in previous modelling of HIV spread in the cells and the number of singly infected cells. Now, the
context of spatial limitations [34], the virus population number of cells infected with i viruses correlates directly
grows slower than exponential (figure 4a). In our model, with the number of singly infected cells (figure 45). This
we call this pattern ‘surface growth’, characterized by means that the relative importance of co-infection does
the square root of the virus population growing linearly not increase as the virus population grows to higher

with time. The reason is that the infected cells are clus- levels. The relative importance of co-infection remains
tered together in a mass, and only the infected cells at constant throughout the growth phase from low to
the surface of this mass contribute to virus spread. Fol- high virus loads. During the growth phase, and at equili-

lowing this growth phase, the average populations brium, the average abundance of the infected cell
eventually  converge towards an  equilibrium subpopulation scales with the number of viruses present
(figure 4a). While this is an extreme scenario and in the cell, i.e. singly infected cells are most abundant,
such a growth pattern has not been observed in exper- followed by cells containing two, three, four viruses,
imental systems tested thus far, it is instructional to etc. The faster the overall spread, the closer the abun-
analyse it. This will provide a basis for understanding dance of the individual subpopulations of infected cells.
the dynamics under intermediate degrees of spatial Again, the overall number of multiply infected cells is
restrictions of virus growth. less abundant than the singly infected cells population
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for slow rates of viral spread, and becomes more abun-
dant than the singly infected cell population at higher
viral spread rates (plots not shown).

Next, we examine the scenario where viruses bearing
different reporter genes, representing different strains of
equal fitness, are followed over time (figure 4b). In cells
that are infected with multiple copies of each reporter
virus, ie. more than one green fluorescent protein
(GFP) virus and more than one yellow fluorescent protein
(YFP) virus [1], we assume that the probability to trans-
mit the virus of a given colour is proportional to the
frequency of this virus in the cell. Interestingly, under
these assumptions, the simulations yield different results.
If the simulation is started with the initial infected cells
(infected with one type of virus each) scattered randomly
through the target cell grid, then we find that the number
of dual-colour cells (e.g. GFP/YFP double-positive) does
not correlate directly with the number of single-colour
cells (e.g. GFP+YFP— and GFP—YFP+) during the
growth phase of the virus. Instead, the number of dual-
colour cells tends to correlate almost with the square of
the number of singly infected cells (figure 4b). Hence,
the dual-colour experiment does not accurately reflect
the true dynamics of co-infection in this scenario. The
reason is that cells that are multiply infected with viruses
of identical colour (and which are missed in dual-colour
experiments) account for a disproportionately large frac-
tion of co-infected cells, as a result of the spatial
restrictions assumed here. If a cell can only infect its near-
est neighbours, then it is likely to pass on a virus labelled
with the same colour multiple times to the same cell,
hence the discrepancy. The reason for the correlation
being close to square and not exactly square is as follows.
While spatial restriction renders repeated transmission of
an identically labelled virus to the same cell likely, this is
not the only possibility as an infected cell does have
potentially eight nearest neighbours to which the virus
can be passed on. However, it is unlikely that experimen-
tal data are accurate enough to pick up such a subtle
difference. Therefore, experiments with dual-colour
viruses are predicted to give rise to a squared correlation
between the number of doubly infected cells and the
number of singly infected cells, while the true correlation
is linear under the assumptions of this iteration of the
model.

Note that in the simulation of the dual-colour virus
experiment, the predicted correlation can depend on
the spatial distribution of the initial number of infected
cells. The above results hold for large ranges of initial
distributions, where cells are randomly scattered
across the grid. Different results are obtained if initial
conditions are such that during growth, the cells
infected with viruses of two colours are clustered
together and surrounded by a larger cluster of cells
that is infected with single-colour viruses. In this case
the population of cells infected by single-colour viruses
will grow faster than the population of cells infected
with viruses of both colours. This is because the cluster
of cells containing single-colour viruses is larger and
more cells are at the periphery of the cluster where
they can give rise to new cells of the same type.

