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Abstract

Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen.
Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and
reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated
that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of
zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that
module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21,
and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have
investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-
penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was
fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results
showed that this chimeric Mb protein is stable and forms almost the same heme environment and a-helical structure as
human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to
zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric
Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the
design and production of novel functional proteins.
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Introduction

Globins are iron porphyrin complex (heme)-containing proteins

that bind reversibly to oxygen (O2) and, as such, play an important

role in respiratory function. Neuroglobin (Ngb) is a recently

discovered globin found in the vertebrate brain that has a high

affinity for oxygen [1–3]. Ngb is widely expressed in the cerebral

cortex, hippocampus, thalamus, hypothalamus, cerebellum, and

retina [1,4–6]. It was recently suggested that mammalian Ngb

might be involved in the neuronal response to hypoxia and

ischemia [7–12]. Mammalian Ngb expression has been reported

to increase in response to neuronal hypoxia in vitro and to ischemia

in vivo [7,8,12]. Neuronal survival after hypoxia or oxidative stress

was reduced by inhibiting Ngb expression with an antisense

oligodeoxynucleotide and was enhanced by Ngb overexpression,

supporting the notion that mammalian Ngb protects neurons from

hypoxic-ischemic insults [7,9,11]. Mammalian Ngb has been

reported to protect the brain from experimentally induced stroke

in vivo [8,10]. We previously found that human Ngb binds

exclusively to the GDP-bound form of the a-subunit of

heterotrimeric G protein (Gai) and acts as a guanine nucleotide

dissociation inhibitor (GDI) by inhibiting the rate of exchange of

GDP for GTP on Gai [13–15]. Recently, we used a protein

delivery reagent, Chariot [16], to investigate whether the GDI

activity of human Ngb plays an important role in its neuropro-

tective activity under oxidative stress conditions. As a result, we

demonstrated that the GDI activity of human Ngb is tightly

correlated with its neuroprotective activity [17].

Although Ngb was originally identified in mammalian species, it

is also present in non-mammalian vertebrates, including the

zebrafish [18,19]. Mammalian and fish Ngb proteins share about

50% amino acid sequence identity. Fish Ngb has oxygen-binding

kinetics similar to mammalian Ngb [19]. We previously showed

that zebrafish Ngb lacks GDI activity and that zebrafish Ngb

cannot rescue cell death significantly under oxidative stress

conditions as compared with human Ngb [17,20,21].

Unlike the genes of prokaryotes whose coding sequences are

continuous, the coding sequences of eukaryotic genes have been found

to be present in blocks, ‘exons’, separated by intervening noncoding

sequences, ‘introns’. Gilbert and Blake hypothesized that exons encode

functional and structural units, and that new functional proteins have

evolved through the selection of various combinations of these units

that are produced by unequal crossing-over on introns—a process that

is termed ‘exon shuffling’ [22,23]. Using a diagonal plot of all of the
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distances between the a-carbon atoms, Gō demonstrated that there is a

correlation between protein structure and exon pattern, and found that

the ‘modules’, which could be called compact structural units,

correspond to the exons [24]. The correspondence of the ‘modular’

boundaries with the positions of introns in globins, lysozyme,cyto-

chrome c, and other proteins suggests that exons may have behaved as

evolutionary units to produce new proteins by combining various exons

through the mechanism of exon shuffling [24–26]. The genes of both

human and zebrafish Ngb are made up of four exons interrupted by

three introns, and exons 1, 2, 3, and 4 encode compact protein

structural ‘modules’, termed M1, M2, M3, and M4, respectively [18–

20,24].

Previously, we engineered a chimeric ZHHH Ngb protein, in which

module M1 of human Ngb was replaced by that of zebrafish Ngb, and

showed that this chimeric ZHHH Ngb forms almost the same structure

as human Ngb and acts as a GDI for Gai in a manner similar to

human Ngb [20]. We showed that protein transduction of chimeric

ZHHH Ngb, but not zebrafish Ngb with a protein delivery reagent,

Chariot, rescued PC12 cell death caused by hypoxia/reoxygenation

[17]. Moreover, we discovered that chimeric ZHHH Ngb protects

PC12 cells against oxidative stress-induced cell death even in the

absence of Chariot [21]. By using fluorescein isothiocyanate (FITC)-

labeled Ngb proteins, we demonstrated that both zebrafish and

chimeric ZHHH Ngb could penetrate cell membranes in the absence

of Chariot [21]. This finding suggested that module M1 of zebrafish

Ngb is essential for protein transduction into cells, because both the

zebrafish and chimeric ZHHH Ngb proteins share this module.

