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Understanding how information is encoded and transferred by biochemical networks is of fun-
damental importance in cellular and systems biology. This requires analysis of the
relationships between the stochastic trajectories of the constituent molecular (or submolecu-
lar) species that comprise the network. We describe how to identify conditional
independences between the trajectories or time courses of groups of species. These are
robust network properties that provide important insight into how information is processed.
An entire network can then be decomposed exactly into modules on informational grounds. In
the context of signalling networks with multiple inputs, the approach identifies the routes
and species involved in sequential information processing between input and output modules.
An algorithm is developed which allows automated identification of decompositions for large
networks and visualization using a tree that encodes the conditional independences. Only
stoichiometric information is used and neither simulations nor knowledge of rate parameters
are required. A bespoke version of the algorithm for signalling networks identifies the routes
of sequential encoding between inputs and outputs, visualized as paths in the tree. Appli-
cation to the toll-like receptor signalling network reveals that inputs can be informative in
ways unanticipated by steady-state analyses, that the information processing structure is
not well described as a bow tie, and that encoding for the interferon response is unusually
sparse compared with other outputs of this innate immune system.
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1. INTRODUCTION

Imagine a record over time of the trajectory of the
number of molecules of each type of biochemical species
present in a reaction network, together with a record of
the time-varying, external signals received by the cell.
The network may be large, is not assumed to be in a
‘steady’ or stationary state, and is subject to intrinsic
stochasticity. Current understanding in this context of
how to analyse the relationships between the various
trajectories is very limited. We describe how to identify
conditional independence relationships between the tra-
jectories of groups of species. These are robust network
properties that provide important insight into how
information is encoded and transferred by cellular net-
works—an area whose importance has been widely
recognized [1,2].

Both the external environment and internal state of
the cell are inherently dynamic. Signalling and regulat-
ory networks must detect and coordinate responses to
both external and internal fluctuations using stochastic
biochemistry. The multiple signals arriving at the cell
surface are expected to exhibit complicated dynamics
and are themselves noisy carriers of information.
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plementary material is available at http://dx.doi.org/
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Advances in understanding information processing
within the cell therefore require both a dynamic (see
[3]) and a probabilistic approach. Hence the focus here
is on the probabilistic relationships between species
and module trajectories. There is clear evidence that
key components of the cellular signal transduction
machinery exhibit involved dynamic behaviour and
that different temporal patterns are associated with
differential regulation of downstream targets. Spiking
and oscillations are exhibited by, for example, cytosolic
calcium, cyclic AMP, nuclear NF-kB, and nuclear ERK
[4]. Frequency/amplitude modulation has been estab-
lished for the control of both gene expression and
mitochondrial redox state by calcium [5], and for the
nuclear translocation of cAMP-dependent protein
kinase [6]. Recently, Ashall et al. [7] report that altering
the frequency of stimulation by tumour necrosis factor
TNFa also results in different patterns of nuclear trans-
location of NF-kB and of NF-kB-dependent gene
expression.

Two related types of question arise from these obser-
vations. First, the inferential one concerning what may
be learnt from the trajectories of outputs and interme-
diaries about the dynamics of the input signals and
hence about the external state of the cell. This connects
with recent work [8,9] that interprets biochemical net-
works as implementing inference in order to provide a
basis for cellular decisions. Second, the question of
This journal is q 2010 The Royal Society
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how external information is encoded by and transferred
within biochemical networks exposed to multiple
inputs.

The need for a rigorous, dynamic, information-based
framework for relating the stochastic trajectories of bio-
chemical networks and for quantifying their
information content is thus clear. There has been
little previous work in this area (although note [10]).
We describe how to identify conditional independences,
written At�Dt

Bt, between the trajectories (up to some
time t) of groups of biochemical species A, B and D (see
§2.2). Such an independence means that the infor-
mation contained in or encoded by the trajectory Dt

makes any information in At irrelevant for Bt (and
vice versa). That is, At and Bt contain no mutual infor-
mation given the trajectory Dt. In this sense, the species
in D play the role of informational intermediaries or
‘information carriers’ between A and B within the net-
work. Further discussion of the importance of such
conditional independences in the context of signalling
networks is given in §2.1. Although probabilistic and
information theories have been used to quantify the
mutual information content between inputs and out-
puts for single neurons [11], a small signalling network
[12] and simple regulatory transcriptional mechanisms
[13,14], the approach adopted here is different. We con-
sider general, potentially large biochemical networks
and the sequential information transfer via inter-
mediaries that is central to signal transduction
mechanisms. A stochastic process treatment of (bio)-
chemical networks that focuses on mathematical proof
of dynamic independence properties is outside the
scope of this paper and is given in Bowsher [15].

In developing our approach to a quantitative theory
of information processing by biochemical networks, it
has proved fruitful to adopt a modular perspective.
This is unsurprising as such networks are increasingly
thought of as having a modular structure [16–19], a
separable architecture that can be decomposed into
units that perform to some extent independently of
one another. Furthermore, it is recognized both that
understanding such modularity requires a dynamic
approach [20] and that rigorous definition and identifi-
cation of dynamic modularizations is a difficult problem
([21], ch. 3). We show how to exactly decompose or
modularize an entire network using informational prop-
erties. We view a modularization here as a collection of
groups of biochemical species in which, for each module,
all information relevant to the trajectory of the module
is encoded by the trajectory of the module’s overlap
(interface) with the rest of the network. With this defi-
nition, it turns out that valid conclusions may be drawn
by studying the kinetics of each module in isolation
from the rest of the system.

As would be expected of a functionally important
property of a naturally evolved network, our modulari-
zations and analysis of information processing are
robust to (unaffected by) changes in rate parameters.
The MIDIA algorithm is developed (§2.3) which
allows automated identification of modularizations for
large networks, control over the degree of coarse grain-
ing, and visualization using a tree that encodes the
conditional independences. Only stoichiometric
J. R. Soc. Interface (2011)
information is used and neither simulations nor knowl-
edge of rate parameters are required. A bespoke version
of the algorithm for signalling networks identifies routes
of sequential encoding between inputs and outputs,
visualized as paths in the tree.