So far we have considered strong spatial restriction
where an infected cell could only pass on its offspring
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virus directly to the neighbouring target cells. However,
there is a continuum between this assumption and per-
fect mixing of the cells. We explore this continuum by
assuming that in principle, an infected cell can pass
on the offspring virus to any other cell on the grid,
but that the probability of infection declines with the
distance between the source cell and the target cell.
The distance over which the virus can travel to infect
a target cell is determined by the expression
D = —klogle™™* + R(1 — e ™*)]. This provides a
random number between 0 and m, where m is the maxi-
mum distance (i.e. number of spots in the grid) that the
virus can in principle travel to infect a cell. R is a uni-
formly distributed random number, and the
parameter k determines how steep the distribution of
the resulting random number D is. If k— oo, then the
distribution of D tends to uniform and the virus can
reach any position in the grid with equal chance. This
corresponds to the perfect mixing extreme. On the
other hand, if k£ — 0, then the distribution of D is
very steep and the probability for the virus to reach a
target cell declines very fast with distance. This end
of the spectrum corresponds to extreme spatially
restricted virus spread. Intermediate values of k allow
for a continuum between these extremes.

In this case, the results are ‘intermediate’ between
those of the perfect mixing and the extreme spatial
restriction scenarios. The virus growth pattern is inter-
mediate, consisting of two phases: an exponential
phase, followed by a slower ‘surface growth’ phase
(figure 5a). Initially, growth is exponential because
there are many cells that can be infected with relatively
large probabilities. During later stages of growth, how-
ever, a mass of infected cells has formed and only cells
on the surface of this mass can pass on the virus to unin-
fected cells, leading to slower virus growth. The more
the cells mix, the longer is the exponential growth
phase. During the exponential growth phase, the
number of cells infected with ¢ viruses scales anywhere
from linearly to the ith power of the number of singly
infected cells (figure 5b), depending on the exact
degree of mixing. As virus growth slows down, this cor-
relation tends further towards linear (figure 5b).
Simulating the experiments with dual-colour viruses,
the results regarding the dynamics of multiply infected
cells again deviate from the true picture, and results
become more accurate as the degree of cell mixing is
increased (plots not shown).

4.3. Cell to cell transmission of the virus

Here, we assume that for virus transmission to occur,
two cells have to become linked via the virological
synapse [12—14]. We assume that at each time interval,
free cells (infected and uninfected) have a probability p
to form a synapse with a randomly chosen partner cell.
Infected cells that are connected to another cell can pass
on their offspring virus to the partner cell with a prob-
ability B. In addition, at each time interval, there is a
probability ¢ that linked cells break apart. In this
case, average virus growth is exponential, followed by
convergence to an equilibrium (figure 6a). As before,
the abundance of the infected cell subpopulations
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Figure 5. Computer simulation results assuming an intermediate degree of spatial restriction with regard to infection. Average
population sizes are plotted, and the dotted line represents the standard deviations. (@) The basic growth pattern is intermediate
between the one found for perfect mixing and extreme spatial restriction. At the beginning, growth is exponential. Subsequently,
growth slows down such that the square root of the number of infected cells grows linearly in time. Finally, the average popu-
lations converge to equilibrium. The higher the degree of mixing, the more pronounced the exponential growth phase. (b) The
correlation between the number of doubly infected cells and the number of singly infected cells lies between linear and square,
depending on the exact degree of mixing. As growth slows down, the correlation tends further towards linear. Linear regression
during the beginning and the end of the exponential growth phase was used to obtain the correlations. Parameters were chosen as
follows: grid size, 800 x 800; L =0.5; d=0.001; B=0.5; a=0.1.

scales with the number of viruses in the cells. The faster
the viral replication rate, the closer the abundance of
the infected cell subpopulations are to each other.
During the growth phase, the number of cells infected
with 7 viruses scales linearly with the number of singly
infected cells (figure 6b). However, in simulations of
the dual-colour virus experiments, the number of cells
infected with two colours scales with the square of the
number of cells infected with a single colour
(figure 6b). Hence, again, the dual-colour virus exper-
iments do not accurately reflect the dynamics of
multiply infected cells. The reason is that because of
synapse formation, the repeated transmission of a
virus with identical colour to the same cell plays a
very important role, and these multiple infection
events with similar viruses are not picked up by
experiments using dual-colour viruses.

