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Effects of asymmetric dimethylarginine on bovine retinal capillary
endothelial cell proliferation, reactive oxygen species production,
permeability, intercellular adhesion molecule-1, and occludin

expression
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Purpose: Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, is
associated with impaired endothelial dysfunction, such as chronic heart failure, hypertension, diabetes, and pulmonary
hypertension. The effects of ADMA on cell proliferation, reactive oxygen species (ROS) production, cell permeability,
intercellular adhesion molecule-1 (ICAM-1), and tight-junction protein occludin levels in bovine retinal capillary
endothelial cells (BRCECs) were investigated.

Methods: A cell proliferation assay was performed using the novel tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and an electron coupling reagent. Intracellular ROS levels
were determined using the fluorescent probe CM-H2DCFDA. Horseradish peroxidase was used for a permeability assay.
ICAM-1 and tight-junction protein occludin were assessed by western blotting and quantitative real-time PCR.

Results: Cell proliferation was significantly inhibited by ADMA. ADMA increased intracellular ROS generation in
BRCECs. The increased ROS production induced by ADMA was markedly inhibited by the angiotensin Il receptor-blocker
telmisartan, the angiotensin-converting enzyme inhibitor benazepril, the reduced form of nicotinamide-adenine
dinucleotide phosphate (NADPH) oxidase inhibitor diphenyliodonium (DPI), or the antioxidant and free-radical scavenger
N-acetyl-L-cysteine (NAC). ADMA significantly increased horseradish peroxidase (HRP) permeability in BRCECs.
Benazepril, telmisartan, DPI, and NAC downregulated cell permeability. ADMA markedly upregulated ICAM-1
expression in BRCECs, which were downregulated by telmisartan, DPI, and NAC. ADMA significantly downregulated
occludin expression in BRCECs. Benazepril and telmisartan upregulated occludin expression in BRCECs exposed to
ADMA.

Conclusions: Our results provide the first reported evidence that ADMA has potent adverse effects on cell proliferation,
intracellular ROS generation, cell permeability, levels of ICAM-1, and the tight-junction protein occludin. Angiotensin-
converting enzyme inhibitors, angiotensin II receptor blockers, and antioxidants are effective inhibitors of the adverse

effects of ADMA.

Asymmetric dimethylarginine (ADMA), an endogenous
competitive inhibitor of nitric oxide synthase, is generated in
the presence of type 1 protein arginine N-methyltransferase
(PRMT-1) and 1is metabolized by dimethylarginine
dimethylaminohydrolases (DDAHSs) [1]. Elevated ADMA
concentration in plasma is associated with impaired
endothelial dysfunction, such as in chronic heart failure,
hypertension, renal failure, diabetes, and pulmonary
hypertension [2-4]. ADMA is also related to endothelial
dysfunction in diabetic complications. Our previous studies
suggested that PRMT-1- and DDAH-induced ADMA
upregulation was involved in reactive oxygen species (ROS)-
and renin-angiotensin system (RAS)-mediated diabetic
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retinopathy (DR), which may be a novel mechanism for the
development or progression of DR [5]. Angiotensin-
converting enzyme inhibitor (ACEI), angiotensin II receptor
blocker (ARB), or antioxidants can be used to reduce ROS

production and lower ADMA concentrations, thus
ameliorating endothelial dysfunction and improving
prognosis in DR [5].

DR is a leading cause of acquired visual impairment in
working-age adults in developed countries [6]. The precise
mechanism underlying the progression of DR remains
unclear. Several biochemical abnormalities, such as excessive
nonenzymatic glycation [7], activation of the aldose reductase
pathway [8], activation of protein kinase C [9], and oxidative
stress [10], have been identified as being involved in the
pathogenesis of DR. Oxidative stress induced by
hyperglycemia is thought to play a significant role in DR and
to contribute to endothelial dysfunction [11]. Increases in
ROS level are correlated with increased leukocyte adhesion
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to the retinal vasculature (leukostasis) and breakdown of the
blood-retinal barrier (BRB) [12,13]. Breakdown of the BRB
and leukostasis are hallmarks of DR. Increased leukostasis in
the early stages of DR occurs through the upregulation of
intercellular adhesion molecule-1 (ICAM-1) [14]. Diabetes-
induced BRB breakdown is associated with reduced
expression of the tight-junction protein occludin, and with its
redistribution within the retinal vascular endothelium [15].

