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Pigeons home along idiosyncratic habitual routes from familiar locations. It has been
suggested that memorized visual landmarks underpin this route learning. However, the
inability to experimentally alter the landscape on large scales has hindered the discovery of
the particular features to which birds attend. Here, we present a method for objectively clas-
sifying the most informative regions of animal paths. We apply this method to flight
trajectories from homing pigeons to identify probable locations of salient visual landmarks.
We construct and apply a Gaussian process model of flight trajectory generation for pigeons
trained to home from specific release sites. The model shows increasing predictive power as
the birds become familiar with the sites, mirroring the animal’s learning process. We sub-
sequently find that the most informative elements of the flight trajectories coincide with
landscape features that have previously been suggested as important components of the
homing task.
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1. INTRODUCTION

The domestic homing pigeon (Columba livia) is the
canonical test species for scientific studies of avian navi-
gation. The past decade has seen an experimental
paradigm shift in the study of pigeon homing since
the development of micro-GPS logging devices small
enough to be carried by a bird in flight [1–3]. The use
of these devices has enabled researchers to obtain data
of very high spatial and temporal resolution about the
bird’s position during flight and has revealed hitherto
unsuspected phenomena. These include the propensity
to follow roads and other strong linear features in the
landscape [3–6] and the tendency to form idiosyncratic
habitual routes back to the loft when released
repeatedly from a single site [4,7].

Experiments suggest that pigeons have a very robust
loyalty to their habitual routes once formed. Pigeons
displaced up to 1.5 km perpendicular from their habit-
ual route before release are observed to recapitulate
the established habitual route, rapidly rejoining the
original path [4]. This implies a non-compass-based
orrespondence (rmann@robots.ox.ac.uk).
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orientation since a compass bearing from the new
location would direct them towards the home loft
rather than directly back to the habitual route. The
habitual route has also been shown to be robust under
manipulation of known compass mechanisms. Birds
whose azimuthal sun-compass mechanism [8] has been
disturbed by clock-shifting techniques perceive an effec-
tive compass bearing that is rotated relative to reality.
Birds navigating by a clock-shifted compass typically
fly at a displaced bearing to their non-clock-shifted
flights ([9], ch. 5). However, experiments with birds
that have previously formed habitual routes from fam-
iliar release sites show that clock-shifted birds are able
to faithfully follow the habitual route they have pre-
viously formed with only minor displacements [10].
Pigeons can also form habitual routes when fitted
with a magnetic material to disrupt their magneto-
sensory compass mechanism [7].

These discoveries are persuasive evidence that orien-
tation in the familiar area is controlled principally by
visual recognition. Pilotage, defined as flying between
a series of fixed points in sequence, has been posited
as the most likely homing mechanism [4], probably
implying a memorized route between the release site
This journal is q 2010 The Royal Society
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and the home loft encoded by the locations of fixed geo-
graphical landmarks. Although several studies have
observed pigeons following particular features [4,5],
further understanding of how information from the
landscape controls flight behaviour has remained out
of reach because experimental manipulation of land-
marks on such a scale is not practical. Determining
the locations of important landmarks in an objective
manner is a crucial step towards discovering the visual
features that birds use to orient themselves in familiar
environments.

The flight paths of homing pigeons can now be rou-
tinely measured using GPS devices, which record the
position of the bird once a second for the entire duration
of the flight. Here, we consider these flight paths as
random variables, which we aim to model through an
appropriate probability distribution, using Gaussian
processes (GPs) as a framework for performing infer-
ence over function-valued variables. In this study, we
show how a GP model can quantitatively predict the
future flight paths of a trained individual bird based
on observations of its previous flights. By isolating the
points during the past flights that allow for the best pre-
dictions of future flights, we demonstrate an objective
algorithm for automatically detecting navigational
landmarks.
1.1. Gaussian processes