4.4. Additional complexities
Here, we introduce further biological complexities into

the model and examine their effects on the dynamics

J. R. Soc. Interface (2011)

of multiply infected cells. So far, we have assumed
that co-infection remains possible throughout the life-
span of the infected cells. It is known that receptor
down-modulation does occur, inhibiting superinfection
[18,19]. However, this process requires about 1 day fol-
lowing infection with the first virus during which time
a cell remains reinfectible [18,28]. Given that the life-
span of infected cells is less than 2 days on average in
vivo [35—37], the above simulations without explicit
inclusion of superinfection inhibition appear to be a
reasonable approximation. Nevertheless, we explicitly
introduce superinfection inhibition and examine the
resulting dynamics. The computer simulation keeps
track of the time steps since initial infection. This can
be done in the context of two different assumptions,
both of which yield the same general result. It can be
assumed that after a defined number of time steps,
tinr, further infection immediately becomes impossible,
because the receptor levels on the cell have declined sig-
nificantly. Alternatively, it can be assumed that the
probability of infection continuously declines with
time since the original infection.
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Figure 6. Computer simulation results assuming virus spread via cell to cell transmission through the formation of the virological
synapse. Average population sizes are plotted, and the dotted line represents the standard deviations. (@) The basic growth pat-
tern shows an exponential increase in the number of infected cells, followed by convergence to equilibrium. During this phase, the
population of singly and doubly infected cells grows at the same rate. (b) Consequently, the correlation between the number of
singly infected and doubly infected cells is linear during the growth phase. However, in simulations of the dual-colour virus exper-
iments, the number of double-colour cells correlates with the square of the number of single-colour cells. Linear regression during
the exponential growth phase was used to obtain the correlations. Parameters were chosen as follows: grid size, 800 x 800; L =

0.5; d=0.001; B=0.2; a=0.01; p=0.2; ¢g=0.4.

These effects have already been examined by pre-
vious theoretical studies [10,11,31], and many of the
results reported in the context of our current model
coincide with those. Nevertheless, it is important to
include these results for completeness.

For now, we assume that cells and viruses mix per-
fectly. The results during the growth phase of the
virus population remain unaffected. When the average
populations converge to equilibrium, however, the
dominance hierarchy of the individual infected cell
populations (one, two, three viruses, etc. per cell) can
be affected by receptor down-modulation, depending
on the model parameters (figure 7). As mentioned in
previous sections, in the absence of receptor down-
modulation, the singly infected cells are the dominant
population followed by cells infected with one, two,
three viruses, etc. (figure 7a). In the presence of recep-
tor down-modulation, however, cells infected with more
than one virus can be the dominant population
(figure 7b). In this figure, cells infected with three
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viruses are dominant, while cells infected with fewer
or more viruses are less abundant. The reason is as fol-
lows. The receptors remain long enough for a certain
amount of co-infection to occur. However, loss of the
receptor reduces further co-infection. Hence, cells
infected with an intermediate amount of virus (e.g. n
viruses) are less likely to be infected and are less likely
to be lost to give rise to cells infected with n + 1 viruses.
Hence, the population of cells infected with n viruses
gains in abundance relative to other cells. The exact
shape of the distribution, and which cell population is
most abundant, of course depends on model par-
ameters. The simulation can also give rise to
distributions with more than one peak. In figure 7c,
there is a ‘local peak’ for cells infected with a single
virus, and there is a second peak for cells infected
with four viruses.

In general, the rate of receptor down-modulation
(and the consequent reduction in permissiveness to
infection) determines the dominance hierarchy of the
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chosen as follows: grid size, 1000 x 1000; L = 0.5; d=0.001; B=0.5; a = 0.05. (a) No receptor down-modulation; (b) ti, =
10; (¢) typr = 15. The grid size was chosen to be larger in this set of simulations than in other figures to allow rarer cell populations

to be presented more accurately.

infected cell populations as follows. If receptor down-
modulation occurs relatively fast, then the singly
infected cells are most abundant, simply because in
this scenario, permissiveness of infection is reduced so
fast that the chances are low for co-infection to occur.
If receptor down-modulation takes a relatively long
time, then the results converge to those observed in
the simulations that do not take receptor down-modu-
lation into account. In this case, it essentially takes
longer than the lifespan of an infected cell for the infec-
tion permissiveness to decline. The altered dominance
hierarchies are found for intermediate rates of receptor
down-modulation, where receptors remain long
enough for significant co-infection to take place, but
receptor loss occurs within the lifespan of infected cells.