Previous dynamic approaches to module identifi-
cation adopt various perspectives. Network motifs [22]
are an important concept, but the manner in which
individual motif function depends on the context
within and connections to the rest of the network
remains an open question. Graphical, community
detection-based methods [18,19] are extended by Saez-
Rodriguez et al. [23] to kinetic models of signalling
networks—edges are interpreted as retroactivities and
‘inter-modular retroactivity’ is minimized in order to
partition species between modules. Some bi-directional,
local dynamic influences between modules remain after
decomposition. Correlated reaction sets (or ‘Co-sets’;
[24]) arise where interest is in a region of the solution
space of steady-state fluxes (or reaction rates)—e.g. a
Monte Carlo sample from that space [25,26] or the col-
lection of all ‘extreme pathways’ [27]. A Co-set is a
group of reactions that have non-zero flux at all points
in the solution region under consideration and that
thus function together when the system is at steady
state—i.e. when species concentrations and reaction
rates are constant over time.

Using their stoichiometric reconstruction of the toll-
like receptor (TLR) signalling network, Li et al. [28]
employ a steady-state flux balance analysis (FBA) to
identify signalling pathways for different input–
output (I–O) pairs. The objective flux maximized is
the flux of the particular reaction regarded as the
output of signalling in each case. Although a virtue of
this and the other constraint-based methods is that
they require knowledge only of the stoichiometric
matrix, the steady-state assumption is a strong one
that considerably limits their generality. In many set-
tings, signalling and gene regulatory networks are
inherently dynamic and non-stationary, as has already
been noted. Furthermore, none of the module
identification methods discussed allows for stochasti-
city, which is both an important characteristic of gene
expression and signalling dynamics (e.g. [29–33]) and
essential for a consideration of how the cell processes
noisy information.
2. RESULTS

2.1. Informational encoding, transfer and
decomposition—a preview

The approach of the paper relies on two particular
properties of the probabilistic relationships between
species trajectories in biochemical networks. By the tra-
jectory of a species we mean its dynamic evolution or
time course in continuous time. These properties are
as follows.

— For a given network, there are usually many ways to
partition the network species into non-overlapping
groups A, B and D so that the information encoded
by the trajectory of D makes any information in the
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Figure 1. Illustrative example of a network with two modules.
Each circle represents a module, i.e. a group of biochemical
species. The network species are grouped into three non-over-
lapping sets A, B and D as shown, in such a way that At�Dt

Bt —i.e. the trajectories (up to any time t) of A and B are
independent given the trajectory of D. Hence At and Bt con-
tain no mutual information given Dt, all information
transfer between the two modules being conveyed via Dt.
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trajectory of A irrelevant for that of B (and vice
versa). The species in D thus play the role of infor-
mational intermediaries or ‘carriers’. Such species
may be identified by establishing the conditional
independence between trajectories, At�Dt

Bt.
— Furthermore, the entire network can be decomposed

exactly into modules on informational grounds, and
the modules arranged in a tree structure that
encodes conditional independences between the tra-
jectories of (groups of) modules. The path in the
tree from one module to another then identifies
the route and species involved in sequential
information processing between the two modules.

We will denote the state of the molecular network by
x(s) ¼ [x1(s), . . . , xk(s), . . . , xn(s)], where xk(s) is the
number of molecules of type k present at time s. The
trajectory Xk,t ¼ (xk(s); 0 � s � t) records the dynamic
evolution of the kth species. Figure 1 shows a simple
illustration of a network with two modules. The net-
work species are grouped into the three sets A, B and
D in such a way that the conditional independence
relationship At�Dt

Bt holds. We stress the informa-
tional aspect of the relationship—namely that the
trajectories At and Bt contain no mutual information
given Dt, and the species in D play the role of ‘infor-
mation carriers’ between A and B within the network.
The network is thus said to decompose exactly into
the two modules M1 ¼ [A, D] and M2 ¼ [B, D] (shown
as circles), with all information relevant to each mod-
ule’s trajectory thus encoded by their region of
overlap, D.

Importantly, our approach is well suited to the
analysis of information processing by cell signalling net-
works. It is commonplace to refer heuristically to
information flow within such networks. However, a pre-
cise, quantitative understanding of how (and which)
internal species of the cell encode information about
the trajectories of signalling inputs (ligands) is lacking.
Denote by It* the stochastic process by which multiple
signalling ligands enter and depart the cell’s surround-
ings, and by O some target output species of the
signalling network. We refer to It* as the external
input process. By identifying a conditional indepen-
dence At�Dt

Bt as above, where the trajectory At

(resp. Bt) implies that of It* (resp. Ot), we are able to
J. R. Soc. Interface (2011)
identify encoding species D such that the conditional
independence It*�Dt

Ot holds. (Furthermore It*�Et

Ot whenever the species D are contained in E.)
The implication is that, given the trajectory of the

species in D, the trajectories It* and Ot contain no
mutual information. This may be interpreted in two
ways. First, the encoding of information by the trajec-
tory Dt makes the original information in the external
input process It* irrelevant for the outputs Ot. Further-
more, this irrelevance holds no matter what other
trajectories in addition to those of D are also con-
sidered. Second, inferences about the multiple signals
received, It*, based on Dt are unaffected by taking the
outputs Ot into account. These properties of the trajec-
tory Dt thus capture the essence of signal ‘transduction’
by intermediary species.

In general, the signalling network modularizations
we identify are represented using a tree structure that
allows us to trace sequential routes of information trans-
fer through the network. Denote the groups of species
on the path in the tree between signalling inputs (I*)
and outputs (O)—i.e. the relevant ‘edges’ in the
tree—by S1, S2, . . . , SN. Then an important result (see
§2.4) will be that It*�Sj,t

Ot for j ¼ 1, . . . , N, i.e. con-
ditional independence holds for all of the species
groups Sj, and moreover (It*, S1t, . . . , Sj21,t)�Sj,t