GPs are a powerful and flexible framework for perform-
ing inference over functions [11]. The distribution over
the function, f(.), is specified by a mean function,
m(.), and a covariance function, k(.,.), that determines
the correlation between disparate locations on the func-
tion. If f(t) is a draw from a GP, then any finite number
of function values, f(t), evaluated at a set of inputs, t,
has a multi-variate Gaussian distribution (represented
as standard by N)

f ðtÞ � GPðmðtÞ; kðt; t0ÞÞ
) f ðtÞ � N ðmðtÞ; kðt; tÞÞ; ð1:1Þ

where k(t, t) indicates the matrix evaluation of k(t, t0)
for all possible pairs of components of the vector of
input values, t. The prior mean function is chosen to
accurately represent the prior knowledge of the function
(typically being specified by a symmetry in the model).
The covariance kernel is chosen to represent prior
beliefs about the dynamical structure of the func-
tion—how the function values change with varying
inputs. In this paper, we will consider only the following
stationary Matérn covariance [12],

kðt; t0Þ ; l2 1þ
ffiffiffi
3
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: ð1:2Þ

The kernel, k(t, t0), represents the strength of corre-
lation between function values for inputs separated by
jt 2 t0j. It is a decreasing function of jt 2 t0j; therefore,
closely spaced values of the function are highly corre-
lated and widely spaced values are roughly
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independent. The adjustable parameters, l and s, are,
respectively, termed the output scale and the input
scale. The output scale specifies the absolute degree of
variation in the function values—larger output scales
mean that the function values can vary more widely
from the prior mean. The input scale specifies a charac-
teristic correlation length that determines how
smoothly the function varies. Larger values of the
input scale correspond to smooth, slowly varying func-
tions. In the case of a moving object, such as a pigeon,
larger input scales correspond to lower average
accelerations.

The key property of this covariance function is the
monotonic decay with increasing values of jt 2 t0j,
which implies an adjustable degree of smoothness in
the functions sampled from this GP. Our results are
not sensitive to the exact form of the function, but
this specific form is selected from within the general
Matérn class of functions to maximize the marginal
probability of pigeon flight trajectory data. For a
discussion of alternative covariance functions, see [11].

This specifies a prior distribution over the function
before we make any observations. Now assume that
we have observations, f(tD), and are interested in
making predictions about the value of the function,
f(t*), at inputs t*. We require the posterior distribution
over f(t), the probability distribution over the function
conditioned on the data we have already seen, which is
given by

f ðtÞjf ðtDÞ � GP mðtÞ;Cðt; t0Þð Þ; ð1:3Þ

with updated mean and covariance matrices

mðtÞ ¼ mðtÞ þ kðt; tDÞkðtD; tDÞ�1ð f ðtDÞ �mðtDÞÞ
ð1:4Þ

and

Cðt; t0Þ ¼ kðt; t0Þ � kðt; tDÞkðtD; tDÞ�1kðtD; t 0Þ: ð1:5Þ

Thus, our beliefs about the value of f(t) are altered in
proportion to how far the observed function values are
from our prior expectations and the strength of corre-
lation between the value of the function at differing
input arguments.
2. MODEL

A pigeon’s loyalty to its habitual route makes it predict-
able. We suggest that observed flight trajectories
represent imperfect attempts to replicate an unseen
and never seen idealized habitual route. Variation
around the idealized habitual route is uncorrelated
between different flight trajectories. Therefore, we aim
to learn about the structure of the underlying habitual
route and the scale of variation around it from these
imperfect observations. Here, we give the mathematical
construction of that model, which culminates in the
posterior distribution for future flight trajectories con-
ditioned on previously observed flights by the same
bird. Supplementary to this paper, we also provide an
implementation of this model as a Matlab toolbox.
The toolbox can be downloaded from the Oxford
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Navigation Group (OxNav) website at: http://oxnav.
zoo.ox.ac.uk/downloads.

Each flight trajectory, xi(t), is a two-dimensional
continuous function of time. In our model, an observed
flight trajectory, xi(ti), is a finite vector of position
observations from that function at input times, ti.
We model this as a sample from a GP, with a mean,
h(ti), which represents the habitual route, and a
covariance matrix, kf(ti, ti), which determines both
the scale of variation around the habitual route and
the smoothness of the trajectory (parametrized by
input and output scales, f ; fl,sg). Multiple trajec-
tories will be assumed to have been generated from a
common idealized habitual path—mathematically,
this means they are identically and independently dis-
tributed from this GP, sharing a common mean
function, h(t), representing the idealized habitual
route. The finite precision of the GPS device intro-
duces observation error, which we model as isotropic
Gaussian noise with variance h2. The resolution of a
typical GPS device is within 5 m, which informs the
prior distribution over this hyper-parameter. The
observation noise is incorporated by the addition of
the identity matrix, represented by the Kronecker
delta function d(ti, ti), to the covariance. With these
considerations, the distribution of a single flight
path, xi(ti), conditioned on knowing the habitual
route, h(t), is given by