It is interesting to consider these patterns in the con-
text of experimental data. During virus growth, data
indicate that starting from a low initial number of
viruses, the singly infected cells are the most abundant
population, and that the abundance of cells ranks with
the number of viruses they are infected with [1]. This is
in agreement with our model. During the growth phase,
this is the predicted dominance hierarchy under all con-
ditions. It is only at equilibrium that the model predicts
altered dominance hierarchies as described above. In a
paper by Jung et al. [23], fluorescence in situ hybridiz-
ation was used to estimate the number of proviruses
harboured by individual splenocytes from two HIV-
infected patients. They found an average of three to
four proviruses per cell and found two peaks in the dis-
tribution: one for singly infected cells, and one for cells
infected with three viruses. This is reminiscent of our
model simulation results presented in figure 7¢. While
the nature of and the reason for this distribution
needs to be investigated in more detail, we can hypoth-
esize that the occurrence of receptor down-modulation
in infected cells could be the driving factor that pro-
duces such distributions. It seems likely that in
patients who were sampled, the virus population was
in an approximate steady state. Following the acute
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phase of the infection, virus load typically settles
around a steady state that shifts slowly over time.
Our model suggests that in such a steady state, receptor
down-modulation can lead to distributions of viruses
among cells that are observed in the experimental
data. At this stage, however, we have no experimental
evidence to support this hypothesis, and other expla-
nations could account for such a distribution. In
particular, cells infected with more than one virus can
become the dominant population if the number of unin-
fected target cells are limiting. In the simulations, this is
typically seen when virus load reaches its peak. Because
of limited target cell availability, the virus population
declines before converging to equilibrium, and tempor-
arily altered dominance hierarchies can occur during
this phase of the dynamics. For this scenario to be
observed, the replication rate of the virus needs to be
relatively high, as demonstrated in figure 3¢. However,
this seems reasonable based on observed replication kin-
etics [1]. Because this scenario only occurs in a limited
phase of replication, it may not explain the virus
distribution patterns found in wvivo.

We achieve similar results when we incorporate
receptor down-modulation into the models that
assume spatially restricted virus spread or virus
spread via cell to cell transmission. In these cases, the
dominance hierarchy can not only be reversed when
the average population sizes converge to equilibrium,
but also during the virus growth phase. This is because
the multiply infected cell populations grow with the
same rate as the singly infected cell population in
these cases.

Another complication that we introduced into our
model was the assumption that not all cells are equally
susceptible to infection, but that there is heterogeneity
among the cells in the probability with which they can
become infected. Upon production, each cell was
assigned this probability with a random number gen-
erator and the simulation was run as before. No
changes in the results described so far have been found.
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5. CONCLUSION

The analysis presented in this paper has shown that the
dynamics of co-infected cells can depend crucially on
the mode of virus spread. Further, it has shown that
the use of dual-colour viruses has inherent limitations
in their interpretation when virus spread is spatially
restricted or if significant amounts of virus infection
occurs via cell to cell transmission. Labelling viruses
with more than two colours would not improve the abil-
ity to analyse multiple infection with identical viruses.
Analysis of viral nucleic acids within single infected
cells will be required to directly parse these issues.
The model presented here can exactly track the true
number of multiply infected cells in silico and thus pro-
vide a useful tool to understand the nature of co-
infection dynamics under various modes of virus
spread. While virus growth experiments in small culture
dishes with cell monolayers are likely to approximate
perfect mixing rules (and can thus be analysed correctly
with coloured viruses; [1]), the rules of HIV spread in
vivo, especially in lymphoid tissue, should be examined
more closely. Once these rules have been established in
more detail, they can be incorporated into the model to
obtain predictions about the co-infection dynamics
under the experimentally observed assumptions.

In a study of the relationship between infection fre-
quency, co-infection and recombination [1], the use of
reporter viruses will, however, show the correct relation-
ship between infection and recombination between
divergent viruses, represented by the different reporter
viruses. The number of dual-colour cells accurately rep-
resents the cells infected with divergent viruses
(divergent by this criterion), thus the conclusion that
diversification by recombination proceeds by the
square of the infection frequency is a valid conclusion
of this work.

This work was funded in part by NIH grants RO1 AI058153
(DW) and R01 AI058876 (DNL and DW).
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