Furthermore, we recently showed that residues Lys7, Lys9, Lys21, and

Lys23 in module M1 of zebrafish Ngb are crucial for protein

transduction activity [27].

The objective of this study was to investigate whether module

M1 of zebrafish Ngb can be used as a building block to create

novel cell-membrane-penetrating, folded proteins. To that end, we

engineered a myoglobin (Mb) variant, hereafter termed ‘chimeric

Mb’, in which the M1 module of zebrafish Ngb was fused to the

N-terminus of full-length human Mb, as shown in Figure 1, and

characterized its structural and functional properties. Our results

showed that chimeric Mb is stable and forms almost the same

heme environment and secondary structure as the human Mb

protein. In addition, we demonstrated that chimeric Mb has a cell-

membrane-penetrating activity similar to zebrafish Ngb. More-

over, we tried to identify negatively-charged cell surface molecules

that can interact with the Lys residues of either zebrafish Ngb or

chimeric Mb for protein transduction. We show that glycosami-

noglycan is crucial for the cell-membrane-penetrating activity of

chimeric Mb, as well as zebrafish Ngb. These results enable us to

conclude that such module substitutions represent a potent

strategy to design and produce stable functional proteins.

Results and Discussion

Purification and association properties of chimeric Mb
The chimeric and human wild-type Mb proteins, including a

COOH-terminal tag of six histidine residues (six-His tag), were

Figure 1. Schematic representation of preparation of expression constructs encoding chimeric Mb and wild-type Mb. The primers
used for PCR were as follows. Primer 1: 59- GGAATTCCATATGCTCAGCGACGGGGAATGGCAGTTGGTGCTGAACG-39 ; primer 2:
59- GCCGCTCGAGGCCCTGGAAGCCCAGCTCCTTGTAGTTGGAGGCCATGTCC-39; primer 3: 59- CGGCCAAGCTTGGGCTCAGCGACGGGGAATGG-
CAGTTGGTGCTGAACG-39; primer 4: 59- GGAATTCCATATGGAGAAGCTGTCTGAAAAAGATAAGGGTCTCATCCGGGACAGCTGGG-39; primer 5:
59- CGGCCAAGCTTCGTGAACAAAACGATTCCATGTGGCACCTTGTTCTTCCCCAGACTCTC-39.
doi:10.1371/journal.pone.0016808.g001

Creation of a Novel Protein by Module Substitution
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expressed in E. coli and purified, and their molecular size (expected

molecular size: 22 kDa (chimeric Mb), 18 kDa (wild-type Mb)) and

purity were confirmed by 15.0% SDS–polyacrylamide gel

electrophoresis (SDS-PAGE) (Figure 2). The association properties

of chimeric Mb were examined by gel filtration over a calibrated

FPLC Superdex 200 column. As shown in Figure 3, chimeric Mb

eluted mainly at a fraction corresponding to the monomer

(22 kDa).

Electronic absorption spectra of chimeric Mb
Initially, we determined the effects of the M1 module on the

electronic state of the heme by measuring the absorption spectra of

the chimeric Mb protein. As shown in Figure 4, the UV-visible

spectra of the ferric, ferrous deoxy, and ferrous carbon monoxide-

bound (ferrous-CO) forms of chimeric Mb were nearly identical to

those of human wild-type Mb. In addition, the wavelengths and

extinction coefficients at the absorption maxima for chimeric Mb

were almost the same as those for the wild-type protein,

demonstrating that the heme environment in chimeric Mb was

almost the same as that in wild-type Mb.

CD spectra of chimeric Mb
Next, to examine the effects of module M1 attachment on the

secondary structure of globin, we measured the far UV CD spectra

of the ferric forms of chimeric Mb, human wild-type Mb and

zebrafish wild-type Ngb. As shown in Figure 5, human wild-type

Mb and zebrafish wild-type Ngb exhibited two negative broad

peaks around 222 and 208 nm, which are characteristic of an a-

helical structure. These negative peaks were also observed in

chimeric Mb (Figure 5). The a-helical content of the chimeric Mb

protein was estimated to be 74%, which is almost the same as

those of human wild-type Mb (74%) and zebrafish Ngb (69%).