xiðtiÞjhðtÞ;f;h � N ðhðtiÞ; kfðti; tiÞ
þ h2dðti ; tiÞÞ: ð2:1Þ

Here, the subscript i indexes the flight number—
therefore, ti represents the vector of observation times
for flight i. The input variable t is constrained to lie
between zero and 1, with zero representing the release
and 1 representing collection of the bird at the loft.
Thus, the time index of the flights is a proportion of
the total flight duration.

A GP prior distribution is placed over the common
habitual route, h(t). We argue that, having disre-
garded any knowledge of the environment, symmetry
requires that this distribution be centred on the
straight ‘beeline’ route, s(t), between the release site
and the loft. The habitual route has its own dynamical
structure parametrized by the covariance kernel, ku(t, t0),
where t and t0 are any time indices for the habitual
route function. Similarly to the covariance for the
observed flight path, the covariance kernel for the
habitual route has its own hyper-parameters (input
and output scales), u ¼ flh,shg. The habitual route
is an unobserved process and thus includes no obser-
vation noise, but we still have uncertainty in the
value of h(t) since we cannot observe it directly. At
this stage, the habitual path is a continuous function.
The distribution over h(t) is therefore a GP rather
than a multi-variate Gaussian distribution and is
given by

hðtÞjsðtÞ; u � GPðsðtÞ; kuðt; t0ÞÞ: ð2:2Þ

Since the habitual path is never observed, we
integrate over all possible values to obtain a
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distribution over sets of trajectories sharing a
common, unknown h(t),

x1ðt1Þ
..
.

xnðtnÞ

2
64

3
75jf; u;h � N

sðt1Þ
..
.

sðtnÞ

2
64

3
75;S

0
B@

1
CA; ð2:3Þ

with a combined covariance S:
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The three terms in equation (2.4) correspond to three
distinct facets of the model. The first is the covariance
owing to the variation of each trajectory around the
habitual route. This is a diagonal block matrix since
this variation is uncorrelated across different trajec-
tories. The second term corresponds to the covariance
associated with the shared habitual route. Finally, the
third term is due to the observation noise associated
with measuring the pigeon’s position with the GPS
device.

The distribution over an as-of-yet unseen flight path,
x*(t), for any set of observation times, t, can now be
obtained by application of equation (1.3),
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with updated mean and covariance functions given by
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In the development of this model, we have used the
proportion of the total flight duration as a latent vari-
able that maps to the observable output of the bird’s
position. It should be noted that this imposes some
restrictions on the power of the analysis. For example,
if a bird leaves its habitual route to forage for food or
to investigate some other salient factor such as the pres-
ence of another bird, before subsequently returning to
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Figure 1. Marginal information gain (MIG) in predicting each flight trajectory from its two immediate predecessors. The figure
shows the median value averaged over 31 birds, along with the interquartile range (IQ) range. Higher MIG represents greater
predictability. MIG values above zero indicate that the flight trajectories are more likely as a set than as independent
observations. Solid line, median with IQ range.
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the route, the posterior distribution may record this as a
low probability flight because the bird is not where it is
expected to be at a given point in time. This can be
overcome to some degree by pre-processing data to
remove sections where the bird is motionless, but,
within the current framework, this effect is not entirely
removable. As we will discuss, this will impose a conser-
vative restriction of the number of waypoints identified
from a set of trajectories.