(Sjþ1,t, . . . , SN,t, Ot). The latter property means that
(S1, S2, . . . , SN) is a sequence of encoders, each one of
which makes the information in both It* and all earlier
encoders in the sequence irrelevant for both all later
encoders in the sequence and the outputs Ot. A com-
parative analysis varying the groups I* and O for a
given network then reveals important differences of
information processing for the various I–O
combinations.
2.1.1. Module kinetics may be studied in isolation. The
problem of when it is appropriate to study smaller sub-
systems without reference to the network in which they
are embedded arises frequently in systems biology. We
therefore mention the following property of our network
decompositions (without further development). It turns
out that, given the definition of a decomposition or
modularization here (§2.3), valid conclusions may be
drawn by studying the kinetics of each module in iso-
lation from the rest of the system. Consider again the
two-module network in figure 1 (where it is assumed
that conditions 1, 2 and 3 of §2.2 apply). Observing
the trajectories of all species in the first module M1 ¼
[A, D] alone, without also observing the trajectories of
any species in B, allows many of the rate parameters
of the reactions governing the dynamics of M1 to be esti-
mated using maximum likelihood. (We abstract from
practical issues of data collection such as discrete
sampling.) More specifically, the estimators may be
computed for the rate parameters of all reactions that
change some species in A and of reactions that change
species in D alone. This is a surprising result and one
that arises from the ability to decompose the likelihood
function along the lines of the conditional independence
At�Dt

Bt—see ([15], theorem 4.5). (The only reactions
changing M1 whose rate parameters cannot be
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estimated are those that change both B and D but not
A—inevitably there is some loss from not observing B.)
These comments extend straightforwardly to
decompositions with greater than two modules.
2.2. Identifying dynamic conditional
independences

The first stage in identifying conditional independences
between trajectories for a given reaction network is to
construct its kinetic independence graph or KIG. The
nodes in this directed graph correspond to the different
biochemical species. The graph is constructed in order
to display, for each species, those nodes whose concen-
tration influences the instantaneous, stochastic
kinetics of that species (see the electronic supplemen-
tary material, SM1.2; [15]). An arrow (directed edge)
is therefore drawn from species j to species k whenever
j is a reactant in a reaction that either results in the
overall production or consumption of molecules of k.
In the former case k usually participates in the reaction
only as a product whereas in the latter case j and k react
together. It is an obvious but important point here that
only the concentrations of reactants influence instan-
taneous reaction rates or ‘intensities’. (Reverse
reactions are treated as separate reactions in the
formalism.)

For any collection of species A, it is possible to show
that the instantaneous kinetics of A depend only on the
current concentration (or ‘levels’) of A itself and those
species that are parents of A in the KIG—i.e. those
species (outside A) that lie at the tail of an arrow
that points to some node in A. Construction of the
KIG of a reaction network requires only limited stoi-
chiometric information about the network—often all
that is needed is a signed binary, (0,+1)-version of
the stoichiometric matrix identifying, for each reaction,
those species that are overall consumed and produced.
Importantly, no knowledge of rate parameters is
required. Figure 2 shows the KIG for the NFkB
signalling network example discussed below.

The following means of identifying conditional inde-
pendences applies to a general class of stochastic
biochemical reaction networks termed (standard) sto-
chastic kinetic models. The class includes, but goes
considerably beyond, the class corresponding to the
stochastic simulation algorithm of Gillespie [34]. (The
SKM class is described formally in the electronic sup-
plementary material, SM1.1.) Let G be the
(undirected) graph obtained from the KIG of the reac-
tion network by substituting lines for all arrows. A
reaction is said to change A if it causes the level of
some species in A to change (no matter which particu-
lar species). For a partition [A, D, B] of the species in
the network, the conditional independence of trajec-
tories At�Dt

Bt holds whenever two conditions are
both satisfied (for mathematical proof, we refer to
[15], corollary 4.6 and proposition 4.9):

— A and B are separated by D in the graph G—i.e.
every path along lines in G that begins at a node
in A and (without revisiting any node) ends at a
node in B visits some node in D (condition 1); and
J. R. Soc. Interface (2011)
— for any two reactions that change D and result in iden-
tical changes to all species in D, either both reactions
change A or neither changes A, and either both
change B or neither changes B (condition 2).

Additionally, we require that a weak regularity con-
dition, condition 3, holds for the set of reactions that
change both A and B, namely that these reactions be
‘identified by consumption of reactants’ (see the elec-
tronic supplementary material, SM1.1). Condition 1 is
equivalent to there being no species in A that is a reac-
tant in a reaction that results either in the net
production or consumption of some species in B (i.e.
in a reaction that changes B), and vice versa. When
this fails to hold, there is a direct influence of A on
the instantaneous kinetics of B, or of B on A (or
both). Condition 2, together with the first, ensures
the conditional independence of the trajectories up to
time t (for all t. 0). A full understanding of the role
of this condition is rather involved but the following
point is apparent—given the trajectory of D, the poss-
ible occurrence of two reactions that change D
identically can be distinguished using the trajectory of
B if one of them changes B but the other does not;
this information is then often relevant for the trajectory
of A (contradicting the conditional independence of
A and B).

In the mathematical literature, the dynamic con-
ditional independence relationship At�Dt

Bt is usually
written as At n BtjDt (and, technically, is a relationship
between s-fields). We prefer the more intuitive notation
At�Dt

Bt in this context. Note that the relationship
concerns the trajectories up to time t. (There may,
owing to a lag effect, be information in At relevant for
the trajectory of B beyond time t and up to time u
(when Dt is given) but this information will be encoded
in Du so that Au�Du

Bu holds at the later time u.)
2.2.1. Illustrative example—NFkB signalling. The expo-
sition of the results and methods of the paper includes,
as a running example, a kinetic model of the core mech-
anisms of NFkB signalling. An important contribution
of the work lies in the ability to analyse information
processing by large, complex reaction networks (see
the TLR example in §2.4.1). However, the smaller
NFkB example is useful both in aiding rapid under-
standing of the techniques and in revealing the often
subtle informational properties of biochemical
networks.

The network used is based on a state-of-the-art, sto-
chastic dynamic model recently developed using
extensive experimental data by Ashall et al. [7]. Essen-
tial aspects include the TNF ligand-induced activation
of the kinase IKK; subsequent phosphorylation of
IkB.NFkB and degradation of pIkB, leading to release
of NFkB; and translocation to the nucleus of NFkB.
Three negative feedback loops are set up as NFkB
itself activates transcription of IkBa, IkB1, and A20.
The latter inhibits conversion from the inactive to the
neutral form of IKK. Complete details of the reaction
network (together with species names) may be found
in the electronic supplementary material, SM2.
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Figure 2 shows the associated KIG. To represent gen-
eric outputs of the signalling network, the subgraph
gO.nNFkB! tO! O is included (the NFkB-activated
expression of protein O). Much more complicated
‘output graphs’ would not alter our conclusions—the
important aspect is that the output species are separ-
ated from all other species in the KIG by gO.nNFkB
(or its equivalent for multiple promoters)—feedback
from O is thus ruled out. Throughout we use V to
denote all species in a given network; the notation\
should be read as ‘excluding’ (and corresponds to set
difference).

