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Traveling waves are ubiquitous in nature and control the speed of
many important dynamical processes, including chemical reactions,
epidemic outbreaks, and biological evolution. Despite their funda-
mental role in complex systems, traveling waves remain elusive
because they are often dominated by rare fluctuations in the wave
tip, which have defied any rigorous analysis so far. Here, we show
that by adjusting nonlinear model details, noisy traveling waves
can be solved exactly. The moment equations of these tuned mod-
els are closed and have a simple analytical structure resembling the
deterministic approximation supplemented by a nonlocal cutoff
term. The peculiar form of the cutoff shapes the noisy edge of tra-
veling waves and is critical for the correct prediction of the wave
speed and its fluctuations. Our approach is illustrated and bench-
marked using the example of fitness waves arising in simple mod-
els of microbial evolution, which are highly sensitive to number
fluctuations. We demonstrate explicitly how these models can be
tuned to account for finite population sizes and determine how
quickly populations adapt as a function of population size and mu-
tation rates. More generally, our method is shown to apply to a
broad class of models, in which number fluctuations are generated
by branching processes. Because of this versatility, the method of
model tuning may serve as a promising route toward unraveling
universal properties of complex discrete particle systems.

nonequilibrium statistical mechanics ∣ population genetics ∣ solitary waves ∣
speed of adaptation ∣ stochastic processes

The wave-like spread of discrete entities pervades our everyday
life. For example, the spread of ions, pathogens, and benefi-

cial mutations control the human heart beat, the yearly threat of
influenza, and evolutionary progress (1). A thorough understand-
ing of how these waves form and spread has numerous applica-
tions ranging from the control of chemical reactions (2, 3) to the
prediction of epidemic outbreaks (4, 5). Great research effort has
therefore been made on the question of how traveling waves
emerge in complex systems from the multiplicity of relatively
simple interactions, in particular the random dispersal of parti-
cles and reactions between particles. To simplify the analysis,
most theoretical studies have been neglecting number fluctua-
tions, which are inevitable in systems of discrete particles. How-
ever, when stochastic simulations became feasible, it was found
that those previously ignored fluctuations can have a strong
impact on the dynamics of waves (6, 7, 8). Simple models of
biological evolution (described below) serve as the prime exam-
ple for this drastic sensitivity on noise because they are dominated
by the few most fit individuals in a population, and they break
down if number fluctuations are neglected (6). With the added
difficulty of particle discreteness, the analysis of traveling waves
became one of the important challenges of statistical physics and
mathematical biology, which still defies systematic analytical
techniques.

Here, we show that an exact analysis of noisy traveling waves is
feasible when the nonlinear details of the underlying model are
chosen appropriately. The main idea is to tune the nonlinearities
to obtain the least difficult math, while retaining the universal
features of the model. Specifically, we show that it is possible
to close the hierarchy of moment equations using a suitably de-
signed nonlinear constraint on the dynamics. The tuned model
can then be used to extract the universal features of noisy traveling

waves, for which only heuristic approaches have been available
so far. The method of model tuning can be naturally generalized
to a wide range of unsolved stochastic nonlinear problems,
and therefore provides a promising tool to unraveling universal
features of nonequilibrium systems.

Noisy Wave Models
Simple models of evolution (6, 9–13) provide spectacular exam-
ples of noisy traveling waves because of their drastic sensitivity to
rare fluctuations in the wave tip. As illustrated in Fig. 1, these
waves describe the continual increase of growth rate, also called
fitness, due to spontaneous mutations in a finite population. The
wave speed, which is a measure for how quickly populations
adapt, increases without bound if number fluctuations are ne-
glected (6). To reproduce a steady state with constant wave speed
observed in stochastic simulations, any analysis has to incorporate
number fluctuations, at least heuristically by introducing an ad
hoc “cutoff” in the noisy tip of the wave (6). The relationship
between traveling speed and population size has been investi-
gated extensively in the recent literature (13–16), with some
controversy regarding the universal behavior (17, 18), in order
to interpret growth rate measurements in microbial evolution
experiments (19, 20).

