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Delivery of blood-borne molecules and nanoparticles from the
vasculature to cells in the tissue differs dramatically between
tumor and normal tissues due to differences in their vascular
architectures. Here we show that two simple measures of vascular
geometry—δmax and λ—readily obtained from vascular images,
capture these differences and link vascular structure to delivery
in both tissue types. The longest time needed to bring materials
to their destination scales with the square of δmax, the maximum
distance in the tissue from the nearest blood vessel, whereas λ, a
measure of the shape of the spaces between vessels, determines
the rate of delivery for shorter times. Our results are useful for
evaluating how new therapeutic agents that inhibit or stimulate
vascular growth alter the functional efficiency of the vasculature
and more broadly for analysis of diffusion in irregularly shaped
domains.
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Blood vessels in tumors are highly irregular compared to those
in normal tissues (Fig. 1). Unlike normal vessels, tumor ves-

sels lack an orderly branching hierarchy from large vessels into
successively smaller vessels that feed a regularly spaced capillary
bed. Instead, tumor vessels are dilated, tortuous, and leaky and
leave unperfused regions of many sizes (1, 2). Here we address
the question of how such differences affect the delivery of blood-
borne agents such as nutrients, drugs, and imaging tracers—
essentially how much material entering the arterial supply
reaches a given location in the tissue and how long it takes to get
there. Numerous studies of normal tissues have exploited the or-
derly branching patterns of the arterial network and the highly
regular spacing of the capillary bed to devise powerful mathema-
tical relationships linking the typical spacing between blood
vessels to their ability to carry out their transport function (3–5).
Unfortunately, analogous relationships in tumors have been
more elusive due to their more chaotic vascular architectures that
lack an obvious length scale, such as the intercapillary spacing,
upon which a model can be built. Here we show that despite
the differences between tumor and normal vasculature, simple
scaling rules can be deduced that relate the number and spacing
of blood vessels to the quantity of material transported from
arterial supply to cell in a given time.

Transport from a feeding artery to a cell in the tissue is a
two-step process. First, materials flow near to their destination
via blood vessels. Then they cover the remaining distance from
the blood vessels to the cells via diffusion and convection. In the
case of solid tumors, convection is negligible everywhere except at
the tumor margins (6). The time required for diffusion over large
distances is often much longer than that needed for flow, because
diffusion times grow as the square of distance whereas flow times
are proportional to distance. Under normal conditions, blood
is distributed to the capillary bed through an orderly tree-like
system of conduits. From there, normal diffusion distances are
highly regulated, generally to less than 50 or 100 μm, so that no
cells exceed the distance that oxygen and other nutrients can dif-
fuse before being metabolized (7). To develop a more general set

of scaling rules for tumors and normal tissues, we must account
for the highly variable diffusion distances from vessel to cell.

Results
Tracer Clearance Studies Provide Insight into Diffusive vs. Convective
Transport.We first examined our previously reported results from
a tracer clearance study in animal tumors of about 1 mL volume
with the goal of linking them to the vascular architecture (Fig. 2)
(8). We isolated the effects of flow from those of diffusion by
injecting pulses of two different, nonspecific tracers into the same
organ: one that by virtue of its large molecular weight cannot pass
through the blood vessel walls, and another of smaller molecular
weight that diffuses freely through the vessel walls. We found that
the diffusible tracer cleared more slowly from a tumor than an
intravascular tracer and that both tracers showed greater disper-
sion of transit times in tumors than reported for a diffusible tracer
in a highly vascular, normal tissue—the myocardium (9).

How do we interpret these results? The time required for a
large molecule to traverse the organ depends only on the time
required to flow from inlet to outlet along its route within the
vasculature, whereas small molecules can flow part way, then dif-
fuse out of and back into a vessel one or more times, and finally
exit the tissue within the flow. A rapid rise and fall in outlet con-
centration indicates that all tracer molecules experience relatively
similar paths, whereas a more gradual decay suggests that flow
and diffusion times are more heterogeneous throughout the
tissue. The relatively rapid decay observed for a diffusible tracer
in normal tissue indicates that, compared to the tumors, all flow
paths are similar and the distances over which extravascular
diffusion takes place are relatively short. In contrast, we see the
more gradual clearance of an intravascular tracer from tumors as
evidence that blood flow heterogeneity, while present in all
tissues, is more pronounced in tumors than in normal tissues.
In tumors there is little correlation between blood flow velocities
and vessel diameters (10, 11). Moreover, tumors are known to
contain arteriovenous shunts that serve as pathways of low-flow
resistance and high velocity as well as a multitude of secondary
pathways that carry slower-moving blood (12). As a result, the
concentration of tracer in tumor vasculature may be expected
to vary with location and time as seen in the wider range of transit
times for intravascular tracers in tumors than for diffusible tracers
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in normal tissue (t−2.29�0.20 vs. t−3.1). The still slower clearance of a
diffusible tracer in tumors is a sign that large diffusion distances
exist in tumors (t−1.73�0.09 vs. t−2.29�0.20). The long-time tail of the
clearance arises from those parts of the tissue to which delivery of
nutrients and therapeutic drugs is most difficult—potentially a
significant fraction of the total tissue volume.

