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The percolation paradigm is widely used in spatially explicit epidemic models where
disease spreads between neighbouring hosts. It has been successful in identifying epidemic
thresholds for invasion, separating non-invasive regimes, where the disease never invades
the system, from invasive regimes where the probability of invasion is positive. However,
its power is mainly limited to homogeneous systems. When heterogeneity (environmental
stochasticity) is introduced, the value of the epidemic threshold is, in general, not pre-
dictable without numerical simulations. Here, we analyse the role of heterogeneity in a
stochastic susceptible–infected–removed epidemic model on a two-dimensional lattice.
In the homogeneous case, equivalent to bond percolation, the probability of invasion
is controlled by a single parameter, the transmissibility of the pathogen between neigh-
bouring hosts. In the heterogeneous model, the transmissibility becomes a random
variable drawn from a probability distribution. We investigate how heterogeneity in
transmissibility influences the value of the invasion threshold, and find that the resilience
of the system to invasion can be suitably described by two control parameters, the mean
and variance of the transmissibility. We analyse a two-dimensional phase diagram, where
the threshold is represented by a phase boundary separating an invasive regime in the
high-mean, low-variance region from a non-invasive regime in the low-mean,
high-variance region of the parameter space. We thus show that the percolation para-
digm can be extended to the heterogeneous case. Our results have practical
implications for the analysis of disease control strategies in realistic heterogeneous
epidemic systems.
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1. INTRODUCTION

One of the main challenges in epidemiology is to explain
the huge variability observed in the outcome of epi-
demics. Such variability affects the invasion and
persistence of disease in a host population, the rate of
disease progress, the final fraction of the population
affected, and even whether or not the disease spreads
at all [1]. Much of the observed variation is owing to
the inherent stochasticity of the epidemic process,
acting at different spatial scales. At the small scale,
demographic stochasticity intervenes in the interaction
between host and pathogen: pathogen transmission
between two individuals is in general a random event.
Epidemic spread also depends upon epidemiological
parameters that vary across the population owing to
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stochastic environmental factors, whereby hosts can
differ in properties such as susceptibility or infectivity.
When the spatial structure of the epidemic is explicit,
the interplay at different scales between environmental
stochasticity (or heterogeneity) and demographic
stochasticity (henceforth, simply stochasticity) contrib-
utes to the variability of the outcome reflected in the
generation of spatio-temporal patterns of infected
hosts [2–4]. Among botanical epidemics in particular,
such spatio-temporal variability is evident not only
between different epidemics of the same host–pathogen
system, but also within the same epidemic; for example
through the occurrence of patches of disease within a
single field, with some areas exhibiting high and
others low incidences [5].

For a broad class of host–pathogen systems, trans-
mission only occurs between neighbouring hosts. This
class includes many plant pathogens, such as soil-
borne pathogens transmitted between neighbouring
plants [6,7], or, at a larger scale, pathogens spreading
This journal is q 2010 The Royal Society
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within a mosaic of neighbouring susceptible fields or
even farms [8,9]. The class also comprises animal patho-
gens that spread in host populations living in a fixed
habitat, as has been shown, e.g. for plague in popu-
lations of gerbils inhabiting a network of connected
burrows [10]. Finally, at the microscopic scale, some dis-
eases are known to spread among contiguous cells (cf.
neural ganglion cells in [11]). Nearest-neighbour inter-
actions lead naturally to consideration of percolation
[12]. Percolation theory provides tools and concepts to
scale up from the small-scale connectivity properties
of a system (e.g. whether or not two neighbours are con-
nected) to its large-scale properties, such as the size of
clusters of connected sites. In epidemiology, percolation
has been used to study the ‘infection path’ followed by
the pathogen through the system [13,14], and the con-
nectivity of habitable sites in the landscape [7]. The
most relevant result is the existence of a spatial
threshold for epidemic invasion. The threshold separ-
ates a non-invasive, safe regime (where the pathogen
can never invade the population) from an invasive
regime (where the pathogen has a non-zero probability
to invade). However, including the effect of host
heterogeneity in the percolation paradigm has proved
to be not straightforward. With a few notable
exceptions [15–17] and recent interest in the field of
complex networks [18–21], the problem has been
mostly neglected.