We now take a closer look at the models underlying these fit-
ness waves to elucidate their characteristic structure. This will
lead us to a general model of noisy traveling waves, which forms
the basis of our analytic approach. Most evolution models imple-
ment the reproduction of individuals by a standard branching
process. The growth rate is subject to small variations due to
random mutations, which are modeled through a random walk,
for instance, by standard diffusion (6). In addition, all evolution
models contain a nonlinearity that limits the total population
size. This accounts for the fact that natural populations must stay
finite due to resource limitations.

The generic mathematical structure of such evolution models
can be framed as follows: The state of the population at time t is
described by a function ctðxÞ that represents the number density
of individuals having a growth rate x. The population is assumed
to evolve in discrete time steps of size ϵ, which is eventually sent
to zero in order to obtain a continuous time Markov process. Any
such time step consists of two substeps. The first one, illustrated
in Fig. 2A, embodies the mutational process, which leads to slight
variations in growth rates, and the process of reproduction, which
causes individuals with growth rate above the mean to increase
in relative number. In general, the combined effect of both
processes can be described by the equation

~ctþϵ − ct ¼ ϵLct þ
ffiffiffiffiffiffiffiffi
2ϵct

p
η; [1]
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which takes the concentration field from ct to an intermediate
value ~ctþϵ. The term ϵLct represents the expected change in den-
sity due to reproduction and mutations. This term is linear in the
concentration field because the number of offspring and mutants
per time step is proportional to the current population density.
The linear operator L is similar to a Hamiltonian in physics.
A specific example will be discussed later on. The stochastic termffiffiffiffiffiffiffiffi
2ϵct

p
η in Eq. 1 accounts for all random factors that influence the

reproduction process. The function ηðxÞ represents standard
white noise, i.e., a field of delta correlated random numbers,
ηðxÞηðyÞ ¼ δðx − yÞ, where f̄ denotes the ensemble average of a
random variable f . The amplitude ∝ ffiffiffiffiffiffi

ϵct
p

of the noise term in
Eq. 1 is typical for number fluctuations: Because of the law of
large number, the expected variance from one time step to the
next is proportional to the number ϵct of expected births or deaths
during one time step.

Because the reproduction step changes particle numbers,
another substep of population control is required to enforce a
constant population size. In most models and experiments (19,
20), this step is realized by a random culling of the population:
Individuals are eliminated at random from the population until
the population size constraint is restored; see Fig. 2B. Mathema-
tically, the selection step can be cast into the form

ctþϵ ¼ ~ctþϵð1 − λÞ; [2]

where λ represents the fraction of the population that has to
be removed to comply with the population size constraint. The
second substep completes the computational time step and takes
the concentration field from the intermediate state ~ctþϵ to the
properly constrained state ctþϵ.

The combination of noise and nonlinearity (via the population
constraint) has led many theoretical studies to engage in approx-
imations that are often hard to justify or to control†. Here, we
take a different approach by optimizing the form of the nonlinea-
rities in order to obtain an exactly solvable model. To this end, we
first generalize the above model in the following way: Instead of
enforcing a fixed population size, we allow for a whole class of
constraints. Specifically, we assume that the selection step en-
forces a constant value of 1 for the inner product of the concen-
tration field ctðxÞ and a new function uðxÞ,

1 ¼
Z
x
uðxÞctðxÞ≡ hujcti: [3]

Here, we have introduced the “bra-ket” notation commonly used
in quantum mechanics. The function uðxÞ defines the selection
rule and will be called selection function from now on. It will serve
as a “tuning wheel” in the following. If one chooses u ¼ N−1, one
obviously recovers the fixed population size constraint. For any
other choice, the population size will not be fixed. At best, one
obtains a steady state with a population size fluctuating around its
mean value, N̄.