When the voids between vessels are sufficiently large, extravas-
cular diffusion can take so long that the concentration in the well-
perfused vessels becomes relatively uniform as evidenced by the
divergence at long times of the clearance curves for diffusive mo-
lecules from those of intravascular tracers. We provide analysis
(SI Discussion, Analytical Model of Diffusion) and simulations
(SI Discussion, Numerical Simulations for Specific Geometries)
that further demonstrate how diffusion can dominate the clear-
ance process even when significant flow heterogeneity is present.
This allows us to create computational models of extravascular
diffusion from high-resolution 3D images such as those in Fig. 1
even though these images do not contain explicit information on
the blood flow rates.

Computational Models of Diffusion Based on High-Resolution Images.
We create such models by assuming that the tracer satisfies the

three-dimensional time-dependent diffusion equation in the
space exterior to the blood vessels. The boundary condition is a
prescribed concentration at the vessel walls, and the initial con-
dition is a (different) uniform concentration throughout the
tissue space. For measured vascular network geometries, this
equation is solved approximately using a random-walk simula-
tion. Details are provided in the caption to Fig. 3. We show
(SI Discussion, Analytical Model of Diffusion) how these results
can be related to the tracer clearance experiments considered
earlier and other relevant pharmacokinetic measures such as
the half-life, peak concentration, and the area under the time-
concentration curve.

Fig. 3B shows results from random walks typical of those from
normal and tumor tissues. We note two features that deserve a
physical explanation relative to the vascular geometry: a transi-
tion to exponential decay at long times (e−t∕tc ), where tc is the time
constant, and an earlier interval characterized by an approximate
power law (t−α) with a drifting exponent α that differs somewhat
from the value 1∕2 usually associated with diffusion processes
at short times. Recognizing that short times correspond to short
distances from the vessels and long times to long distances we
hypothesize that the rates of clearance should be related to how
much of the tissue resides at a given distance from the nearest
blood vessel.

To further investigate how the time dependence of our results
depends on the geometry of the vasculature, we consider histo-
grams of the number of voxels at a given distance from the near-
est vessel nðδÞ as obtained from 3D images such as those in Fig. 1
(Fig. 3C). These statistics can be readily compiled and many have
been published (13). We note that nðδÞ for normal tissues rises
to a peak and then drops quickly as the maximum distance from
a vessel is approached. In contrast, nðδÞ in a typical tumor drops
more slowly toward a much larger maximum distance indicating
that diffusion times and the transition to exponential decay are
much longer than in normal tissue. We find that the time con-
stants obtained from best fits on the long-time behavior of our
random walks on vascular images correlate strongly with the
maximum distance to the nearest vessel δmax, averaging
tc ≈ 0.43δ2max∕Dm where Dm is the molecular diffusivity. In prin-
ciple, the constant of proportionality can depend weakly on the