In this paper, we propose a significant advance
towards the solution of the problem of incorporating
host heterogeneity in spatial systems. We study the
effects of heterogeneity on a stochastic SIR (suscep-
tible–infected–removed) model on a lattice [22]. The
model is chosen because an exact mapping onto bond
percolation holds in the homogeneous case [14], where
an epidemiological parameter, the transmissibility c
(the probability to transmit infection along a bond),
is equivalent to the bond probability in percolation.
The value of c is thus the only parameter controlling
the resilience of the system to invasion, and, in particu-
lar, the invasion threshold cc coincides with the bond-
percolation threshold pc

bond. This also implies that in a
few relevant cases the value of the invasion threshold
is known analytically [12]. Thus, the model provides
an ideal starting point to study the effects of inherent
heterogeneity in spatially explicit systems. Our aim is
to understand how heterogeneity changes the invasion
threshold of the system, and whether the threshold
can be still predicted without the need for numerical
simulations or not. One of the main challenges in the
study of a heterogeneous system is to find if it can be
described by means of an equivalent homogeneous
mean-field system characterized by effective par-
ameters. It is known [16] that the effect of
heterogeneity depends crucially on the presence of cor-
relations in c along different bonds. In the uncorrelated
case, the system is equivalent to an effective homo-
geneous system with c ¼ kcl, and the threshold is
given by kcl ¼ pc

bond [17]. In the correlated case, no
such equivalence holds, and the value of the invasion
threshold cannot be inferred from kcl. The threshold
is known to shift from kcl ¼ pc

bond (in homogeneous
and heterogeneous uncorrelated systems) to kcl ¼ pc

site
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(site percolation threshold), when the variance of the
transmissibility sc

2 in correlated systems is maximal
[15,16,23]. This result points to sc

2 as a good measure
of heterogeneity in correlated systems, but it poses sev-
eral questions. Is the invasion threshold an increasing
function of the variance of c, and in general, how
much information about the threshold is provided by
sc

2? More specifically, do we need to know the whole
distribution of c to estimate the threshold?

These questions are systematically addressed in the
paper. Our main result is the existence of a phase dia-
gram in the two-dimensional space (kcl, sc

2), with a
(lattice-dependent) phase boundary separating invasive
and non-invasive regimes. We also show that for all the
correlated systems studied, the position of the threshold
is determined with excellent approximation by the two
parameters kcl and sc

2. Higher (and in general smaller)
moments of the distribution h(c) shift the threshold
value for kcl within the interval [pc

bond, pc
site] only by a

small amount. For the square lattice, for example, the
shift is at most 3 per cent of the interval length, which
can be considered negligible for most applications. Our
phase diagram extends the predictive power of the perco-
lation paradigm for SIR epidemics to heterogeneous
correlated systems. These results also have relevant
implications for the implementation of control: in this
respect, a heterogeneous correlated system is qualitat-
ively different from its homogeneous counterpart,
because the parameter space in which to search for an
optimal control strategy is now two-dimensional. While
the task of finding an optimal control strategy becomes
non-trivial, we nevertheless show that the problem can
be solved. This can open up new possibilities for the
implementation of control in spatial epidemic systems.
2. MODEL

We give here a brief description of the model and the pro-
blems involved; a more detailed version is contained in
the first section of the electronic supplementary material.
We consider a stochastic SIR process on a square lattice
(for concreteness) with N sites, where an epidemic
spreads by the nearest-neighbour transmission of a
pathogen, starting from a single infected site (primary
infection). Upon infection, a host (donor) i is infectious
(I) for a time ti (infectious period) before recovering or
being removed (R). During this time, it transmits the
pathogen to its susceptible neighbours (recipients) j
according to a Poisson process with rate bij (infection
rate). The probability that the pathogen is transmitted
from i to j within the time ti is the transmissibility:

cij ¼ cðbij ; tiÞ ¼ 1� e�bijti : ð2:1Þ

The system is heterogeneous when bij and ti are
random variables. We consider them to be independent
and identically distributed (iid) random variables,
drawn from the distributions f(bij) and g(ti), respectively.
In this case, the cij are also random (but not necessarily
independent) variables, with a probability distribution
h(cij) that can be calculated from f(bij) and g(ti).