Recent studies indicated that ADMA regulates
endothelial permeability and endothelial barrier function
[16]. The present study was performed to investigate whether
ADMA affects cell proliferation, ROS production, cell
permeability, ICAM-1, and tight-junction protein occludin
expression in bovine retinal capillary endothelial cells
(BRCECs). Moreover, we observed the interfering effects of
ACEI, ARB, and antioxidants on the above changes, to assess
the role of ADMA in retinal capillary endothelial permeability
and endothelial barrier function.

METHODS

Cell culture: BRCECs were cultured as described previously
[17]. Briefly, BRCECs were cultured in endothelial cell
medium (ECM; ScienCell Research Labs, Carlsbad, CA)
consisting of 5% fetal bovine serum, 1% endothelial cell
growth supplement, and 1% penicillin/streptomycin solution.
Endothelial cells at passage 3—5 were used in the following
experiments, including the cell proliferation assay,
examination of ROS levels, permeability assay, western
blotting analysis, and quantitative real-time (RT)-PCR. The
cells were washed when at 80% confluence and were cultured
overnight with endothelial cell basal medium, consisting of
0.4% fetal bovine serum and 1% penicillin/streptomycin
solution. The cells were then incubated with 100 pM ADMA
(Sigma, St. Louis, MO) and 100 uyM ADMA plus 10 uM
benazepril (Sigma), 10 puM telmisartan (Sigma), 10 uM
diphenyliodonium (DPI, an reduced form of nicotinamide-
adenine dinucleotide phosphate [NADPH] oxidase inhibitor;
Sigma), or 10 mM N-acetyl-L-cysteine (NAC, an antioxidant
and free radical scavenger; Sigma). The control group was
cultured in endothelial cell basal medium, consisting of 0.4%
fetal bovine serum and 1% penicillin/streptomycin solution.
Cells were harvested after 24 h for western blotting analysis,
quantitative RT-PCR analysis, and examination of ROS
levels.

Cell proliferation assay: Cell proliferation assay was
performed using the novel tetrazolium compound, 3-(4, 5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS), and the -electron-
coupling reagent, phenazine ethosulfate (PES). PES has
enhanced chemical stability, which allows it to be combined
with MTS to form a stable solution. This convenient “one
solution” format is an improvement over the traditional
method, where phenazine methosulfate (PMS) is used as the
electron-coupling reagent, and PMS solution and MTS
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solution are supplied separately. The MTS tetrazolium
compound (Owen’s reagent) is bioreduced by cells into a
colored formazan product that is soluble in tissue culture
medium. This conversion is presumably accomplished by
NADPH or reduced form of nicotinamide-adenine dinucleotid
(NADH), produced by dehydrogenase enzymes in
metabolically active cells [18]. The quantity of formazan
product, as determined by measuring the absorbance at 490
nm, is directly proportional to the number of living cells in the
culture. Endothelial cells were plated in 96-well culture plates
at an optimal density of 1x10° cells/ml with 100 pl of culture
medium per well. After 3 days, cells were cultured with
endothelial cell basal medium, consisting of 0.4% fetal bovine
serum and 1% penicillin/streptomycin solution, overnight.
The cells were then incubated with 10 uM, 50 uM, 100 uM,
and 200 uM ADMA for 24-72 h. Then, 20 pl of CellTiter
96® AQueous One Solution Reagent (Promega, Madison, WI)
were pipetted into each well of the 96-well assay plates
containing the samples in 100 pl of culture medium. The plates
were incubated at 37 °C for 1-4 h in a humidified, 5% CO.
atmosphere. The optical density of each sample was
determined immediately on an enzyme linked immunosorbent
assay (ELISA) microplate reader (Wallac 1420; PerkinElmer,
Waltham, MA) at 490 nm. Samples were tested in duplicate.
The corrected absorbance at 490 nm (y-axis) was plotted
against the incubation time of cells with ADMA (x-axis).