Results
Model Tuning. Eqs. 1–3 define a class of models that generate
branching random walks subject to a global constraint. As we
argue in Discussion, these features not only characterize fitness
waves but furnish the essence of most noisy traveling waves.
The fundamental difficulty in analyzing such models becomes
apparent when we try to determine the typical dynamics by
averaging over the stochastic noise term. This can be done by
eliminating λ using the constraint, Eq. 3, sending ϵ to zero and
carrying out the ensemble average. This straightforward calcula-
tion, detailed in SI Appendix, yields

∂tc̄t ¼ ðL − 2uÞc̄t − hctjðL† − 2uÞuict [4]

for the mean concentration field c̄t. Eq. 4 reflects the usual
“horror” inherent to nonlinear stochastic problems: Moment
equations do not close in general. The mean depends on the
second moment, the second on the third, and so on. A whole hier-
archy of moment equations would have to be solved self-consis-
tently to make progress.

However, if we consider uðxÞ as a tunable function, Eq. 4 allows
for different kind of simplification. Suppose, the solution u�ðxÞ of

ðL† − 2u�Þu� ¼ 0 [5]

exists, and we choose u�ðxÞ as the selection function. For this par-
ticular model, the nonlinearity in Eq. 4 disappears identically.
Thus, the dynamics of the first moment becomes linear,

Growth rates (fitness) 

v

Mutations 

Birth 

Death 

Traveling Fitness Wave

Fig. 1. A paradigmatic example for noisy traveling waves are “fitness”
waves arising in simple models of evolution. The colored particles represent
individuals with characteristic growth rates, or fitnesses (horizontal axis).
Individuals can mutate, replicate (“birth”), and be eliminated from the
gene pool (“death”), as illustrated. These simple dynamical rules give rise
to a distribution of growth rates resembling a bell-like curve at steady
state, which propagates toward higher growth rates like a solitary wave.
The random fluctuations in the tails of the wave have precluded any rigorous
analysis in the past.

Fig. 2. A computational time step in fitness wave models consists of two
substeps. The first substep (Upper) is reproduction and mutations. Growth
favors the most fit individuals as indicated by the red arrows. The resulting
population density ~cðxÞ will generally violate the constrained of constant po-
pulation size. The second substep (Lower) restores the prescribed population
size by a random elimination of individuals from the population (this step
may also be interpreted as Darwinian selection). The result of the whole time
step is a constrained branching randomwalk of “genotypes,”which shifts the
fitness distribution toward higher fitness. †A remarkable exception is the exactly solvable “exponential” model by Brunet et al. (21)
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∂tc̄t ¼ ðL − 2u�Þc̄t; [6]

and hence solvable. In particular, if a steady state exists, the stea-
dy-state concentration field c̄ is in the null space of L − 2u�.
These observations suggest an algorithm to construct for a given
linear operator L, a solvable constrained branching walk model:
First, identify the selection function u�ðxÞ for which the averaged
dynamics becomes simple (i.e., linear). To this end, one has to
solve Eq. 5, which is in general a deterministic partial differential
equation. Second, solve the corresponding moment Eq. 6, which
is guaranteed to be linear for the chosen selection function u�ðxÞ.

At this point it is not clear whether Eqs. 5 and 6 have stationary
solutions, and, if so, whether these solutions can be used to ex-
tract universal features of traveling waves. Therefore, we apply
our recipe to a simple model of fitness waves. This model is
defined by the operator

Levo ¼ ðx − x0Þ þ v∂x þD∂2x ; [7]

which corresponds to a branching random walk on a reaction
rate gradient (22). It has been proposed as the simplest model
of asexual evolution in order to explain the fitness growth ob-
served in directed evolution experiments with large populations
of RNA viruses (6). The term ðx − x0Þct in Eq. 7 represents the
reproduction with x0 being the mean growth rate of the popula-
tion. The mutational process is modeled as a diffusion process
with diffusivity D. This diffusion approximation is justified
when mutations occur at a higher rate than the typical growth
rate difference they confer, which is an appropriate assumption
for viruses with large mutation rates. For microbes with lower
mutation rates, it is necessary to discretize the fitness landscape
and model mutations as fitness jumps of finite size. The discre-
tized scenario is slightly more complex as it has one additional
parameter, namely, the characteristic fitness effect of mutations,
but can be discussed in complete analogy to the present case of a
continuous fitness landscape (SI Appendix). Finally, the term v∂xct
appears in Eq. 7 because the dynamics of the fitness wave is
described in a reference frame moving with the average speed
v of the fitness wave.