In a finite system, the process stops after a finite time
with only S and R hosts left. The crucial question we
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address in this paper is how the distributions of the infec-
tion rates f(bij) and infectious periods g(ti) affect the
probability that a major outbreak or invasion occurs
[24], when the final set of R sites spans the entire lattice.
We also consider whether the resilience of the system to
epidemic invasion can be described by a few effective con-
trol parameters. The evaluation of the probability of
invasion for the process Pinv ( f(bij),g(ti)) and the identi-
fication of the relevant parameters controlling invasion
are the main objectives of this paper.

If the system is homogeneous (constant parameters:
ti ¼ t, bij ¼ b), the identification of the relevant par-
ameters is straightforward. The final state of the SIR
process can be mapped onto a bond percolation problem
[12,14], where the probability that a bond is ‘open’ is
equal to c (see the electronic supplementary material
for details). This leads to the following definition of a
critical (threshold) value for the transmissibility,

cðb; tÞ ¼ cc ¼ pbond
c ; ð2:2Þ

where pc
bond is the bond-percolation threshold ( pc

bond ¼ 1
2

for the square lattice; [12]). In an infinite system, the
critical value separates an invasive region in the par-
ameter space (Pinv(b, t ) . 0 for cc. pc

bond) from a
non-invasive, safe region (Pinv(b, t) ¼ 0 for cc,

pc
bond). The same holds for a bond-heterogeneous process

(ti ¼ t constant, bij random), for which the cij are iid
random variables. Since different bonds are open or
closed independently, the process is still equivalent to
homogeneous bond percolation, and equation (2.2)
still holds, once c is replaced by kclb (the average of
cij from equation (2.1) with respect to f(b), [17]).
Hence, there still exists a single control parameter
kclb, independent of the moments of the distribution
f(b) other than the first. The solution is more challen-
ging in the case of a site-heterogeneous process (bij ¼

b constant, ti random). The cij ¼ 1 2 e2bti ¼ ci here
are host-dependent and are not iid random variables).
The equivalent percolation problem is correlated,
because bonds outgoing from the same site are not
open or closed independently (see the electronic sup-
plementary material for proof and an explicit
example). As a result, the relationship between the
quantity kclt (the average of cij with respect to g(t))
and the resilience of the system is less straightforward.

Indeed, the average transmissibility at the invasion
threshold can take any value in the range

pbond
c � kclt � psite

c ; ð2:3Þ

with bounds corresponding to the bond- and site-perco-
lation thresholds pc

bond and pc
site. The system is always in

the non-invasive regime for kclt , pc
bond, and always in

the invasive regime for kclt . pc
site (whether the system

is in the invasive regime or not for kclt ¼ pc
bond and

kclt ¼ pc
site depends on the topology of the lattice and

is still an open problem: e.g. [25]); we do not discuss
these cases here). However, in the middle interval
pc

bond , kclt , pc
site the system can be in either regime,

depending on the particular distribution g(t). Thus,
the average transmissibility kclt alone is no longer a
good control parameter to describe the resilience of
the system to invasion. The width of the interval
J. R. Soc. Interface (2011)
changes with the topology of the system: in general,
pc

bond ¼ pc
site on a tree graph, while pc

bond, pc
site for lat-

tices with dimension d � 2 [25]. For the square and
triangular lattices, the interval (pc

bond, pc
site) is equal

to (1
2, 0.593 . . . ) and (0.347 . . . , 1

2), respectively.
The challenge is to find alternative (or additional)

control parameters that allow the prediction of the
value of the epidemic threshold in a site-heterogeneous
system. A hint comes from the fact that the critical
value pc

bond is obtained when the cij are uncorrelated,
while the value pc

site is obtained when the cij outgoing
from the same site are maximally correlated. In the
former case, the cij are drawn from a distribution
with null variance, in the latter case from a distribution
with maximal variance (see the electronic supplemen-
tary material for details). This leads to the hypothesis
that the value of the threshold increases with the
variance of c. This hypothesis is investigated below.