Let TNFt* ¼ It* be the external ligand or input pro-
cess. We will show how to use conditions 1 and 2 above
to address the following hypotheses or conjectures con-
cerning information processing by the NFkB network
(the associated conditional independence At�Dt

Bt is
shown in parentheses).

— All information relevant to signalling output is
encoded by the trajectory of the promoter occu-
pancy of output genes ([tO, O]t�gO.nNFkBt

[V\fgO.nNFkB,tO,Og]t).
— The encoding of information by the trajectory of the

active kinase, IKKat, makes all information about
the external input process TNFt* and about ligand
binding and unbinding by receptors irrelevant for
the rest of the network, including the output (St�

IKKat [V\fS,IKKag]t, where S ¼ fTNF, R, TNF.Rg
and TNFt* is implied by St).

Both hypotheses perhaps appear plausible given knowl-
edge of the reaction network—however, only the first is
correct. In the case of the first, the graphical separation
required by condition 1 is satisfied (figure 2), as is con-
dition 2 since no two reactions cause the same change in
gO.nNFkB (see the electronic supplementary material,
SM2). In particular, all information about TNFt* rel-
evant to output is encoded in the trajectory of the
promoter occupancy of output genes. The second
hypothesis is false. Condition 1 fails (owing to the
edge TNF.R! IKKne in the KIG)—the trajectory of
the neutral form of the kinase, IKKnet, in fact encodes
additional information about TNF.Rt. The reason is
that the reaction list of the network (see the electronic
supplementary material, SM2) means that although the
trajectory IKKat implies the history of the activation
reaction TNF.R þ IKKne! IKKa þ TNF.R, it does
not imply knowledge of the production and hence tra-
jectory of IKKne. Since activation of IKK involves
both TNF.R and IKKne, the trajectory IKKnet pro-
vides additional information about the trajectory of
receptor occupancy, TNF.Rt.

It is straightforward to verify using conditions 1 and
2 that St�IKKat

, IKKnet
[V\fS,IKKa, IKKneg]t, from

which we are able to conclude that TNFt*�IKKat
,

IKKnet[tO,O]t. That is, all information about the exter-
nal stimulus relevant for outputs is encoded in the
trajectory of the distribution of IKK across its different
isoforms (the level of free plus complexed IKKi being
implied by the other two forms). This interesting obser-
vation demonstrates that thinking in terms of a signal
transduction or activation ‘path’ such as TNF.R!
J. R. Soc. Interface (2011)
IKKa! pIkB.NFkB! NFkB! nNFkB can deliver
misleading conclusions about informational properties
of the network. Note that A20 does not appear—in par-
ticular IKKi.A20t need not be included in the
conditioning information because the relevant effect of
the negative feedback loop involving A20 is
‘impounded’ in the trajectory IKKnet. The example
serves to emphasize that a rigorous, mathematical fra-
mework is both indispensable for reasoning correctly
about information encoding and transfer, and able to
deliver biologically relevant conclusions.
2.3. Identifying exact network decompositions

Using our methods, as was emphasized in §2.1, a given
biochemical network can usually be decomposed
exactly into modules and the modules arranged in a
tree structure encoding conditional independences
between the trajectories of groups of modules. This
then provides a framework for analysing biochemical
information processing and is particularly beneficial
for larger networks. A modularization here, fMdg, is a
collection of groups of species with the following two
properties: (i) all network species are assigned to at
least 1 module; and (ii) the trajectory of each module
Md is conditionally independent of the trajectory of
the other modules, given the trajectory of the overlap
of Md with the rest of the network—i.e. Md,t�Sd,t

[<e=d Me]t, where the overlap (or interface) Sd ¼Md

> f< e=d Meg, and >,< denote the intersection and
union of sets, respectively. Note that this dynamic con-
ditional independence is equivalent to [Md\Sd]t�Sd,t

[V\Md]t. All information relevant to a module’s trajec-
tory is encoded by the module’s overlap region with
the rest of the network. (It should be noted that this
definition of a modularization is considerably stronger
than the mathematically abstract one proposed by
[15]. Although computationally much more demanding,
this definition is the biologically relevant one.)

We have developed a modularization identification
by dynamic independence algorithm (MIDIA) based
on graphical decomposition methods. It implements
automated identification, with the modularization dis-
played and visualized as a junction tree, TM. A
junction tree is a (connected, acyclic) undirected
graph in which the nodes of the graph are the modules
themselves. Furthermore, the overlap or intersection of
any two modules of the tree, Md > Me (d = e), is con-
tained in every module on the unique path in the tree
between Md and Me.

Identifying a network modularization by manual
inspection of the KIG is far from straightforward even
for the small NFkB signalling network (recall
figure 2). With even a modest increase in the size and
complexity of the network, a principled and computa-
tionally efficient approach to module identification
becomes indispensable. Three particular problems
must be addressed. First, while using the KIG to find
some three-way partitions of the species satisfying con-
dition 1 can be relatively straightforward, it is far from
obvious how to assign all network species to modules in
a consistent manner so that each module is separated in
the KIG from the rest of the network by its interface.