2.1. Implementation

We use Bayesian marginalization, through Metropolis–
Hastings Markov-chain Monte Carlo (see, for example,
[13], ch. 29), for an honest propagation of the uncer-
tainty associated with the hyper-parameters f, u and
h. One thousand samples were generated from the pos-
terior distribution of the GP hyper-parameters. The
generated samples were then used to numerically inte-
grate over the hyper-parameters in calculating the
conditional probability of the test data (future flights)
from equation (2.5).
3. RESULTS

3.1. Predicting flight trajectories

We collated previously collected data [7,14] from 31
birds during training flights from four distinct sites
around the Oxford Field Station (§4.1). Each bird was
released 20 times from its selected release site and its
flight home recorded using a GPS logger. Using
equation (2.5), we took consecutive pairs of flight
J. R. Soc. Interface (2011)
trajectories and used them to predict the trajectory of
the next flight (e.g. predicting the trajectory of the
third release based on the trajectories of the first two
flights). We compared this with the prior probability
of the subsequent trajectory to give a metric of
predictability using marginal information gain (MIG),
defined as

MIG=bits ¼ log2 pðxiðtiÞjxi�1ðti�1Þ; xi�2ðti�2Þ;MÞ
� log2 pðxiðtiÞjMÞ; ð3:1Þ

where M represents our model described above, xi (ti) is
the flight path being predicted and xi21(ti21) and xi22

(ti22) are the two most recent flight paths before the
predicted flight path. Values of MIG above zero indicate
predictable behaviour; the flight trajectory is more
likely in the light of observations than it was a priori.
Conversely, negative values of MIG indicate the non-
existence of a habitual route; the flight paths are more
probable as independent rather than as correlated vari-
ables since correlation through the habitual route
implies low inter-flight variation. As a result, the habit-
ual route model over-fits and makes poor predictions
where flight paths show large-scale inter-flight vari-
ation. Figure 1 shows the MIG averaged (median)
over the 31 birds as a function of the flight number
being predicted, along with error bars indicating
the interquartile (IQ) range to represent the scale of
variation around the median.

The clear increase in predictability in figure 1 is a
confirmation of route-learning behaviour from an
information theoretic perspective. The very low
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predictability of the first few flights is a consequence of
the extremely variable nature of the first flight of many
birds. This is an expected result of the initial unfami-
liarity of the birds with the release site. Earlier studies
have shown that birds released at unfamiliar sites
tend to circle the release site after being released and
subsequently home along highly disordered trajectories
(see figures in [7]). After only one previous experience of
the release site this effect is often greatly reduced,
explaining the substantial increase in predictability in
the first few flights. After this early naivety is overcome,
the trend becomes a steady but gradual increase in pre-
dictability continuing until the final flight, indicating a
continued increase in the birds’ fidelity to their habitual
routes.
3.2. Identifying landmarks

We use a forward-selection (‘greedy’) algorithm to
determine an optimal subset of previous observations,
using the observations at the same points in time
from each previous flight. Forward selection aims to
pick a subset of observations that maximizes the mar-
ginal likelihood of each of the flight trajectories, using
the same formalism as the MIG criterion in equation
(3.1). Let xi(t

m) refer to m observations of flight i at
times tm. At each iteration, we add another observation
to the subset to maximize the MIG,

MIGðtmÞ=bits ¼
X

i

log2p xiðtiÞjfxniðtmÞg;M
� �

�
X

i

log2p xiðtiÞjMð Þ; ð3:2Þ

where fx\i(t
m)g indicates all paths except path i (we

sum the calculation over all paths to reduce the
impact of outliers). In this calculation, the distribution
of the hyper-parameters, f, u and h, is not inferred from
the subset of data, since this would force the algorithm
to choose waypoint locations so as to minimize the
uncertainty on the hyper-parameters, rather than cap-
turing the spatial information. For example, the
selection algorithm may select a series of closely
spaced data points in order to minimize uncertainty
over the input-scale hyper-parameters, which would
provide little spatial information. We aim to mimic as
closely as possible the way the pigeons use a set of geo-
graphical locations to reproduce their habitual route. A
pigeon does not need to use these positions to ‘learn’
model hyper-parameters, since these represent flight
characteristics intrinsic to the bird. Therefore, we mar-
ginalize over the hyper-parameters using the prior
distribution. We note that we obtain similar results
by marginalizing over the hyper-parameters using the
posterior distribution inferred from the complete data-
set, suggesting that the algorithm is not overly
sensitive to the hyper-parameter distribution.