In what follows, we start from the analysis of the influ-
ence of correlated heterogeneity on the invasion threshold
in a model system (the mixed case, where both the corre-
lated and uncorrelated kinds of heterogeneity are present,
is considered in the electronic supplementary material).
The model is a two-host system, where heterogeneity is
owing to the existence of two classes of susceptible
hosts, randomly arranged on a lattice. It is used here to
test how the invasion threshold is influenced by hetero-
geneity, and to demonstrate to what extent a
description based on a homogeneous approximation
using the average transmissibility fails. The variance of
the transmissibility is shown to play an important role
in this case. We also demonstrate that the resilience of
the system to epidemic invasion is increased when the
spatial pattern of the two classes of hosts is regular. The
study of the two-host system leads us to the main result
of the paper that links the value of the invasion threshold
to the variability of a generic heterogeneous system. We
proceed in two steps. In the first step, we investigate the
dependence of the threshold on sc

2 for specific families
of bimodal distributions for c (corresponding to different
families of two-host systems), and show that for a given
kcl there is a transition from the invasive (low-variance)
to the non-invasive (high-variance) regime for a critical
value sc

2 ¼ sc,c
2 . This demonstrates the existence of a

phase diagram in the plane (kcl, sc
2), where a phase

boundary separates the two regimes. The second step is
to show that the influence of higher-order moments of
the distribution for c on the location of the phase bound-
ary is negligible. We find that the position of the phase
boundary for different families of distributions (both
bimodal and other than bimodal, with common values
of kcl and sc

2 but differing in all the higher moments) is
approximately the same for all distributions tested. This
means that the pair of control parameters (kcl, sc

2) can
determine if a system is in the invasive regime or not,
up to small corrections owing to higher moments.
3. A TESTING GROUND: THE TWO-HOST
SYSTEM

In this model system, hosts belonging to two different
classes, A and B, are arranged on the square lattice,
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Figure 1. Effect of heterogeneity on the phase diagram of a two-host system on a square lattice. Each frame corresponds to a
different value of rA (concentration of A hosts; (a) rA ¼ 0.05; (b) rA ¼ 0.3; (c) rA ¼ 0.5). The non-invasive and invasive regimes
are in green and orange, respectively. The red line marks the phase boundary, and the black solid lines are the upper and lower
bounds for the phase boundary (kcl ¼ pc

bond, pc
site, respectively, from equation (2.3)). Along the phase boundary, the variance of

h(c) increases from 0 (at the homogeneous point cA ¼ cB ¼ pc
bond) in the direction indicated by the arrows. As the level of het-

erogeneity rA is increased (from left to right), the phase boundary moves away from the lower bound and approaches the upper
bound, the minimum distance being reached at the edges (cA ¼ 1,cB ¼ 0) and (cA ¼ 0,cB ¼ 1), where the variance of h(c) is
maximal.
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occupying a fraction rA and rB ¼ 1 2 rA of the lattice
sites, respectively. This topology is analogous, for
example, to agricultural systems where different plant
species (or varieties) coexist in the same field [26,27],
or at a larger scale, where some fields are treated with
a pesticide and some others are not. Two different scen-
arios are considered below: (i) site heterogeneity with A
and B hosts randomly placed on the lattice sites, and
(ii) periodic arrangements of hosts. A third scenario,
mixed heterogeneity, is discussed in the electronic sup-
plementary material. In the case of site heterogeneity,
each class is characterized by its own transmissibility,
cA and cB: this occurs when two different infectious
periods, tA and tB, are associated with different hosts,
and the rate b is host-independent. The distribution,
mean and variance of c are

hðcÞ ¼ rAdðc� cAÞ þ ð1� rAÞdðc� cBÞ; ð3:1aÞ

kcl ¼ rAcA þ ð1� rAÞcB ð3:1bÞ

and s2
c ¼ rAð1� rAÞðcA � cBÞ2: ð3:1cÞ

Here and in the rest of the paper, d(x) is the Dirac
delta-function with the property