Using Levo in Eq. 5, we find that the equation

D∂2xu� − v∂xu� þ xu� − 2u2� ¼ 0 [8]

specifies the selection function u�ðxÞ. Once u� is determined,
the mean concentration field follows as the stationary solution
of the linear Eq. 6. This second task requires no special effort
if the random walks are simple diffusion processes as in Eq. 7.
Then, c̄ and u� are simply related by

c̄ ∝ u�e−vx∕D; [9]

which generates Eq. 8 when inserted into Eq. 6. Thus, c̄ follows
from u� directly by multiplying with a decaying exponential. The
prefactor in 9 is set by the constraint Eq. 3.

The set of Eqs. 8 and 9 is controlled by just one parameter
vD−2∕3, as can be seen by introducing scaled variables. In Fig. 3,
we depict representative numerical solutions for both regimes of
large and small values of this control parameter and compare
with simulations of the tuned model. We find that both regimes
exhibit strongly different wave profiles. Whereas the mean con-
centration c̄ exhibits for the most part a Gaussian shape in regime
of large wave speeds (vD−2∕3 > 1), it is strongly skewed for small
speeds. Notice the nearly perfect agreement between numerics
and stochastic simulations, which confirms our theoretical frame-
work and demonstrates the feasibility of our model tuning
approach.

Interpretation of the Tuned Models. Among the three graphs
depicted in Fig. 3, only the function c̄ðxÞ has an obvious interpre-
tation as the fitness wave profile. Using the results obtained
in ref. 23, one can also give an intuitive interpretation of the func-
tions u�ðxÞ and gðxÞ≡ u�c̄. Both functions relate to the phenom-
enon of fixation. Imagine sampling an individual at position x
and labeling it with an inheritable label (neutral mutation). As
the dynamics proceeds, the abundance of this label will change
due to number fluctuations and the fitness of its carriers. Even-
tually, this label will either go extinct or become fixed in the
population. The latter case occurs if the descendants of the
labeled individual take over the population.

Fixation events are much more likely if the initially labeled
individual belongs to the fitter part of the population. We thus
expect the probability of fixation to be a steeply increasing func-
tion of x, similar to the function u�ðxÞ. Indeed, the interpretation
of u�ðxÞ is precisely that of a fixation probability of a particle at
position x, which is derived in SI Appendix. It is interesting to note
about Eq. 5 determining u�ðxÞ, that a very similar equation is
well-known to describe the survival probability of an uncon-
strained branching random walk (12). The only difference is the
prefactor of 2 instead of 1 in the nonlinearity of Eq. 5.

 -2  -1 0  1  2  3
x-x /10

-3

0

4

8

12

0

0.01

0.02

c/10
10

u (x)
*

c(x) g(x)

g(x)

*
8u(x)

o
-3

A

-5 5 10
0

0.025

0
0

1

2

g(x)

*
u(x)

x-x /10
-2

o

u (x)
*

c(x)

g(x)