The number of waypoints can be estimated by Baye-
sian model selection [13,15–17]. At each iteration, when
considering the next waypoint, we perform model selec-
tion between a model using only the waypoints already
selected (M0), and a model that uses both these way-
points and the additional ‘free’ waypoint we are
J. R. Soc. Interface (2011)
considering adding (M1). We marginalize over the pos-
ition of this new waypoint while keeping those already
selected fixed. This mirrors the ‘greedy’ selection pro-
cess, which considers waypoints to be fixed once they
have been selected. If the Bayes factor (BF) for these
two models is in favour of the model containing the
additional waypoint, we place the waypoint at the opti-
mal location and proceed to the next iteration.
Otherwise, we stop and retain the waypoints selected
so far. The BF for making this decision is given in
terms of the MIG by the following equation:

BF ;
P fxiðtiÞgjM1ð Þ
P fxiðtiÞgjM0ð Þ ð3:3Þ

¼ 1
N

XN
tnew¼1

expðln 2� ½MIGðtm; tnewÞ

�MIGðtmÞ�Þ; ð3:4Þ

where N is the number of possible waypoint locations
(we restrict this to 100 in our implementation) and
fxi(ti)g is the complete dataset. If BF is less than 1,
the evidence favours M0 and we do not add the next
waypoint—the algorithm stops. The marginalization
over all possible positions for the new waypoint is
important to avoid over-fitting. If only the most prob-
able position is considered, the analysis fails to
honestly incorporate the uncertainty associated with
that position and subsequently chooses too many way-
points since there is no cost associated with the addition
of these extra parameters. This is the Bayesian
interpretation of the famous principle of Occam’s
Razor (e.g. [16], ch. 24).

Figures 2 and 3 show an example of running this
algorithm over the data from a single bird. Figure 2
shows the identified waypoints, along with the five
flight trajectories used to identify them, plotted on an
ordnance survey map of the underlying landscape.
Figure 3 shows the logarithm of the BF and the MIG
metric, as functions of the number of waypoints. The
number of waypoints is determined by the first point
at which the logarithmic BF is below zero, as this indi-
cates that the addition of the next waypoint reduces the
probability of the data.

Inspection of the identified waypoints in this case
points to a number of striking visual features in
the vicinity. The first identified waypoint is at the
village of Yarnton, which is positioned at the apex of
the flight trajectories and therefore does most to define
the shape of the habitual route. Further waypoints are
positioned over Bladon village, near the release site,
and along the boundaries of the forests between Bladon
and Yarnton. This corresponds to known behavioural
facets of pigeon orientation. Kiepenheuer [18] and
Wallraff [19] showed that pigeons released from unfami-
liar sites showed a directional bias towards villages and
forests in the vicinity, and pigeons may avoid crossing
forested areas, for reasons that are not yet fully under-
stood but may be related to the potential saliency of
the landscape as a visual memory. Therefore, a viable
hypothesis for how this route and the associated way-
points were selected is that the pigeon was initially
attracted towards the village at Bladon; once there, it
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Figure 2. Case study of the landmark identification algorithm for a single bird released at the Bladon Heath site. The five flight
trajectories used for classification are shown (blue lines), along with the 10 identified landmarks (red circles). Identified
landmarks occur preferentially at the boundaries of forests and villages, in addition to the release point and the loft.
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was prevented from directly flying towards the home loft
by the obstacle of the forests and therefore flew along the
boundary of these; this brought it into visual range of
Yarnton village, which it was attracted to before flying
home. These initial biases then determined the regions
of the landscape from which it could select navigational
landmarks.

Figure 4 shows all the identified waypoints from the
31 birds used in this study, colour-coded according to
the release site. The four release sites and the home
loft are indicated. A notable feature of this image is
the relatively low density of waypoints over urban
areas. As noted in the case study, pigeons seem
attracted towards small urban areas, such as villages.
However, they seem either unwilling to cross them
or—if avoiding them entirely is unfeasible—they form
very few waypoints within them. The release site at
Horspath was originally selected to explore the behav-
iour of pigeons over urban landscapes by forcing them
J. R. Soc. Interface (2011)
to fly over the suburbs and centre of Oxford [14]. As
can be seen here, the density of waypoints is very low
in suburban Oxford, near the release site, increases
slightly in the centre of the city and increases more dra-
matically once the trajectories leave the city and enter
the rural area between Oxford and the home loft.