1. KIG construction—form the undirected version of the kinetic independence graph 
(KIG) for the reaction network, G. If this is not already decomposable, form a 
minimal triangulation, GT

2. Clique decomposition—decompose GT into its constituent subgraphs (cliques) and
organize the decomposition as a junction tree 

3. Clique aggregation—perform pairwise aggregation of selected modules in the
junction tree to obtain TM,I

4. Species copying—expand edges (module intersections) in the tree where necessary
to ensure that the trajectory of each module is independent of the trajectories of all 
other modules, given the trajectory of its interface 

5. Visualization—return the junction tree of the modularization, TM

Figure 3. Overview of the stages of the MIDIA algorithm. The algorithm automatically identifies a modularization of the bio-
chemical network on dynamic, informational grounds (see text) and displays it as a junction tree in which the modules are
the nodes of the tree. The undirected version of the KIG, G, is formed simply by replacing all arrows with (‘undirected’)
lines. In forming GT, enough edges are added (but no more) to make the graph triangulated. The cliques of GT are its maximally
complete subgraphs. For these and other concepts in basic graph theory see Cowell et al. [37, ch. 4]. The details of the MIDIA
algorithm are explained in the electronic supplementary material, SM3.
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Second, it is desirable to have control over the degree of
coarse graining of the modularization identified. Third,
ensuring that condition 2 is satisfied for every module
interface Sd is particularly challenging. The solutions
to these problems are, respectively, clique decompo-
sition, clique aggregation and species copying within
the junction tree.

An overview of the various stages of the MIDIA
approach is given as a flowchart in figure 3 (see the elec-
tronic supplementary material, SM3, for further
details). Stages 1 and 2 involve decomposition of the
(undirected, minimally triangulated) KIG into a junc-
tion tree in which the nodes of the tree are the
cliques. Use is then made of results concerning proper-
ties of the clique junction tree for a triangulated
graph. These properties turn out to be stable when
neighbouring modules in the tree are ‘merged’ or aggre-
gated in stage 3. The selection of module pairs for
aggregation is automated and allows the degree of
coarse graining of the network to be controlled by set-
ting a minimum size for the module residuals, Md\Sd.
The resultant junction tree, TM,I, constitutes a modular-
ization in which the instantaneous kinetics of each
module residual are independent of all the network
species outside the module. It is an important output
in its own right, giving insight about the kinetic struc-
ture of the network. Stages 4 and 5 are explained in the
following subsection.

The junction tree, TM,I, for the NFkB network
(§2.2.1) is shown in figure 4. The benefits of a principled
modularization in revealing the architecture of the net-
work implicit in the KIG are obvious even for this small
network. Working from the top to the bottom of TM,I,
J. R. Soc. Interface (2011)
the NFkB network is decomposed into modules associ-
ated with: the TNF receptor and IKK; the A20 negative
feedback mechanism; cytoplasmic NFkB, IkB and their
complexes; nuclear IkBa and its gene expression;
nuclear IkB1 and its gene expression; and finally the
signalling outputs. Each edge in the tree contains
species determining the instantaneous kinetics of the
two adjacent module residuals. The central roles
played by IKKa, nuclear NFkB, and nuclear import
and export processes are thus made clear.

We emphasize that for moderately sized or large net-
works an automated tool for investigating the modular
architecture of the network based on its dynamic prop-
erties is essential—manual inspection of reaction
mechanisms and their raw graphical representations
becomes infeasible (consider, for example, the TLR sig-
nalling network in §2.4.1). The junction tree in figure 4,
obtained from the fully automated algorithm, illustrates
MIDIA’s efficacy in this regard using the example of a
relatively small network for transparency.
2.3.1. Encoding dynamic conditional independences in
junction trees. This section explains how to read con-
ditional independences between species trajectories
from the junction tree returned by the MIDIA algor-
ithm. As is usual, each edge between adjacent
modules in a junction tree is associated with the mod-
ules’ overlap which we denote for modules d and e by
Sde ¼Md > Me. Consider first the intermediate tree,
TM,I, returned by stage 3. Imagine cutting any one of
its edges, say the one between the modules Md and
Me. Denote the species present in each of the two



TNF.R, TNF, R, IKKne

A20, t_A20, g_A20.nNFkB, g_A20, IKKi.A20

IkBa.NFkB, NFkB, pIkBa, pIkBa.NFkB, IkBe.NFkB, pIkBe, pIkBe.NFkB

nIkBa, t_IkBa, g_IkBa.nNFkB, g_IkBa

nIkBe, t_IkBe, g_IkBe.nNFkB, g_IkBe

g_O.nNFkB, g_O, t_O, O

IKKa, IKKi

IKKa, nNFkB

IkBa, nNFkB, nIkBa.nNFkB

nNFkB, IkBe, nIkBe.nNFkB

nNFkB

Figure 4. Modularization TM,I for the NFkB signalling network. The modularization is the one returned after stage 3 of the
MIDIA algorithm (using a minimum residual size of 4 (except for the ‘root’ module)), and is based on instantaneous kinetics
alone (see text). Each module Md is labelled with the corresponding residual (Md\Sd); each edge is labelled with the intersection
of the two modules it connects.
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subtrees obtained from the cutting procedure by Vde

and Ved, respectively. Then an important property is
that Vde and Ved are separated in the undirected KIG
by the modules’ intersection—there is no direct influ-
ence of either ‘subtree’ on the instantaneous kinetics
of the other. The species copying procedure (stage 4)
is designed (i) to preserve this property in the final
tree, TM, thus allowing application of our condition 1
(§2.2) and (ii) to ensure via condition 2 that for the
two subtrees obtained by cutting any one of its edges,
the conditional independence of trajectories Vde,t�Sde,t

Ved,t holds (see theorem 1 of the electronic supplemen-
tary material, SM1.3). It is then possible to show for
each module Md in TM that Md,t�Sd,t

[<e=d Me]t (see
theorem 2 of the electronic supplementary material,
SM1.3). These dynamic conditional independences, of
course, constitute the defining property of our
modularizations.