These results showed that the secondary protein structure was

insensitive to attachment of the module M1.

Denaturation properties of chimeric Mb
Alterations in equilibrium stability caused by the attachment of

M1 were quantified in a GdnHCl-induced denaturation experi-

ment. The GdnHCl denaturation process was followed by

monitoring ellipticity at 222 nm, which reflects structural changes

in the whole protein. As shown in Figure 6, the ferric forms of

wild-type and chimeric Mb showed cooperative transition curves.

The transition curve for GdnHCl denaturation of chimeric Mb

was similar to that for human wild-type Mb, indicating that the

globular structure of chimeric Mb was as stable as that of wild-type

Mb.

Cell-membrane-penetrating activity of chimeric Mb
We previously showed that wild-type zebrafish Ngb labeled with

FITC could translocate into cells [21]. Here we evaluated the

effects of module M1 on the translocation properties of wild-type

Mb. The chimeric and wild-type Mb proteins were fluorescently

labeled to assess their transduction efficiency in living cells.

Figures 7A and 7B show that chimeric Mb had translocated

through the cell membrane after 6 h of incubation. In contrast,

wild-type Mb had not translocated into HeLa cells even after 24 h

of incubation (Figure 7B). Figure 7C shows that the translocation

efficacy of chimeric Mb is almost the same as that of zebrafish

Ngb. Moreover, western blot analyses of lysates of transduced cells

demonstrated that intact chimeric Mb was delivered to the cytosol

(Figure 7D).

Glycosaminoglycan is crucial for the cell-membrane-
penetrating activity of zebrafish Ngb and chimeric Mb

BETA2/NeuroD and human immunodeficiency virus type 1

(HIV-1) TAT (transactivator of transcription) proteins permeate

cells owing to the presence of arginine (Arg)- and lysine (Lys)-rich

protein transduction domains [28–30]. The sequence of zebrafish

Ngb module M1 shares several conserved Arg and Lys residues

Figure 2. SDS-PAGE analysis of chimeric and human wild-type
Mb. The samples were analyzed on a 15.0% SDS-polyacrylamide gel
and stained with Coomassie Blue. Molecular size markers are shown at
the left (in kilodaltons).
doi:10.1371/journal.pone.0016808.g002

Figure 3. Gel filtration chromatography of chimeric Mb on a
Superdex 200 column of the FPLC system. Chimeric Mb was
loaded onto the column equilibrated with 20 mM Tris-HCl and 150 mM
NaCl, pH 8.0, at 4uC. The optical density profiles were monitored at
280 nm. The elution volumes of ferritin (440 kDa), aldolase (158 kDa),
bovine serum albumin (67 kDa), ovalbumin (43 kDa), horse heart
myoglobin (17 kDa), and bovine cytochrome c (12 kDa) were 10.3,
12.2, 13.7, 14.9, 17.0, and 17.5 ml, respectively, and these data were
used for column calibration.
doi:10.1371/journal.pone.0016808.g003

Creation of a Novel Protein by Module Substitution
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with other fish Ngb proteins [21]. Moreover, we recently

performed site-directed mutagenesis of Arg and Lys residues

within the M1 module to identify amino acid residues critical for

protein transduction and showed that Lys7, Lys9, Lys21, and

Lys23 in module M1 of zebrafish Ngb are essential for protein

transduction activity [27]. Because it has been reported that

negatively-charged cell surface membrane-associated proteogly-

cans are required for internalization of BETA2/neuroD protein or

TAT peptide [31,32], we first tried to identify negatively-charged

cell surface molecules that can interact with the Lys residues of

zebrafish Ngb for protein transduction.

To investigate the interaction of Ngb with glycosaminoglycan

(GAG), we used a well-characterized wild-type Chinese hamster

ovary CHO cell line, CHO-K1, and two mutants deficient in

GAG synthesis, D-677 and A-745. Cell line D-677 has a single

mutation that affects both N-acetylglucosaminyltransferase and

glucuronosyltransferase activities, which are necessary for the

Figure 4. Electronic absorption spectra of the ferric (bold line),
ferrous deoxy (fine line), and ferrous-CO (dotted line) forms of
chimeric (A) and human wild-type Mb (B). The Q bands from 500
to 600 nm are enlarged by a factor of 5 on the perpendicular axis. The
spectra were recorded in PBS (pH 7.4) at ambient temperature (,20uC).
doi:10.1371/journal.pone.0016808.g004