Ð
21
þ1 f(x)d(x 2

x0)dx ¼ f(x0). The (invasive or non-invasive) behaviour
of the system depends on the values of the parameters
rA, cA and cB. In figure 1, the phase diagram is
shown in the parameter plane (cA, cB) for different
values of rA. The phase boundary separating the inva-
sive and non-invasive regimes lies between the straight
lines corresponding to the lower and upper bounds,
defined by the equations kcl ¼ pc

bond and kcl ¼ pc
site,

with kcl given by equation (3.1b). The point cA ¼ cB

corresponds to a homogeneous system for which the
phase boundary coincides with the lower bound. As het-
erogeneity is increased (cA = cB), the boundary
approaches the upper bound. The degree of heterogen-
eity of the system can be described quantitatively by
the variance of h(c), given by equation (3.1c). It
increases in the direction indicated by the arrows (see
figure 1). The threshold for invasion increases monoto-
nically with the variance. This behaviour is studied in
J. R. Soc. Interface (2011)
more detail in the following section. It is worth noting
that in the model considered here (and in this paper
in general) the transmissibility between donor
and recipient depends on the donor only: recent work
[19–21] has considered the more general case where
the transmissibility depends both on the donor and
the recipient (i.e. both host infectivity and host
susceptibility are taken into account).

The results discussed so far, and the theorems giving
bounds for heterogeneous SIR processes [15,16], hold for
systems where the transmissibility of any host is a
random variable which does not depend on the host
position in space. As soon as this condition is dropped,
the bounds do not hold any longer: an example is a two-
host system where A and B hosts follow a regular spatial
pattern. Such a system can be compared with its
random counterpart with the same values of cA, cB

and rA. Comparison of the invasive regions of two per-
iodic systems, one in the form ABAB, the other
AABAAB (see figure 2), show that the periodic systems
are more resilient to invasion.
4. DEPENDENCE OF THE EPIDEMIC
THRESHOLD ON THE VARIANCE OF c

When the distribution h(c) contains bond heterogen-
eity only, the resilience of a heterogeneous system to
epidemic invasion is completely determined by the aver-
age transmissibility kcl. If site heterogeneity is also
present (e.g. owing to a distribution of infectious
periods), the resilience of the system cannot be deter-
mined by kcl alone. In principle, knowledge of the
whole distribution h(c) is needed. Systems with differ-
ent distributions characterized by the same kcl can be
in different regimes (invasive or non-invasive) depend-
ing upon moments of higher order, k(c 2 kcl)kl, k ¼
2,3, . . . Below, we demonstrate that only the second
moment plays an important role in systems with site
heterogeneity.

As follows from equation (2.3), in the case of site het-
erogeneity the threshold kclc varies between the lower
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Figure 3. Probability of invasion Pinv for a process with site
heterogeneity on a square 1000 � 1000 lattice. (a) Pinv as a
function of kcl and sc

2 . Each point in the plane (kcl, sc
2) cor-

responds to a choice of the parameters cA and rA in a family of
bimodal distributions for c (equations (3.1)) with cB ¼ 0. The
value kcl is chosen to lie in the interval (pc

bond, pc
site) and the

variance sc
2 varies from 0 to the maximal value kcl (1 2 kcl).

The phase boundary between invasive (orange) and non-inva-
sive (green) regions is shown below the surface. (b) Pinv as a
function of kcl, with constant variance sc
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red curve in (a)). (c) Pinv as a function of sc

2, with constant
average kcl ¼ 0.55 (same as green curve in (a)). Note that
the horizontal axis in (c) is inverted.
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bound pc
bond, corresponding to zero variance in c, and

the upper bound, pc
site, corresponding to the maximal

variance for a given value of kcl,

s2
c;max ¼ kclð1� kclÞ;

which is achieved for a particular two-host system with
h(c) ¼ kcld(1 2 c) þ (1 2 kcl)d(c) (cf. equation (3.1a)
and the electronic supplementary material). Therefore,
when the average transmissibility falls within the
window pc

bond � kcl � pc
site, the system can be in differ-

ent regimes (invasive or non-invasive) depending on
the variance of the distribution, 0 � sc