In stage 4, the MIDIA algorithm works ‘backwards’
through the junction tree TM,I, imposing condition 2
on each edge of the tree, Sde, so as to preserve the junc-
tion tree property and to leave edges treated in previous
steps unchanged. Each edge or intersection of neigh-
bouring modules, Sde, is enlarged by ‘copying’ the
appropriate species from a module containing them,
Mg say, both to Md (which lies on the unique path
between g and e) and to Me. The species are also
copied to all other modules on that path. For example,
in the case of the NFkB network, the edge fIKKa,
nNFkBg in TM,I is enlarged by including g_A20 also
in the third module. (The whole tree TM returned
after stage 5 for the NFkB network is shown in the
J. R. Soc. Interface (2011)
electronic supplementary material, SM4.) Cutting this
edge in TM and applying theorem 2 then reveals the
non-obvious conditional independence St�[

IKKa,nNFkB,g_A20]t [V\fS, M1, M2g]t, where S ¼ fTNF,
R, TNF.Rg as before, and M1, M2 are the first and
second modules (from the top) of TM. As is the case
for the trajectory of the distribution of IKK across its
isoforms, the trajectory [IKKa, nNFkB, g_A20]t is
thus another encoder with only a few species that
makes the information in St irrelevant for the trajec-
tories of all species containing cytoplasmic and
nuclear NFkB, for the trajectories of the IkB’s (i.e.
their protein complexes, and genes and transcripts)
and for the trajectories of the output module. This
encoder is equivalent to the trajectory of active IKK
and nuclear NFkB, both free and bound to the A20 pro-
moter. Space precludes further discussion of the NFkB
example here. Sequential information processing is con-
sidered in general and in the context of the TLR
signalling network example below.
2.4. Identifying paths of sequential information
processing in signalling networks

As was discussed earlier in §2.1, our modular approach
and the MIDIA algorithm are well suited to analysing
information processing by signalling networks,
especially large ones. Let MI* be a module identified
whose trajectory contains that of an external input
process, It*, and let Mo be a module containing the
target output O. Consider the (unique) path in the
junction tree TM from MI* to Mo, which we write as
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MI* 2 S1M1 2 . . .2 SN21MN21 2 SNMo, N being the
number of edges on the path. The sequence of edges
(S1, S2, . . . , SN) reveals the sequential process by
which the network encodes and transfers information.
Imagine cutting the edge Sj—then applying the result
of §2.3.1 on the subtree trajectories implies that
It*�Sj,t

(Sjþ1,t, . . . , SN,t, Ot) for j ¼ 1, . . . , (N 2 1),
and furthermore implies the main result that (It*, S1t,
. . . , Sj21,t)�Sj,t

(Sjþ1,t, . . . , SN,t, Ot) for j ¼ 2, . . . , N.
To see this, recall that (using this notation), for
example, Sjþ1,t ¼Mj > Mjþ1, and therefore the species
(Sjþ1, . . . , SN, O) are in the ‘subtree’ Vj,j21 while (I*,
S1, . . . , Sj21) is ‘contained in’ the subtree Vj21,j.

The main result here then, (It*, S1t, . . . , Sj21,t)�Sj,t

(Sjþ1,t, . . . , SN,t, Ot), means that (S1, S2, . . . , SN) is a
sequence of encoders, each one of which encodes infor-
mation that makes both It* and all earlier encoders in
the sequence irrelevant for all later encoders in the
sequence and for the outputs Ot. Using the junction
tree of the modularization identified by MIDIA we
are thus able to identify truly sequential routes of
information processing by the network. Since
identifying where the information resides is a prerequi-
site for understanding how it is encoded and
determining the extent of any information loss
involved, this is an important step in the development
of a quantitative theory of cellular information
processing.

The MIDIA algorithm is tailored to identify the
routes of sequential encoding as follows. After perform-
ing stages 1 and 2, the modules containing the external
input (processes) and outputs are determined, and all
edges in the tree that lie on a path between such an
input and an output module identified. We call these
the I–O paths. In stage 3, clique aggregation is per-
formed according to the following steps: (i) to remove
any edges containing either an input or output and
(ii) by aggregating as many modules as possible without
altering any of the modules on the I–O paths, in order
to focus attention exclusively on those paths. Stages 4
and 5 are as usual.
2.4.1. The TLR signalling network. As a proof of prin-
ciple, the tailored MIDIA algorithm was applied to
the stoichiometric reconstruction of the TLR signalling
network presented by Li et al. [28]. The TLR network is
large, having 752 species and 1034 reactions (after
accounting for reaction reversibility; for species names
see [28], table S1). There are 16 external input
processes. These correspond to the extracellular trajec-
tories of the individual receptor-specific ligands (with
the exception of the input process for NOD1 which
also includes the cytoplasmic trajectory of the NOD1
ligand since some ligand arrivals are owing to an
export reaction from the cytoplasm). We focus on
three groups of output species of the network—(AP1-
JUN, AP1-JUN-FOS), (ISRE-IRF3, ISRE-IRF7) and
vacuolar NADPH-oxidase (in two different phospho-
forms). The first two consist of active transcription
factor (TF) complexes bound to their DNA sites,
while the latter is responsible for reactive oxygen species
production.
J. R. Soc. Interface (2011)
Figure 5 shows the junction tree TM and I–O paths
for the TLR network. In order to investigate further
the structure of the I–O paths while explicitly taking
the species content of the edges into account, we intro-
duce a visualization technique called the I–O path
matrix. The construction of the I–O path matrix is
explained in figure 6, which depicts the matrix for all
of the inputs in the TLR network and three outputs
(one from each output pair). On-screen viewing of the
matrix is recommended. Together, the tree TM and
the I–O path matrix are powerful, complementary
visual tools for investigating information processing by
the network.

This is not the place to undertake a lengthy and
detailed analysis of information processing by the
TLR network. Rather, the utility of our approach is
illustrated with a discussion of the insight provided
into the following aspects. First, the grouping or clus-
tering of signalling inputs (TLR) is found to be
similar on the basis of how information is encoded by
the network. Second, as indicated by Kanae & Kitano
[35], there is a need to go beyond a ‘bow tie’ conception
of the architecture of the network when considering
signal transduction. The tree TM provides such a ‘struc-
tural’ view of how the network processes information
between various inputs and outputs. We are able to
identify the species involved in information encoding
for the various outputs (figure 6), the sequential I–O
paths and their associated shapes, and those ‘core’
encoding species in common between the I–O paths.
The analysis reveals the breadth of encoding species in
less peripheral parts of the I–O paths rather than a bot-
tleneck—the information processing structure is not
well described as a bow tie. Third, we find that the
extent to which information encoding is distributed
broadly across many species differs significantly
between the ISRE-IRF and the AP1/NADPH-oxidase
outputs (the TLRL9 input excluded). Encoding in the
case of the ISRE output is much sparser, while the
other two outputs share more similar I–O paths
(figure 6). Fourth, for a large cluster of 12 TLRs, we
identify a surprisingly small group of species responsible
for mediating information transfer from the ‘core’
encoding species to the ISRE-IRF outputs. Fifth, we
show that in the context of multiple stimuli, inputs
can be informative for an output in ways not revealed
by steady-state FBA. Each of these aspects is con-
sidered in turn below.