Figure 5. Circular dichroism (CD) spectra in the far UV region of
the ferric form of chimeric Mb (bold line), human wild-type Mb
(fine line), and zebrafish wild-type Ngb (dotted line). The
concentration of each protein was approximately 5 mM on the basis of
heme content. The spectra were recorded in 50 mM sodium phosphate
buffer (pH 7.4) at 20uC.
doi:10.1371/journal.pone.0016808.g005

Figure 6. GdnHCl denaturation curves of wild-type and
chimeric Mb. Denaturation curves were measured for human (open
circle), and chimeric (closed circle) Mb. Molecular ellipticities at 222 nm
in the native and completely denatured states were normalized to 0
and 1, respectively. The concentration of each protein was 5 mM on the
basis of heme content.
doi:10.1371/journal.pone.0016808.g006

Creation of a Novel Protein by Module Substitution
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polymerization of heparan sulfate disaccharide chains, and thus D-

677 cells do not synthesize any heparan sulfate proteoglycans [33].

Moreover, the D-677 cell line produces approximately three times

more chondroitin sulfate than wild-type cells [33]. The A-745 cell

line lacks xylosyltransferase, an enzyme necessary for the initiation

of GAG synthesis, and does not produce detectable levels of any

proteoglycans [34]. As shown in Figure 8, zebrafish, but not

human, Ngb translocated into CHO-K1 cells. On the other hand,

zebrafish Ngb did not penetrate the cell membrane of either of the

deficient mutants, D-677 or A-745 (Figure 8), suggesting that

cellular uptake of zebrafish Ngb is dependent on cell-surface

proteoglycans. Figure 9 shows that chimeric Mb translocated into

CHO-K1 cells, but not into the two mutants deficient in GAG

synthesis, suggesting that protein transduction of chimeric Mb is a

cell-surface proteoglycan-dependent process as is that of zebrafish

Ngb.

Molecular design based on modular structures for the
creation of novel functional proteins

In the present study, we successfully engineered a novel cell-

membrane-penetrating Mb. Moreover, we previously prepared a

chimeric ZHHH Ngb protein, in which module M1 of human

Ngb was replaced by that of zebrafish Ngb, and demonstrated that

the chimeric Ngb protein can translocate into cells and protect

cells against cell death under oxidative stress conditions [17,21].

These results led us to conclude that module M1 is a structural and

functional unit that has the advantage in producing novel stable

functional proteins.

Previously, Ngb proteins fused to the basic Arg-rich protein

transduction domain of the HIV-1 TAT protein have been

reported to translocate into cells efficiently [35–37]. However,

whereas Zhou et al. reported that rat Ngb fused to TAT could

protect cells against apoptosis induced by hypoxia [37], Peroni et

al. did not observe protection of cells against the effects of

deprivation of oxygen and glucose by exposure to human Ngb

fused to TAT [36]. Fusion of Ngb to the TAT sequence might

block the binding of Ngb to Gai and/or induce changes in the

Ngb2Gai interaction, due to the presence of many positively-

charged residues within the TAT sequence. Because module M1

of zebrafish Ngb contains less basic residues than the TAT

sequence, protein design using module M1 of zebrafish Ngb may

have the advantage of retaining natural electrostatic protein-

protein interactions.

In addition, we previously fused NH2-terminal Rossmann fold

modules of human glyceraldehyde-3-phosphate dehydrogenase

(GapDH) (amino acids 1-148) to the N-terminus of full-length

human Mb to prepare a ‘modules(GapDH)-fused Mb’ protein

[38]. We showed that this modules(GapDH)-fused Mb protein

binds to heme in a stoichiometric 1:1 heme:protein ratio as does

wild-type Mb, and that the modules(GapDH)-fused Mb protein

has a heme environment similar to that of wild-type Mb [38].

Moreover, we demonstrated that the modules(GapDH)-fused Mb

protein can bind to the angiostatic form of human tryptophanyl-

tRNA synthetase (TrpRS) and stimulate its aminoacylation activity

as can wild-type GapDH [38]. It should be also noted that

phylogenetically older introns strongly correlate with module

boundaries in ancient proteins [39]. These modules of Ngb and

GapDH also correspond to exons interrupted by phylogenetically

older introns at the DNA level [40–43]. From our present results

on chimeric Mb, as well as our previous data on several module-

substituted proteins [17,20,21,38,44–47], we conclude that

module substitutions focused on phylogenetically older introns

will be useful for the design and production of novel functional

proteins.