B

c/10
3

Fig. 3. Stochastic simulations confirm exact theoretical predictions. The
mean population density c̄ and the functions u�ðxÞ, g≡ u� c̄ for two different
choices for the parameters of the evolutionmodel are depicted. The selection
function u�ðxÞ has the intuitive interpretation of a fixation probability;
see main text. The distribution g≡ u�c̄ indicates from which coordinate
the individual is sampled whose descendants will eventually take over the
front. To obtain the depicted curves, we first identified u�ðxÞ by solving
Eq. 8 numerically and then determined c̄ðxÞ by stochastic simulations of
the tunedmodel with selection function uðxÞ ¼ u�ðxÞ. Notice the near perfect
agreement between stochastic simulations (symbols) and theory (solid lines).
The control parameter for A and B was set to vD−2∕3 ¼ 5.17 (D ¼ 10−11) and
vD−2∕3 ¼ :464 (D ¼ 10−7), respectively.
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The product gðxÞ≡ u�c̄ also has an intuitive interpretation in
terms of a probability density‡. It represents the positional distri-
bution function of the individual whose descendants eventually
will take over the population (23). Even though there must surely
be such a “lucky” individual at any time, it cannot be described
deterministically, simply because the fixation event depends on
random future events. Thus, the position of the “common ances-
tor of future generations” can be described only probabilistically,
similar to the position of quantum mechanical particle.

Wave Speed.Next, we compare the evolution model with its tuned
counterpart, considering at first the relation between speed and
population size. From Fig. 4, it can be seen that deviations are
significant only for intermediate values of the control parameter
vD−2∕3 and disappear in the limit of large and small values. The
scaling v ∼ ln1∕3 N for large speeds has been observed previously,
but could be modeled only by introducing a cutoff into the mean-
field equations (6, 22). Our tuned model, which exhibits the
same scaling, can be used to rationalize and refine the heuristic
cutoff idea. To this end, consider the closed equation for the
mean population density,

∂tc̄t ¼ D∂2x c̄þ v∂xc̄þ ðx − x0Þc̄ −
2c̄2evxR
x0 c̄

2evx
0 ; [10]

which is obtained by eliminating u� in Eq. 8 using 9 and the
constraint (Eq. 3). The closed moment Eq. 10 has the form of
the deterministic approximation except for the last term, which
acts (for large population densities) similar to a cutoff: It is
negligible for small x and completely dominates for sufficiently
large x because of the exponential “amplification” factor in the
numerator. This leads to an asymptotic wave profile ∼e−vx in
the tip of the wave, just as found from a heuristic cutoff in the
reaction rate (7). The location of the cutoff can be determined
by balancing the last term in Eq. 10 with the reaction term
ðx − x0Þc̄. In Fig. 3, this crossover point can be identified as the
x value where u crosses over from exponential to linear. Notice
that the functional form of the cutoff is quite different from a step
function, which has been used as a cutoff in ref. 6 and most sub-
sequent studies. The peculiar nonlinear form of the cutoff turns
out to be essential for determining the leading order corrections
to the wave speed (and its fluctuations) in the limit of large
speeds, as we show in the SI Appendix. In the opposite limit of
small speeds v → 0, we find that the tuned model exhibits
v ∼N∕2, which can be derived from a perturbation analysis of
the moment equation (24). Surprisingly, the exact same asymp-
totic is measured for the original evolution model, suggesting uni-
versal behavior not only for large but also for small speeds.

Fluctuations. Another telling comparison concerns the fluctua-
tions of waves, rather than the mean density field. At first sight,
fluctuations in both models seem to be very different because
they arise from different statistical ensembles: Whereas wave
speeds fluctuate in the evolution model by Tsimring et al. (6), they
are perfectly constant in the tuned model. On the other hand,
population sizes are constant in the evolution model but fluctuate
in the tuned model. One might expect, however, that both ensem-
bles become equivalent in the universal large population size lim-
it, similar to different ensembles in the thermodynamic limit of
statistical mechanics. On the basis of this equivalence hypothesis,
one can try to infer the fluctuations in wave speed of the evolution
model (and thus wave diffusivities) based on the fluctuations of
the mortality rate λ in the solvable tuned model (SI Appendix).
This reproduces correctly the known diffusivity scaling Dwave∼

ln−3 N of Fisher–Kolmogorov waves (25) and predicts a unique
scalingDwave ∼ ln−1 N for evolutionary waves. We stress, however,
that these analytic results rest on the equivalence of the two de-
scriptions in the large population size limit, which remains to be
proven.