The structure of the tree TM immediately implies a
hierarchical clustering of the input processes on the
basis of their associated I–O paths—the dendogram
or tree for the clustering being derived directly from
the structure of TM in the obvious way. Since the
species contents of edges in TM can overlap to differing
degrees, we note that the I–O path matrix in figure 6
strongly supports this hierarchical clustering of inputs
using TM. In particular, the following groups of inputs
are seen to possess (within each group) extremely simi-
lar sequential paths of information processing to all
three output types: (TLR-L1/2, L1/10, L10, L2/10),
(TLR-L4, L2, L2/6), (TLR-L5, L11), (NOD1I,
NOD2I) and (TLR-L7, L8). At a higher level within
the clustering hierarchy, there is a large group of 12
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inputs contained in the subtree given by cutting edge
29 in TM—this group, denoted TLRI\IL1,7:9, contains
all but four of the external inputs (the IL1R input
and TLR-L7,8,9). TLRL9 stands out as the most
exceptional individual input, followed by ILR1L. As
can be seen from figure 6, the 12 external inputs com-
prising TLRI\IL1,7:9 share substantively similar I–O
paths.

The breadth of encoding species in less peripheral
parts of the I–O paths is apparent, as opposed to any
bottleneck or narrow ‘bow-tie centre’. The number of
species in the constituent edges of each I–O path in
TM (and also in TM,I) is roughly ‘diamond-shaped’
going from input to output—i.e. early and late edges
have few species while intermediate edges have many.
Almost always, the earliest edges in the sequence con-
tain exclusively receptors, ligands and receptor–ligand
complexes, while the latest edges contain species closely
related to the outputs (the output TFs and binding
sites, or the constituents of the NADPH-oxidase com-
plex). The diamond shape might appear to be largely
the result of the ‘confluence of multiple paths’ within
the tree that could nevertheless retain ‘functionality’
alone—however, this is not the case. The structure of
the tree TM reflects the edge content and hence path
content of the undirected KIG (owing to stages 1 and
2 of MIDIA); hence, even when inputs and outputs
are considered only pairwise, an edge on an I–O path
in TM,I is a minimal separator of the particular input
and output in the undirected KIG in 92 per cent of all
cases. In connection with the breadth of encoding
species in less peripheral parts of the I–O paths, we
note the existence of edges on the path to each output
that contain a relatively large number of species and
are shared by all or nearly all of the inputs—e.g.
edges 7, 8, 9 and 11 for AP1 outputs, edges 11 and 15
for NADPH-OX outputs, and edges 22 and 27 for
ISRE-IRF.

Perhaps the most immediately obvious feature of
figure 6 is the similarity between I–O paths correspond-
ing to a given output (the TLRL9 input excluded),
compared with the clear differences across outputs. In
order to focus on these differences, the following discus-
sion is for the group of 12 external inputs TLRI\IL1,7:9

which share very similar I–O paths. The structure of
TM and consideration of the species involvement (see
figure 6) strongly indicate that the I–O paths are clo-
sely related for the NADPH-OX and AP1 outputs
while encoding for the ISRE output is much ‘sparser’
(involves fewer species) and is rather different. For the
group TLRI\IL1,7:9, consider for each output the edges
on the I–O paths in TM that are in common between
all of the inputs—e.g. the sequence of edges 29, 22, . . . ,
501, 504 in the case of ISRE. (The group of species
found on all of the I–O paths for a particular output
is identical to the species content of these common
edges, except for the inclusion of one additional, identical
species in each case.) These common edges contain 57
different species for ISRE-IRF—compared with 137 for
NADPH-OX and 165 for AP1—of which 48 are found
on the I–O paths for all three outputs and only nine
are specific to the ISRE output alone. A further
77 species are found on the I–O paths for both
J. R. Soc. Interface (2011)
NADPH-OX and AP1 but not for ISRE. There are
thus 12 species specific to the NADPH-OX output
alone and 40 species specific to AP1 alone.

For the large group of 12 inputs, TLRI\IL1,7:9, we
thus identify a ‘core’ of 48 species involved in the
three sequences of encoders ending at the respective
output modules (and beginning in each case with edge
29). These species, listed in the electronic supplemen-
tary material, SM5, are also located in a central
region of the tree, in edges 19, 22 and 29 (the latter con-
sisting only of core species). For the ISRE output, the
path of sequential information processing involves
only these 48 species and (excluding the four that are
direct components of the output species themselves)
the following: TBK1-P, TBK1, IKK1-P, IKK1 and
MYD88_TRAF6_IRF7. (Together with cytoplasmic
IRF7-2P and ubiquitin the latter group comprises
edge 154.) The small group (TBK1-P, TBK1, IKK1-
P, IKK1, MYD88_TRAF6_IRF7) can thus be seen as
responsible for mediating information transfer from
the ‘core’ encoding species to the ISRE output. We
view encoding for the other two output types as distrib-
uted across many more species trajectories (as less
sparse), with the species involved for NADPH-OX typi-
cally involved also for AP1. Edge 11, for example,
contains 75 species and is common to the sequence of
encoders for both outputs.

We conclude this section by drawing a number of con-
trasts with the steady-state FBA of the same network in
Li et al. [28]. The FBA analysis there takes a collection of
steady-state ‘snapshots’ of the network—in each one, a
single input flux is held at a constant non-zero level
and the network is assumed to optimize a single
output flux. These snapshots are then combined in the
manner described in Li et al. [28] to obtain discrete sig-
nalling (‘DIOS’) pathways. Groupings of inputs are
provided by ([28], fig. 4), but the same individual input
may appear in groups associated with different DIOS
pathways, depending on the output flux chosen as the
objective to be maximized. As has already been empha-
sized, our analysis makes no steady state or stationarity
assumption. Nor is it restricted to the separate analysis
of particular I–O combinations. Rather, the signalling
system is exposed to any number of the possible time-
varying input processes and all output trajectories are
determined simultaneously by the network biochemistry,
as in the living cell. The individual I–O paths in figures 5
and 6 are system properties that hold simultaneously—
indeed, TM may be used to analyse paths of sequential
information processing between a group of inputs (e.g.
the group TLRI\IL1,7:9) and a group of outputs, as has
just been described.