Materials and Methods

Preparation of wild-type myoglobin (Mb) and chimeric
Mb

A cDNA fragment of human Mb was amplified by PCR using

human universal Quick-clone cDNA (Clontech, Palo Alto, CA).

The gene encoding full-length human Mb, including a COOH-

terminal tag of six histidine residues (six-His tag), was cloned into

prokaryotic expression vector pET-20b (Novagen, Madison, WI)

(Figure 1) [38]. Cys110 of human Mb was replaced by Ala to

prevent difficulties in protein purification [48]. In this study, we

denote this variant of human Mb as ‘‘wild-type’’. As shown in

Figure 1, PCR fragments of zebrafish Ngb module M1 (amino

acids 1–30) and human wild-type Mb were cloned into pET-20b

to produce a chimeric Mb protein, in which module M1 of

zebrafish Ngb (amino acids 1–30) was fused to the NH2-terminus

of full-length human wild-type Mb with the six-His tag. The

constructs were confirmed by DNA sequencing (FASMAC Co.,

Ltd., DNA sequencing services, Atsugi, Japan). E. coli strain BL 21

(DE 3) cells carrying each plasmid were grown in 2xTY culture

containing 100 mg/ml of ampicillin and 1.0 mM 5-aminolevulinic

acid (Wako Chemicals, Osaka, Japan) at 37C. Overexpression of

each Mb protein was induced in BL 21 (DE 3) cells at 37uC after

Figure 7. Transduction of human wild-type Mb or chimeric Mb
(CMb) into HeLa cells. (A,B) Images of FITC-labeled Mb or CMb in
HeLa cells. Each FITC-labeled (green) protein was applied at 1 mM to
HeLa cells seeded on glass in the presence of FM4-64 (red), a
fluorescent marker of endocytosis. The cells were then incubated for
6 h (A) or 24 h (B) under normoxic conditions. The living, unfixed cells
were directly observed by fluorescence microscopy. (C) Percentages of
transduced cells showing FITC signal after a 24-h incubation in the
fluorescence microscopy assays, from a random selection of fields
including at least one hundred cells in total. All data are expressed as
means 6 standard error of means (SEM) from three independent
experiments. ** P,0.01, one-way ANOVA. (D) Western blot analyses of
Mb and CMb, which were transduced into cells. Mb or CMb was applied
at 5 mM to HeLa cells. The cells were then incubated for 24 h. Protein
samples were analyzed on 18.0% SDS-polyacrylamide gels and by
Western blot analysis using anti-His monoclonal antibody. Molecular
size markers (in kilodaltons) are shown on the left.
doi:10.1371/journal.pone.0016808.g007
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treatment with 0.4 mM isopropyl b-D-thiogalactopyranoside

(IPTG) for a further 15 hours. Each protein with the attached

six-His tag was purified on a nickel affinity column (HisNBindH

resin; Novagen) from the supernatant of lysed cells using the

protocol provided by Novagen. Each purified protein was dialyzed

overnight against phosphate-buffered saline (PBS). Endotoxin was

removed from the protein solutions by phase separation using

Triton X-114 (Sigma-Aldrich, St. Louis, MO) [49,50]. Trace

amounts of Triton X-114 were removed by passage through

Sephadex G25 gel (GE Healthcare Biosciences, Piscataway, NJ)

equilibrated with PBS. The protein concentration was determined

spectrophotometrically using an extinction coefficient of

160 mM21cm21 at 409 nm for human ferric Mb [48].

Preparation of human and zebrafish Ngb
Plasmids for human and zebrafish wild-type Ngb were prepared

as described previously [13,20]. Overexpression of each Ngb

protein was induced in E. coli strain BL 21 (DE 3) after treatment

with IPTG, and each Ngb protein was purified as described

previously [13,17,20,21,27]. In brief, soluble cell extracts were

loaded onto DEAE sepharose anion-exchange columns equilibrat-

ed with buffer A (20 mM Tris-HCl, pH 8.0). Ngb proteins were

eluted from the columns with buffer A containing 75 mM NaCl

and further purified by passage through Sephacryl S-200 HR gel

filtration columns. Ngb proteins were next applied to a HiTrap Q

HP column (GE Healthcare Biosciences), eluted with a 0–500 mM

linear NaCl gradient in buffer A. Purified Ngb was dialyzed

overnight against PBS. Endotoxin was removed from the protein

solutions by phase separation using Triton X-114 (Sigma-Aldrich)

[49,50]. Trace amounts of Triton X-114 were removed by passage

through Sephadex G-25 gel (GE Healthcare Biosciences) equili-

brated with PBS. The Ngb concentration was determined

spectrophotometrically using an extinction coefficient of

122 mM21cm21 at the Soret peak.