The identified waypoints from the Weston Wood
release site reproduce earlier findings that pigeons use
the major road leading from the release site in the direc-
tion of the home loft. The highest density of waypoints
occurs when the road changes direction—at this point,
most of the pigeons’ habitual routes leave the road and
become more variable. Again there is an absence of
waypoints within the urban area that intersects the
natural flight corridor.

The waypoints close to the release site at Bladon
Heath are a notable example of the result of pigeons’
reluctance to cross forested areas. These pigeons form
waypoints all around the edge of the two forested
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Figure 3. Determining the optimum number of landmarks using the BF. The plot shows the log BF (heavy line) and the MIG
(light line) as more landmarks are added to the Bladon Heath case study in figure 2. The number of landmarks are selected
once the log BF falls below zero, as indicated by the vertical dashed line. In this case, 10 landmarks are selected.
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areas close to the release site, and through a narrow
unforested partition, but rarely fly directly across the
forested areas.

The waypoints identified from releases at Bladon
Heath and Church Hanborough show a substantial
element of overlap, as do waypoints identified from
the other sites within the region around the home loft
where the routes converge. This is persuasive evidence
that some underlying feature of the landscape is suffi-
ciently visually arresting to attract not only different
pigeons, but also pigeons released from different sites.

A key question regarding the use of waypoints is the
number of such points a bird will typically require to
memorize its route. In this study, we find a median
value of seven for the number of waypoints used,
across all 31 birds. The variation in number of way-
points is indicated by the distribution shown in
figure 5. In our analysis, a large majority (over 75%)
of birds used 10 waypoints or fewer.

It is likely that this misestimates the total number of
memorized waypoints, since locations that are visited
only irregularly are not identified, while conversely
some waypoints are identified in such close proximity
to each other that they are highly unlikely to be inde-
pendent but instead represent spatially extended
waypoints. In addition, temporal misalignments
between different flights as a result of factors external
to the navigation exercise (such as the presence of
other pigeons or predators) can result in true waypoints
not being identified. However, this result demonstrates
that, in most birds, almost all the repeated structure
of the flight trajectories is contained in a small
number of waypoints. Sample sizes were too small to
detect any significant differences in the waypoint use
at different release sites, but we note that the median
J. R. Soc. Interface (2011)
number of waypoints at each site were: Bladon Heath,
9; Church Hanborough, 10.5; Horspath, 6; Weston
Wood, 5.
4. DISCUSSION

We have presented a GP model for the distribution of
flight trajectories flown by a pigeon from a familiar
release site. This was based on the observed tendency
of pigeons to form habitual routes over a series of
releases from the same site, which manifested itself in
the increasing predictive power of our model with
increasing release number.

The model we have presented provides an easily
extensible and adjustable model for making quantitative
predictions about future flight paths based on obser-
vations of the past. By providing a probability
distribution over flight paths, it creates a framework to
compare hypotheses by formalizing the comparison as
a model selection problem. In this paper, we have
shown how this approach can be used to identify naviga-
tional waypoints, selecting both the number of
waypoints and their locations by maximizing the predic-
tive power of a subset of the observed data. This provides
an algorithmic and objective mechanism for identifying
salient locations based only on observed flight paths,
without consideration of the landscape. The landscape
can thus be independently classified into regions most
likely to contain important visual cues.

Our method shows that the repeated structure in
flight trajectories of experienced birds is contained in
a relatively small number of informative regions.
Under the hypothesis that these birds navigate home
using visual landmarks, it is highly probable that
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these maximally informative regions correspond to the
use of those memorized visual landmarks, though it is
important to note that the location of the waypoint
and the location of the corresponding landmark need
not be identical. Waypoints may be associated with
visual cues at a range of distances. For example, a
bird may learn to change its heading when a large dis-
tant feature becomes visible on the horizon, creating a
waypoint within the flight paths with no proximate
landmark. It should be stressed that our algorithm
detects waypoints within the flight paths as a proxy
for the use of visual landmarks rather than identifying
the specific visual feature directly. Therefore, in cases
where the landmark is not in the close vicinity of the
waypoint, it will be difficult or impossible to determine
J. R. Soc. Interface (2011)
the specific visual cue associated with that waypoint.
Nonetheless, the close proximity of many waypoints
to striking visual features revealed by visual inspection
of figures 2 and 4 suggests that many waypoints are
associated with landmarks in close proximity.