Fig. 1. Vasculature in normal subcutaneous and tumor tissues. (A) Normal
capillaries appear as fine, nearly parallel vessels that are served by orderly,
branching arterial, and venous trees (26) (Scale bar ¼ 100 μm). (B) A mam-
mary carcinoma (MCaIV) was grown in mammary fat pad of a mouse using
a procedure described in (27) and imaged with Doppler optical frequency
domain imaging (28) (Scale bar ¼ 1 mm). Growth factors secreted by the
tumor promote dilation and tortuosity of the capillaries (a) outside the tumor
margin (dashed line). In contrast, the tumor vessels are highly disorganized
(b), leaving large, irregular avascular spaces (c).
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Fig. 2. Tracer clearance from vascular networks. Venous output concentra-
tions were measured following a brief arterial injection into breast tumor
that was grown in a rat with a single arterial supply and venous return
by a procedure described in Eskey et al. (8). Output concentrations are
shown for two blood-borne agents—one intravascularly restricted due to
its large molecular weight (IVT), the other free to diffuse from the vascula-
ture to the adjacent tissue (D2O). Due to the short duration of the input, at
long-times the output concentration approximates the residence time from a
perfect pulse hðtÞ. A typical trial is shown in which the tails of the outputs are
fit to power laws: hD2OðtÞ ∼ t−1.67 and hIVTðtÞ ∼ t−2.36. Averaging 2 trials on
each of 4 tumors we find hD2OðtÞ ∼ t−1.73�0.09 and hIVTðtÞ ∼ t−2.29�0.20 with a
tumor mass of m ¼ 1.06� 0.17 g (mean� SEM). For comparison, published
results (9) for a highly diffusible tracer (O15) in normal myocardium yielded
a narrower range of transit times (hO15 ðtÞ ∼ t−3.1).
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shape of the spaces between vessels, but we observed relatively
little dependence on the tissue type in our images. Even though
the tumors in our images were only a few millimeters on a side
and had developed only small voids we expect diffusion to take an
order of magnitude longer than in a normal tissue. The fact that
our tracer clearance experiments on 1 mL tumors did not show a
transition from power law to exponential decay within the dura-
tion of the experiments provides evidence of unperfused voids
measuring several millimeters across as would be expected for
tumors of this size (14, 15). We can safely predict that diffusion
times in clinically relevant tumors will extend over several orders

of magnitude in time. The maximum distance to the nearest
vessel is now seen to be an important length scale for extravas-
cular diffusion. However, other features—such as the shape of
the spaces in which material diffuses—can influence clearance.

Computational Models of Diffusion Based on Geometric Archetypes.
To illustrate how various geometries behave with respect to diffu-
sion and clearance, we ran simulations on several geometrical
archetypes covering a range of vascular arrangements observed
in vivo (Fig. 4A). We are particularly interested in the part of
the nðδÞ curve that corresponds to the approximate power-law
interval of the clearance curves, roughly δ < δmax∕3 (recalling
that diffusion times scale as t ¼ δ2∕Dm). We have already shown
that greater distances are linked to the exponential decay at long
times that depends solely on δmax. Defining λ as the slope of
log nðδÞ vs. log δ, we see that λ serves as a convexity index—
positive for convex shapes and negative for concave shapes
(Fig. 4B).

Normal capillaries, especially those in a highly structured tis-
sue such as those shown in Fig. 1A resemble an array of cylinders
with nearly uniform spacing l (Fig. 4A, Upper Left), similar to the
classical Krogh cylinder model used by August Krogh in 1919 to
analyze oxygen diffusion near a typical, normal blood vessel (3).
Placing the vessels in a random, but uniform distribution (Fig. 4A,
Lower Left) matches the gradual drop in nðδÞ observed for normal
vessels better than the Krogh model, but still yields a maximum
distance from cell to vessel δmax that only modestly exceeds the
mean distance between vessels. For both the regular and random
patterns we find that convex geometry, typical of the vicinity of a
single vessel, dominates. In contrast, tumor vasculature seldom
contains repeating patterns, but can show large regions devoid
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Fig. 3. Diffusion in the extravascular tissue of normal and tumor tissue. 3-D
images of the transparent window (600 × 600 × 150 voxels) similar to those in
Fig. 1 were obtained using Doppler optical frequency domain imaging for
normal capillaries and a mammary carcinoma MCaIV (SI Materials and
Methods). (A) Extravascular diffusion was simulated by random walks of
106 walkers, released at random voxels in the extravascular space. At each
time step, the walkers were allowed to move at random to an adjacent voxel.
(B) The rate at which walkers are absorbed at the vessels wall is JðtÞ. Power-
law behavior JðtÞ ∼ t−α appears as a straight line on the logðtÞ vs logðJðtÞÞ
axes. This situation corresponds to clearance following a step change in
the intravascular concentration where the mass transfer rate is proportional
to the rate at which walkers are absorbed by the vessels. The number of time
steps N is related to physical time by t ¼ Nl2∕2DmD (29) where l is the voxel
size (l≅4.7 μm for normal capillaries), Dm is the diffusivity of the tracer and
D ¼ 3 is the dimension of the space. We note that these clearance rates from
a uniform initial condition are related to the pulse clearance experiments
shown in Fig. 2 by hðtÞ ¼ −dJðtÞ∕dt ∼ t−α−1 in the power-law range.
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of functional vessels—that is, there are two distinct length scales
δmax and l such that δmax ≫ l where l is the mean distance between
vessels in vascularized regions, and δmax is the maximum distance
from cell to vessel. For distances between l and δmax we see that
nðδÞ decreases (λ < 0) as expected for a concave geometry. The
simplest model for such a region is a circular hole (Fig. 4A, Upper
Right). An alternative model suitable for irregularly shaped voids
may be found in the space around a percolation network (Fig. 4A,
Lower Right). In an earlier study of 2D images of vessels(16–18),
we found that tumor vessels resemble a mesh that has been hap-
hazardly connected so that the resulting network barely maintains
connectivity over long distances—the so-called percolation
threshold. Much is known about flow of fluid through the interior
of such networks from percolation theory that is often used for
studying the flow of oil and water through randomly fractured
rock. Here our use of the percolation-like geometry is somewhat
different. We focus on the diffusion of materials to and from the
surface of the network through the space surrounding the net-
work rather than the convective movement of materials within
the network. We see in Fig. 4B that nðδÞ calculated for the space
around a percolation network shows a gradual, power-law de-
crease between l and δmax that reflects the existence of avascular
voids of many sizes as we often find in tumors (similar results
from 3D networks are presented in SI Discussion, Numerical
Simulations for Specific Geometries). The randomness due to per-
colation is qualitatively different from that of a uniformly random
distribution (Fig. 4A, Lower Left)—not only does percolation
yield voids on widely different length scales, but it does so while
maintaining local connectivity between neighboring vessels, a
prerequisite for sustaining flow throughout the network.