UV-Visible spectra
Electronic absorption spectra of purified proteins were recorded

with a UV-visible spectrophotometer (UV-2450; Shimadzu,

Figure 8. Transduction of zebrafish Ngb (ZNgb) and human Ngb (HNgb) in CHO-K1 and glycosaminoglycan-deficient mutant cell
lines. (A,B) Images of FITC-labeled ZNgb and HNgb in CHO-K1 and glycosaminoglycan-deficient mutant cell lines. Each FITC-labeled (green) Ngb
protein was applied at 1 mM to cells seeded on glass in the presence of FM4-64 (red). The cells were then incubated for 6 h (A) or 24 h (B) under
normoxic conditions. The living, unfixed cells were directly observed by fluorescence microscopy. (C) Percentages of transduced cells showing FITC
signal after a 24-h incubation in the fluorescence microscopy assays, from a random selection of fields including at least one hundred cells in total. All
data are expressed as means 6 standard error of means (SEM) from three independent experiments. ** P,0.01, one-way ANOVA.
doi:10.1371/journal.pone.0016808.g008

Creation of a Novel Protein by Module Substitution
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Kyoto, Japan) at ambient temperature (,20uC). Spectra were

recorded in PBS (pH 7.4).

Circular dichroism (CD) spectra
CD spectra in the far UV region were measured with a

spectropolarimeter (J-805; JASCO Co., Tokyo, Japan) at 20uC.

The samples were measured at a concentration of approxi-

mately 5 mM in 50 mM sodium phosphate buffer (pH 7.4).

The path length of the cells used for the measurements was

1 mm. The molar ellipticity (deg cm2 dmol21) was determined

on a mean residue basis. The a-helix content (fH) was

calculated according to Chen et al. [51] by the following

equation:

fH~{(½H�222nmz2340)=30300:

Denaturation assays
Guanidine hydrochloride (GdnHCl)-induced denaturation ex-

periments were carried out in 50 mM sodium phosphate buffer

(pH 7.4), containing various concentrations of GdnHCl. The

solutions contained 5 mM protein and were incubated for at least

4 h. CD spectra from 200 to 250 nm were measured. The

fractional denatured population (fD) under each condition was

estimated by the following equation:

fD~(½H�222,N{½H�)=(½H�222,N{½H�222,D),

where [H]222,N, [H]222,D, and [H] represent ellipticities at 222 nm

in the native and denatured states, and under each GdnHCl

concentration, respectively.

Gel filtration chromatography
To measure the molecular sizes of proteins, gel filtration

chromatography was performed by using a Superdex 200 HR 10/

30 column for the FPLC system (GE Healthcare Biosciences).

Samples were loaded onto the column equilibrated with 20 mM

Tris-HCl, and 150 mM NaCl, pH 8.0, at 4uC.

Cell culture
HeLa cells (RCB0007) were obtained from the RIKEN Cell

Bank. HeLa cells were maintained in culture in Dulbecco’s

modified Eagle’s medium (DMEM) containing 4.5 g/L of glucose,

10% (v/v) fetal bovine serum (FBS), 100 U/ml of penicillin,

100 mg/ml of streptomycin, and 2 mM glutamine (all from

Invitrogen) in a humidified atmosphere containing 5% CO2 at

37uC. The medium was changed twice weekly, and the cultures

were split 1:8 once every week.

Chinese hamster ovary (CHO) cells (CHO-K1 cell lines: wild-

type; GAG-deficient, pgsA-745 (A-745); and heparan sulfate-

deficient, pgsD-677 (D-677)) were obtained from the American

Type Culture Collection (ATCC; Manassas, VA) and maintained

in F-12 nutrient mixture (Ham’s F-12) including 2.5 mM

glutamine, supplemented with 10% (v/v) FBS, penicillin

(100 U/mL), and streptomycin (100 mg/ml). The medium was

changed every 3 days, and the cultures were split at a 1:8 ratio

once every week.