2 � sc,max
2 . We

carried out a numerical investigation to find the phase
boundary for the SIR process in the (kcl, sc

2) plane
for several different families of distributions where
both kcl and sc

2 could be adjusted (details about the
numerical approach and the distributions used are in
the electronic supplementary material). The depen-
dence of the probability of invasion Pinv on kcl and sc

2

for the family of bimodal distributions (equation
(3.1a)) with cB ¼ 0 is shown in figure 3. In general,
the probability of invasion Pinv is an increasing function
of kcl and a decreasing function of sc

2 (see figure 3a).
The phase transition from the invasive to the non-inva-
sive regime can be achieved by either increasing kcl or
decreasing sc

2 as control parameters. In the first case
(red line in figure 3a,b), the transition occurs at a
value kclc such that pc

bond � kclc � pc
site. In the second

case (green line in figure 3a,c), it occurs for a sc,
2

such that 0 � sc,c
2 � sc,max

2 . The bound sc
2 ¼ 0 (where

Pinv . 0) corresponds to a homogeneous process equiv-
alent to bond percolation, while sc

2 ¼ sc,max
2 (where
J. R. Soc. Interface (2011)
Pinv ¼ 0) corresponds to a maximally correlated process
equivalent to site percolation.

The behaviour of the phase boundary between the two
regimes (corresponding to the steep transition in the sur-
face in figure 3) can be studied by projecting the surface
onto the (kcl, sc

2) plane (see figure 4a). In the phase
diagram, the phase boundary partitions the space into a
non-invasive (low-kcl, high-sc

2) and an invasive (high-
kcl, low-s c

2) region. As predicted, the phase boundary
goes from the point (pc

bond, 0) (homogeneous system,
bond percolation case) to (pc

site, pc
site (1 2 pc

site); maximally
heterogeneous system, site percolation case). A system
with pc

bond � kcl � pc
site can be in the invasive or in the

non-invasive regime depending on the value of sc
2.

By changing the average and variance of c in the
family of bimodal distributions with cB ¼ 0, we are
also changing the higher moments that depend on
the same parameters and are not shown in figure 4a.
The position of the phase boundary in figure 4a can,
in general, also depend on higher moments, and thus
on the particular family of distributions chosen. We
investigated this effect by comparing phase diagrams
for several different families of distributions. Figure 4b
displays the phase boundaries obtained for some of
the families (see the electronic supplementary material
for details). The distance between the phase boundaries
corresponding to different families turned out to be
small for all the examples that we tested. Considering
points of the boundaries with the same value of
sc

2, the difference between the corresponding values of
kcl is always �0.03Dp, where Dp ¼ pc

site 2 pc
bond (cf.

figure 4b). This shows that higher moments have a
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negligible effect on the position of the phase boundary.
This result was confirmed by simulations on regular lat-
tices different from the square (see electronic
supplementary material). In the case of the square lat-
tice, the phase boundary is also well approximated by a
straight line joining the two points ( pc

bond, 0) and ( pc
site,

pc
site (1 2 pc

site)).
We conclude that the resilience of a site-hetero-

geneous system to epidemic invasion is mainly
determined by the first two moments of the distribution
for the transmissibility, kcl and sc

2. Changing only the
higher moments of the distribution gives corrections
to the position of the phase boundary that are negligible
for practical applications (such as control, see §5). In
other words, by going from a homogeneous to a hetero-
geneous system, the number of relevant control
parameters increases from one to two. In the electronic
supplementary material, we give a heuristic explanation
of this result based on the zero-function technique
introduced by Kuulasmaa [15].