Quasi-One-Dimensional Analytical Model of Diffusion in Complex Geo-
metries.We hypothesize that the geometrical exponent λ obtained
from 3-D images should be related to the time exponent α ob-
served in the random walk generated clearance curves. Whereas
λ drifts somewhat with respect to distance from the vessel for
most geometries, a best fit over the range δ < δmax∕3 is suffi-
ciently stable to provide a meaningful, consistent measure of
the shape of the space between vessels. We find that the simple
relationship α ¼ ð1 − λÞ∕2 holds well for both real and idealized
geometries (Fig. 5 A and B). Further, we show that a quasi-one
dimensional diffusion analysis yields exactly this result (deriva-
tion SI Discussion, Analytical Model of Diffusion, and supporting
simulations SI Discussion, Numerical Simulations for Specific
Geometries).

Here we consider diffusion in 1D, but we account for 3D
effects by allowing the area through which diffusion occurs to
increase or decrease along a δ-axis measured outward from the
blood vessels consistent with our observations that nðδÞ can
increase or decrease with distance depending on the geometry
of interest. A suitable form of the diffusion equation can be
written as

Dm

�
∂2Cðδ;tÞ

∂δ2
þ 1

nðδÞ
dnðδÞ
dδ

∂Cðδ;tÞ
∂δ

�
¼ ∂Cðδ;tÞ

∂t
;

where we consider diffusion of a tracer that does not undergo
binding or other chemical transformation. To examine spatial
scaling we assume that nðδÞ ∼ δλ where the well-known cylindrical
and spherical coordinates correspond to λ ¼ 1 and 2, respectively,
but where we let λ take on positive or negative, noninteger values
as needed. Solving for the flux of material at the vessel wall under
appropriate initial and boundary conditions yields exactly
α ¼ ð1 − λÞ∕2 for λ < 1. Remarkably, our numerical simulations
(SI Discussion, Numerical Simulations for Specific Geometries)
show that this result is robust even when the power-law exponents
α and λ are not constant but drift gradually as we have observed,
that is, αðtÞ ≈ ð1 − λðδÞÞ∕2 where t ¼ δ2∕Dm.