The identified waypoints thus provide a snapshot of
the types of landscape that inform or constrain the
pigeons’ navigation from a familiar release site to the
home loft. In some cases, the specific feature of the land-
scape is unclear from inspection alone, and we must
wait for a more in-depth analysis of the landscape
before we can judge what characteristic the bird is
using to identify that landmark. In many cases, how-
ever, there are clear, visually conspicuous features,
especially sharp discontinuities in the landscape.
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Examples of these include the boundaries between
terrain types, such as the edges of forests and villages,
or roads which represent a sharp break in an otherwise
rural landscape. As discussed, with reference to the pre-
vious work of Wallraff [19], some of these features may
be selected for initially non-navigational reasons associ-
ated with the bias of initial flights from unfamiliar areas
or through non-navigational pressures such as risk of
predation.

A particularly striking finding is that most pigeons
form few or no waypoints within urban areas even if
they are forced to cross them. This is surprising on
some levels since urban areas are rich in visual
structure. Nonetheless, this supports the work by
Wiltschko et al. [20], who found that pigeons showed
no evidence of habitual route formation over the
information-rich environment of urban Frankfurt
(Germany). It is also in line with the findings of Lau
et al. [21], who observed that high visual information
densities were associated with behavioural switches
towards more disordered flight patterns. A number of
alternative explanations are consistent with this pattern
of behaviour. These can be broadly categorized into two
types. Either the urban landscape negatively affects the
pigeons’ ability to effectively memorize and relocate
waypoint locations, or the high density of available
information negates the need to memorize very precise
locations. Within the first category sit the following
explanations. Pigeons may have a characteristic visual
scale. The visual pattern of urban areas may be infor-
mative only below this scale, thus they may appear
largely uniform to the pigeon. Alternatively, the
pigeons may experience something like a sensory ‘over-
load’. The sheer quantity of visual information in the
urban areas may overwhelm the pigeons’ ability to
memorize patterns, which would have evolved to recog-
nize patterns in more sparsely featured environments.
The encounter rate with non-navigational factors is
potentially greater in urban areas, which might cause
the pigeon to be distracted from relocating its memor-
ized waypoints. Within the second category lies the
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possibility that, in the urban area, the pigeon is able
to access a greater amount of visual information at a
distance, since the average height and density of con-
struction within these regions are higher than in rural
areas. With access to this information, the pigeon may
be able to successfully determine its position and home-
ward course without revisiting a very specific waypoint
location, thus removing the possibility of discovering
the use of waypoints along the route of the flight
path. The same effect would be observed if the pigeon
had a large and redundant set of waypoints from
which to choose on each flight, removing the necessity
to return to a specific location each time.

The technique we have demonstrated is applicable to
any situation where a level of route habituation has
been developed in a repeated navigation exercise,
which could potentially be through known geo-station-
ary waypoints. It could therefore be more widely
applied as a general method for locating important
regions in animal movement paths wherever habitual
movement patterns occur, such as repeated feeding
grounds within migratory routes or in learning more
about the encoding of repeated patterns of human
movement.

4.1. Experimental methods

The data used in this paper were collated from two pre-
vious studies [7,14]. All experiments followed previously
established protocols [22]. Every bird was released a
total of 20 times from its selected release site. The
flight trajectory was recorded using a micro-GPS log-
ging device attached to the bird’s back, and
downloaded once the bird was recovered at the home
loft. The device recorded the bird’s position at a rate
of 1 Hz and was accurate to within 5 m.

The locations of the four release sites are indicated in
figure 4; see [7] for further details of the experiments at
Bladon Heath and Church Hanborough, and [14] for
details of experiments at Horspath and Weston Wood.

The authors would like to thank the UK Engineering and
Physical Sciences Research Council, the Royal Society, the
ALADDIN Project and Microsoft Research for their funding
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