Our discussion is focused on the position of the inva-
sion threshold. We do not address here the question of
the dependence of Pinv on heterogeneity when the
system is in the invasive regime (see [15,18,19]). In the
electronic supplementary material, we discuss this
dependence in the case of the Bethe lattice, where an
exact analytical solution can be found.
5. DISCUSSION AND CONCLUSIONS

We have developed a method to analyse the effects of
heterogeneity on spread of epidemics in spatial sys-
tems. The epidemic spread for an SIR model is
defined by transmissibilities between hosts. The trans-
missibility, in general, depends both on bond and site
properties. It is convenient to distinguish between two
different types of heterogeneity in transmissibility
J. R. Soc. Interface (2011)
that can occur in real systems: (i) bond heterogeneity,
associated with variability of links between different
hosts and (ii) site heterogeneity, determined by varia-
bility amongst hosts. The first type, bond
heterogeneity, is uncorrelated when the transmissibil-
ities between different pairs of hosts are independent
of each other. Site heterogeneity is necessarily corre-
lated, because all the transmissibilities from a
particular donor host are dependent on the properties
of the host. The analysis of SIR epidemics in systems
with bond heterogeneity is relatively straightforward.
Site heterogeneity is less obvious and, as it follows
from our analysis, the two first moments of the
transmissibility are crucial for the evaluation of
the probability of invasion. One interesting finding
is that in systems with correlated heterogeneity it is
possible to reduce significantly the probability of
invasion by increasing the variance in transmissibility
and keeping the mean value unchanged. This feature
is a consequence of the behaviour evident in the
phase diagram for invasion in the (kcl, sc

2) space
(figure 4). This fact can be used for an effective con-
trol of epidemics, whereby both average and variance
of the transmissibility can be adjusted to bring the
system to the non-invasive regime.

As an example, we analyse its use for the implemen-
tation of control strategies in realistic systems with
natural variability. With respect to conventional
approaches for homogeneously mixed systems, the
novelty lies in the fact that we are allowed to use both
kcl and sc

2 as parameters for the optimization of the
control strategy. Consider for example a homogeneous
population with constant transmissibility c0 ¼ kcl .

pc
bond, hence in the invasive regime (for example, a

mosaic of crops, each representing a host unit). In the
phase diagram (figure 5), the system is represented by
a point on the sc

2 ¼ 0 axis on the right side of the
phase boundary (approximated by a straight line).
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Figure 5. Effect of different control strategies on a square-lattice homogeneous system with transmissibility c0 ¼ 0.7, represented
by a black circle on the (kcl, sc

2) plane. The red circle represents the system after treatment. The phase boundary between the
invasive (orange) and non-invasive (green) regions is approximated by a straight line. The effect of treatment on a host is to
decrease its transmissibility to a value ec0, 0 � e, 1. (a) Homogeneous strategy (r ¼ 1, e ¼ emax ¼ pc

bond /c0). All the
hosts are treated. The final system is homogeneous with average transmissibility pc

bond . (b) Heterogeneous strategy (r ¼ 0.4,
e ¼ 0.35). A fraction r of the hosts is treated. The system reaches the phase boundary at a point with kcl . pc

bond, sc
2 . 0. (c) Maxi-

mally heterogeneous strategy (r ¼ 0.24, e ¼ 0). A smaller fraction of the hosts is treated, their transmissibility being decreased to 0.
The variance of the treated system is maximal for the initial condition c0.
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Suppose that a control agent (a protectant) is applied
before the arrival of infection in order to bring the
system into the non-invasive regime. The effect of the
agent on a host is to decrease the transmissibility
from c0 to ec0 � c0, where e is a parameter varying
from 0 (complete protection) to 1 (no treatment),
depending, e.g. on the amount applied. A second adjus-
table parameter is the fraction r of hosts to be treated,
giving full (r ¼ 1) or partial (r , 1) coverage. We define
a particular choice of r and e as a control strategy. The
minimal condition for a strategy to be successful is that
the point representing the treated system lies on the
phase boundary (where Pinv ¼ 0), because further
application of the control agent can only push the
point further into the non-invasive regime.