Application of Geometric Measures to Vascular Geometry. We now
have two measures of the vascular geometry—δmax, the charac-
teristic length scale that defines the duration of the longest-last-
ing diffusion processes, and λ, a measure of the shape of the space
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Fig. 5. Geometrical and diffusion parameters in normal and tumor tissues.
The convexity indices and the diffusion exponents are calculated from arti-
ficial structures (A) and from 3D images of several tissue types (B). Values of λ
are based on the slope of logðδÞ vs. logðnðδÞÞ over the range δ < δmax∕3,
whereas α is obtained from the corresponding interval time on the clearance
curves t ¼ δ2∕Dm. The equation α ¼ ð1 − λÞ∕2 is shown to closely predict
the relationship in all cases. Panel C shows a parametric map for various
tissue types of the geometrical measures, δmax and λ, that govern extravas-
cular diffusion. The icons below the convexity axis indicate simple examples
of concave, planar, and convex geometries. The array of cylinders represents
a regular array of cylindrical vessels on square centers—shown for two ratios
of vessel radius to vessel spacing. The classical Krogh cylinder geometry (3)
is also shown for two ratios of the vessel diameter to radius of the surround-
ing tissue cylinder. Ten realizations are shown for 2D (200 × 200) and 3D
(64 × 64 × 64) percolation clusters at the critical threshold. Results for 6-
generation realizations of the Koch curve and Sierpinski carpet are shown.
Numerical methods in SI Discussion, Numerical Simulations for Specific
Geometries. MCaIV is a mammary carcinoma. U87 is a human glioma.
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between vessels that governs the rate of transport during shorter
time intervals when the majority of the material is moved. We
propose that, taken together, δmax and λ capture the essential
features of extravascular diffusion for any tissue. The parametric
map in Fig. 5C shows these measures for normal and tumor
tissues grown in three anatomical locations. Not surprisingly, nor-
mal tissues show more uniform vascular spacing with a geometry
similar to the traditionally used model—a regular array of cylin-
ders. In contrast, most tumors are in the upper left and show
more scatter: that is, they have large, irregular unperfused regions
that are more concave than is typical for normal tissues. More-
over, our results show that some tumors, such as the early stage
U87 glioma in this study, show less abnormality than would
be expected in larger tumors. The vascular geometry in tumors
typically falls in the range of convexity that is better modeled
by spherical holes or percolation networks. We propose that
percolation provides the best overall model for tumor vasculature
by mimicking the observed architectural heterogeneity as well
as the flow heterogeneity as seen in our reexamination of the
isolated tumor experiments. We see that δmax and λ can be linked
directly to the functional efficiency of the vasculature, are simple
enough to be easily conceptualized and can be estimated from
information readily available in the clinic such as pathology slides
or vascular images.

Discussion
The results of this study should be useful for assessing the delivery
of traditional cytotoxic therapy following changes in tumor
vasculature following antiangiogenic treatment—a process we
have coined “vascular normalization (2, 19). As we learned from
preclinical and clinical studies, vascular density alone is not an
adequate predictive marker for the success of antiangiogenic
therapy used alone or in combination with cytotoxic therapy (20).
Drug delivery can be improved by reducing the distance to the
nearest vessel and by ensuring that blood flow is sufficiently uni-
form in the vascular network so that each vessel is well-perfused.

These goals can be achieved by either recruiting blood vessels
into previously unperfused regions or by redirecting flow from
well-perfused vessels to poorly perfused vessels. Because we can-

not expect antiangiogenic drugs to promote significant growth of
new vessels, we must consider ways that treatment can restore
flow to vessels that may be temporarily unperfused. Antiangio-
genic treatment is known to reduce vascular permeability and
interstitial fluid pressures within the tumor that may allow unper-
fused vessels to regain flow (2, 21), thus possibly spanning unper-
fused voids and reducing δmax. Another approach would be to
open compressed vascular pathways using fractionated radiation
therapy or cytotoxic agents, which can relieve compressive me-
chanical stresses on the vessels by reducing the numbers of nearby
cancer cells or the density of the extracellular matrix (22, 23).
The goal of improving flow in low-flow regions might be achieved
by selectively pruning redundant vessels, diverting blood to where
it is most needed. Antiangiogenic treatment has been shown to
reduce the tortuosity and diameter of tumor vessels (15, 24, 25).
Whereas decreased tortuosity has the obvious benefit of shorten-
ing the flow pathways, diameter reduction has more subtle impli-
cations. Smaller vessels generally offer greater resistance to flow,
but bring the promise of tighter regulation and uniformity of
flow throughout the network. Our results provide a theoretical
underpinning for how vascular normalization by antiangiogenic
treatment, which was originally intended to starve the tumor of
nutrients, can improve delivery of blood-borne agents (2, 19).

Materials and Methods
The Doppler optical frequency domain and multiphoton imaging methods
used to image the vasculature are described in SI Materials and Methods.
Analytical derivations and the methods used for numerical simulations are
detailed in SI Discussion, Analytical Model of Diffusion and SI Discussion,
Numerical Simulations for Specific Geometries, respectively.
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