In steady state, Li et al. [28] report that certain
individual inputs are unable to affect certain out-
puts—e.g. no input affects the ISRE-IRF7 output,
NOD1 and NOD2 do not affect any of our outputs,
and TLRL3 does not affect AP1 outputs. Compu-
tational analysis of the KIG for the network reveals
by contrast that there is a directed path in the KIG
(i.e. one following arrows), not involving ‘currency’
species, from all individual inputs to all outputs.
Such paths correspond to chains of direct kinetic influ-
ence from input to output (each ‘link’ or edge of which
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will be operative at any point in time provided no
reactant level is zero for the reaction giving rise to
it). Thus, for example, the NODI1 and NODI2 input
processes can be informative for all output trajectories,
including the ISRE-IRF3 and -IRF7 outputs. One way
in which this can occur (revealed by interrogation of
the KIG) is that activation of both NOD inputs
raises IKKa,b,g-P levels, which consumes substrates of
IKKe-P (such as NFkB(p50/p65)), thus reducing
sequestration of IKKe-P and consequently increasing
phosphorylation of IRF3 and (in the presence of
MYD88_TRAF6_IRF7) of IRF7. The encoders in
the rows of figure 6 corresponding to NOD1I and
NOD2I render these inputs uninformative (e.g.
IKKa,b,g is seen to be an encoding species in the
case of the IRF3 output). Similarly, TLRL3 can be
informative for the AP1 outputs. Thus in the context
of multiple stimuli, inputs can be informative for an
output in ways not revealed by steady-state FBA.
3. DISCUSSION

Understanding how information is encoded and trans-
ferred by the biochemical reaction networks inside
cells requires analysis of the relationships between the
stochastic trajectories of their constituent molecular
(or submolecular) species. We have emphasized the
importance in this context of conditional independences
between the trajectories or time courses of groups of
species, represented by At�Dt

Bt. Such an indepen-
dence means that the information encoded by the
trajectory Dt makes any information in At irrelevant
for the trajectory Bt (and vice versa). That is, At and
Bt contain no mutual information given the trajectory
Dt, and the species in D play the role of informational
intermediaries or ‘information carriers’ between A and B
within the network.

We describe how to identify such conditional inde-
pendences between trajectories using a pair of
conditions that are straightforward to check in prac-
tice. We have demonstrated, it seems for the first
time, that entire networks (including very large ones)
can be decomposed systematically into modules so
that all information relevant to a particular module’s
trajectory is encoded by the trajectory of those species
in the region where the module overlaps with the rest
of the network. In the context of signalling networks
with multiple inputs, the approach identifies the
routes and species involved in sequential information
processing between input and output modules. The
dynamic conditional independences, modularizations
and I–O paths we identify are themselves robust fea-
tures of a given network in three senses emphasized
recently by Gunawardena [36]—they are invariant to
changes in all rate parameter values (cm. 0), in the
initial condition (x0), and in the ‘dynamical’ or reac-
tion intensity functions (gmf.g, eqn (1) of the
electronic supplementary material, SM1.1). Since the
cellular networks under study are naturally evolved,
the absence of any need to fine-tune rate parameters
to obtain these properties is consistent with their
functional importance.
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Furthermore, the methods of analysis presented
apply to a rather general form of stochastic dynamics
for biochemical networks that includes, but goes con-
siderably beyond, the form employed in a Gillespie
[34] simulation algorithm or a variant thereof (for a
more technical discussion, see the electronic supplemen-
tary material, SM1.1). In particular, each conditional
reaction intensity may depend on the entire past trajec-
tory of its reactants (e.g. on the time elapsed since the
last jump in some reactant levels) and also on the
time evolution of variables taken to be deterministic
such as temperature, light level and time itself.
The class of stochastic dynamics used can thus
accommodate, for example, general memory effects
(owing perhaps to inhomogeneity arising from
imperfect mixing), non-exponential waiting times, and
deterministic circadian or environmental effects.

The MIDIA algorithm is developed which allows
automated identification of exact decompositions for
large networks, control over the degree of coarse grain-
ing, and visualization using a junction tree that encodes
the conditional independences. The algorithm relies on
construction of the KIG for the network and uses only
stoichiometric information. No knowledge of rate par-
ameters or use of simulations are required. A bespoke
version designed for signalling networks identifies the
process of sequential encoding and visualizes its struc-
ture using the collection of I–O paths in the junction
tree. Together with the I–O path matrix, this provides
a powerful, visual tool for investigating information
processing by signalling networks.

The stochastic, dynamic signals received by cells are
impounded in the stochastic trajectories of the inter-
mediate species of signalling networks and ultimately
in the trajectories of their targets. The use of dynamic
conditional independences thus allows us to identify
those species trajectories which fully encode the rel-
evant information and to trace the sequential process
of information transfer through the network. We have
demonstrated using a small NFkB signalling network
that a rigorous framework is indispensable for reasoning
correctly about informational properties.

Application of the techniques to the TLR network
establishes both their utility for studying the properties
of cell signalling and their computational feasibility for
large reaction networks. Joint inspection of the junction
tree and the I–O path matrix enables a comparative
analysis of different I–O combinations. We find that
encoding in the case of the interferon response outputs
is much sparser, while the AP1 and NADPH-oxidase
outputs share more similar I–O paths. For a large clus-
ter of 12 TLRs, we identify a surprisingly small group of
species responsible for mediating information transfer
from the ‘core’ encoding species to the interferon
response outputs. Overall, the information processing
structure is not well described as a bow tie owing to
the breadth of encoding species away from the periph-
ery. Our analysis reveals that, in the context of
multiple stimuli, inputs can be informative in ways
unanticipated by steady-state analyses.

Stoichiometric approaches to network analysis have
had a large impact on systems biology, owing in part
to the modest knowledge required about reaction
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parameters. The dynamic conditional independence-
based techniques introduced here provide a modular
approach for analysing information encoding and trans-
fer by biochemical networks, while also requiring only
stoichiometric information. Importantly, the approach
fully incorporates both stochastic and non-steady-
state dynamics. We believe it constitutes a significant
step in the development of a quantitative theory of
cellular information processing.
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