Figure 9. Transduction of human wild-type Mb and chimeric
Mb (CMb) in CHO-K1 and glycosaminoglycan-deficient mutant
cell lines. (A) Images of FITC-labeled Mb and CMb in CHO-K1 and
glycosaminoglycan-deficient mutant cell lines after a 24-h incubation.
Each FITC-labeled (green) protein was applied at 1 mM to the cells
seeded on glass in the presence of FM4-64 (red). The cells were then
incubated for 24 h under normoxic conditions. The living, unfixed cells
were directly observed by fluorescence microscopy. (B) Percentages of
transduced cells showing FITC signal after a 24-h incubation in the
fluorescence microscopy assays, from a random selection of fields
including at least one hundred cells in total. All data are expressed as

means 6 standard error of means (SEM) from three independent
experiments. ** P,0.01, one-way ANOVA.
doi:10.1371/journal.pone.0016808.g009

Creation of a Novel Protein by Module Substitution

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16808



FITC labeling of Ngb and Mb proteins
Ngb or Mb was conjugated to fluorescein isothiocyanate (FITC;

Dojindo, Kumamoto, Japan) according to the instructions of a

FluoreporterH FITC protein labeling kit (Molecular Probes,

Eugene, OR). FITC-labeled Ngb or Mb was purified using G25

gel chromatography to eliminate free FITC. The concentrations of

protein and FITC dye in each purified FITC-labeled protein were

calculated on the basis of their absorbance at the Soret peak and

494 nm, respectively. The molar ratio of dye to protein in each

purified FITC-labeled protein was determined to be 0.9–1.3 FITC

dye molecules per molecule of protein.

Protein transduction observed by fluorescence
microscopy

HeLa cells were seeded at 26104 cells/ml in 35-mm glass-

bottomed dishes (Matsunami Glass, Osaka, Japan). When cells

were 60–70% confluent, each FITC-labeled Mb protein was

added to cells that had been washed in DMEM without serum, in

the presence of 1 mM FM4-64 (Molecular Probes, Eugene, OR), a

general fluorescent marker of endocytosis. Fresh DMEM without

serum was added and the cells were incubated at 37uC for 1 h;

FBS was then added to a final concentration of 2%. The cells were

incubated under normoxia at 37uC for the indicated time. HeLa

cells were washed with cold PBS twice, and the living, unfixed cells

were directly observed by fluorescence microscopy (Olympus

IX71, Tokyo, Japan).

CHO-K1, A-745, and D-677 cells were seeded at 16105 cells/

mL in 35-mm glass-bottomed dishes (MatTek Corp., Ashland,

MA) and were incubated for 48 h. Each FITC-labeled Ngb or Mb

protein was added to cells that had been washed in DMEM

without serum, in the presence of 1 mM FM4-64. Fresh DMEM

without serum was added and the cells were incubated at 37uC for

1 h; FBS was then added to a final concentration of 2%. The cells

were incubated under normoxia at 37uC for the indicated time.

Cells were washed with cold PBS twice, and the living, unfixed

cells were directly observed by fluorescence microscopy (Olympus

IX71).

Western blot analyses
HeLa cells were seeded at 16105 cells/ml in 35-mm plastic

dishes (Corning Inc, Corning, NY). When cells were 60–70%

confluent, chimeric Mb or human wild-type Mb was applied at

5 mM to cells that had been washed in DMEM without serum.

Fresh DMEM without serum was added and the cells were

incubated at 37uC for 1 h; FBS was then added to a final

concentration of 2%. The cells were incubated under normoxia at

37uC for 24 h. After HeLa cells were washed with cold PBS twice,

extracts of soluble proteins were prepared. Protein samples were

resolved by electrophoresis on 18.0% SDS-polyacrylamide gels.

Proteins were electroblotted onto Hybond-P PVDF membranes

(GE Healthcare) for 1 h. The membranes were incubated for 1 h

with mouse anti-penta-His monoclonal antibody (Qiagen, Valen-

cia, CA) in PBS. After being washed three times with PBS

containing 0.1% Tween20, the membranes were incubated with

an HRP-linked sheep anti-mouse Ig (GE Healthcare) for 1 h. The

membranes were again washed three times with the buffer, and

the proteins were visualized using ECLTM western blotting

detection reagents (GE Healthcare).
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