We consider three strategies: (i) a ‘homogeneous’
treatment (only kcl is changed), and (ii, iii) two ‘hetero-
geneous’ treatments (both kcl and sc

2 are changed). In
the homogeneous treatment (figure 5a), all the hosts
are treated with the same amount of control agent, so
that sc

2 ¼ 0 and kcl is decreased to the value ec0, reach-
ing the boundary for e ¼ pc

bond/c0. In a heterogeneous
treatment (figure 5b,c) only a fraction r , 1 of the
hosts is treated, leaving the rest unchanged. The initial
homogeneous system becomes a two-host system, with
average and variance of c given by equations (3.1b,c),
where host A is untreated (cA ¼ c0) and host B is trea-
ted (cB ¼ ec0). The effect of the control agent on the
system is both to decrease the average kcl and to
increase the variance sc

2, reaching the phase boundary
at a point kcl . pc

bond, sc
2 . 0. The condition that the

point lies on the phase boundary given by sc
2 ¼ pc

site

(1 2 pc
site)/( pc

site 2 pc
bond)kcl corresponds to a condition

for r and e to lie on a constraint curve in the parameter
space:

gðr; eÞ ¼ psite
c ð1� psite

c Þ
psite

c � pbond
c

ðð1� rþ erÞc0 � pbond
c Þ

� ð1� eÞ2ð1� rÞrc2
0 ¼ 0:

ð5:1Þ

The constraint curve has endpoints in (1, emax) (cor-
responding to the homogeneous strategy, figure 5a) and
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(rmin, 0) (maximally heterogeneous strategy, figure 5c),
where rmin and emax depend on c0. We remark that in a
mean-field approach, where only the average transmissi-
bility would be taken into account, there would be no
difference between a heterogeneous strategy that
decreases the average to kcl ¼ rec0 þ (1 2 r)c0 ¼
(1 2 r2 re)c0, and a homogeneous strategy decreasing
the transmissibility of every host by a factor 1 2 r2 re.
The difference becomes relevant in spatially explicit
systems.

All the strategies are equivalent as far as the cost of
control is not considered. If we introduce a cost function
c(r, e) [28], the optimal strategy can be defined as the
point (r, e) corresponding to the global minimum of
c(r, e) along the curve given by equation (5.1). The
optimal strategy depends crucially on the form of the
cost function. We analyse here the factorized form:

cðr; eÞ ¼ rð1� eÞa; ð5:2Þ

where (i) we make the assumption that the total cost is
proportional to the coverage r, while (ii) with the par-
ameter a . 0 we allow for a non-linear dependence of
the cost on the treatment efficacy, defined as the frac-
tional decrease of transmissibility 1 2 e for a treated
host. The non-linear dependence can be obtained, for
example, by assuming that the efficacy of a given
amount Q of control agent is 1 2 e ¼ Q1/a, and that
the cost of Q is proportional to Q. A non-linear law
for r can also be considered, but the following results
do not change qualitatively. For our choice of the cost
function in equation (5.2), the minimum of c(r, e)
always coincides with one of the two endpoints of the
constraint curve. However, finding which one of the
two strategies is optimal is not trivial, and depends on
a and the initial transmissibility c0. We can eliminate
one of the two parameters through g(r, e) ¼ 0, and con-
sider e.g. c(r, e) ¼ c(r, e(r)) as a function of r only.
This way, it can be shown (see figure 6a) that no local
minima for c(r, e) exist as a function of r (the same
occurs for e). We can then compare the values of the
cost function at the two endpoints:

cð1; emaxÞ ¼ ð1� emaxÞa
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and

cðrmin; 1Þ ¼ rmin:

The homogeneous strategy (1, emax) (figure 5a) is
optimal when c(1, emax) , c(rmin, 1), that is, for

a .
logðrminÞ

logð1� emaxÞ
¼ kðc0Þ: ð5:3Þ

Similarly, the maximally heterogeneous strategy
(rmin, 0) (figure 5c) is optimal when a , k(c0). For
a ¼ k(c0), the two strategies are both optimal with
the same cost. In general, k(c0) is an increasing function
of c0 in the interval [ pc

bond, 1] with k( pc
bond) ¼ 1, and

k(1) ≃ 0.77 on the square lattice (see figure 6b).
Hence, even with a simple choice for the cost function,
the optimal control strategy displays a non-trivial
dependence on the initial transmissibility of the
system. These results are relevant for plant populations,
and more generally for any system where the spatial
structure of the population is known.
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