Discussion
As a case study for noisy traveling waves in general, our analysis
concentrated on simple, yet unsolved, models of evolution. These
models effectively describe branching random walks subject to a
global constraint (12): The branching random walk has the effect
of modeling the growth of the population and the mutations
through diffusion along the fitness axis. The global constraint
fixes the population size accounting for the fact that natural
population must stay finite due to resource limitations.

Even these simplest evolution models could not be solved
previously because of the nonlinearity associated with the rigid
constraint. However, although a limit on the population size is
natural, there is no obvious biological reason for demanding a
nonfluctuating population size. After abandoning the idealized
fixed population size constraint, we could show that a solvable
evolution model with a closed moment equation can be obtained
when the form of the constrained is tailored to satisfy Eq. 5. The
solvable model was found to reproduce the properties of the fixed
population size model very well, in particular, for large and small
population sizes (or wave speeds).

Our approach of model tuning not only applies to evolutionary
waves but to any solitary wave that is generated by a branching
random walk under a global constraint, or some other nonlinear-
ity, to keep particle numbers finite. Such models, which we may
term constrained branching random walks, share universal fea-
tures that depend only on the form of the linear part of the model,
as has been found in extensive computer simulations (8). The uni-
versality class is defined by the linear part of the model, which
describes a branching process and a random walk. For instance,
the important class of Fisher–Kolmogorov waves (26, 27) has a
reaction term that saturates at a constant value in the tip of the
wave, in contrast to the linear reaction rate gradient that charac-
terizes the above evolutionary waves. This difference results in a
different scaling of the wave speed and its dependence on number
fluctuations, which is correctly reproduced by our approach be-
yond the leading order cutoff approximation (7) (SI Appendix).
Wave speeds are also strongly dependent on the stochastic par-
ticle motion, which is diffusive only in the simplest cases. The
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Fig. 4. The relation between the scaled speed, vD−2∕3, and the scaled popu-
lation size N̄D1∕3 as obtained numerically for the tuned model (black line),
which is solvable, and from stochastic simulations of the original evolution
model (6) with a rigid population size constraint (red points). Both curves ap-
proach each other in the limit of large and small N. The data are consistent
with the asymptotic scaling v ∼ ln1∕3 N (see Inset) and v ∼ N for large and
small population sizes, respectively.

‡Note that, as required for a probability density, the integral of gðxÞ≡ u� c̄ over x is equal to
1 by virtue of the constraint (Eq. 3).
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spread of epidemic waves in the modern human population,
for instance, is dominated by the scale-free air transportation
network (5). This leads to superdiffusion (28), which can be in-
corporated in our framework by the use of a fractional diffusion
operator in L. Apart from these obvious extensions of our
approach, our method can also be applied to problems with
time-dependent scenarios LðtÞ (SI Appendix). This allows to ac-
count for dynamic driving forces and to study, for instance, waves
in temporally changing environments.

In summary, we have developed and applied an exact method
to determine the universal dynamics of noisy traveling waves.
By tuning nonlinear details of traveling wave models without
changing their universal features, we could close the hierarchy of
moment equations for a large class of noisy traveling waves.
These solvable models are amenable to a simple probabilistic in-
terpretation in terms of fixation processes. For large population
sizes (or weak noise), our description resembles mean-field the-

ory supplemented with a cutoff and thus provides a strong ratio-
nale for the heuristic cutoff approach (6, 7). The peculiar,
nonlocal form of the nonlinearity sets the precise location of
the cutoff, which is crucial for the correct prediction of the wave
speed and its fluctuations. More generally, the analysis presented
in this article is applicable to those reaction–diffusion problems in
which a global nonlinear interaction suffices to keep particle
numbers finite. This encompasses simple models of microbial
evolution and range expansions (Fisher–Kolmogorov waves),
for which we explicitly demonstrated the utility of our approach.
It will be interesting to see whether model tuning can be extended
to situations where interactions are inherently local, such as in the
problem of directed percolation (29).
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