Examination of reactive oxygen species levels in bovine
retinal capillary endothelial cells: Intracellular ROS levels in
BRCECs were determined using CM-H.DCFDA (Invitrogen,
Carlsbad, CA). Confluent BRCECs in 6-well plates were
collected, centrifuged, washed with phosphate-buffered saline
(PBS), which contained 1.06 mM monobasic potassium
phosphate, 155.17 mM sodium chloride, and 2.97 mM dibasic
sodium phosphate and incubated with 10 uM CM-H.DCFDA
at 37 °C for 30 min. BRCECs incubated with PBS and
dimethyl sulfoxide served as negative controls. The levels of
fluorescence were immediately determined by flow cytometry
(XL-4; Beckman-Coulter, Fullerton, CA).

Permeability assay. BRCECs (1x10° cells/ml) were plated in
double-chamber tissue culture plates (Transwell, 24-well
filter chambers with 0.4 pm pore size membrane; Costar,
Coring Inc., New York, NY). At 80% confluence, cells were
cultured with endothelial cell basal medium, consisting of
0.4% fetal bovine serum and 1% penicillin/streptomycin
solution, overnight. The cells were then incubated with
100 uM ADMA, and 100 uM ADMA plus benazepril
(10 uM), telmisartan (10 uM), DPI (10 uM), or NAC (10 mM)
for 24 h. Controls were cultured with endothelial cell basal
medium, consisting of 0.4% fetal bovine serum and 1%
penicillin/streptomycin solution.

For the permeability assay, horseradish peroxidase (HRP,
40 kDa; Sigma) was added to the upper chambers at a final
concentration of 50 pg/ml. Aliquots of 5 pl were collected
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TABLE 1. PRIMER SEQUENCES FOR QUANTITATIVE RT-PCR.

Gene Probe (5'-3') Forward primer (5'-3") Reverse primer (5'-3")
ICAM-1 CCACGGAGCAGCACCACGGT GTGACCAGCCCAAGTTGT TCCCGTTTCAGCTCCTTCT
occludin AAACCGCTTGTCATTCACTTTGCCA  GGGACAAGGAACACATTTATGAT TGGATTTATAGGAAGACTCTGGAT
18S rRNA CGCCTGCTGCCTTCCTTGGATGTG AGTCGCCGTGCCTACCAT CGGGTCGGGAGTGGGTAAT
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Figure 1. Cell proliferation analysis of bovine retinal capillary endothelial cells. Cell proliferation was significantly inhibited by asymmetric
dimethylarginine (ADMA) for 24-72 h. In group A, bovine retinal capillary endothelial cells (BRCECs) were cultured in endothelial cell
medium (ECM) with 0.4% fetal bovine serum (FBS). In groups B throught E, BRCECs were cultured in ECM with 0.4% FBS plus 10 uM,
50 uM, 100 uM, or 200 pM ADMA. Results are expressed as absorbance at 490 nm and represent means+SEM, n=8: *p<0.05 versus group
A, **p<0.01 versus group A, #p<0.05 versus group B, ##p<0.01 versus group B, +p<0.05 versus group C, ++p<0.01 versus group C, &p<0.05

versus group D, &&p<0.01 versus group D.

from the lower chamber after 15 min, 30 min, 45 min, and 1
h. The concentrations of HRP were determined in 5 pl aliquots
added to 195 pl of freshly made substrate (o-
phenylenediamine, 400 pg/ml in 0.05 mM citric acid and
0.1 mM phosphate, with 0.012% hydrogen peroxidase, pH
5.0). The reaction was terminated by the addition of 50 pl of
0.3 mM sulfuric acid after 15 min, and optical density was
determined using a microplate reader (PerkinElmer, Boston,
MA) at 490 nm. A standard curve was prepared from HRP
serial dilutions in each experiment, and the samples were
diluted such that all readings fell within the linear range of the
standard curve. The readings for each tracer were then
converted to nanograms per milliliter by comparison with
standard curves generated using tracer samples taken at time
zero. Permeability was calculated as flux: (ml/cm?)=(X)B/
[(Y)i*A], where (X)B (pg) is the level of HRP in the lower
chamber, (Y)i (ug/ml) is the concentration of HRP in the upper
chamber, and A (cm?) is the effective surface area of the insert.
Each experiment was repeated at least three times.

Western blotting analysis of intercellular adhesion
molecule-1 and occludin expression. Cells were sonicated in
Tris-buffered saline (TBS) containing protease inhibitors.
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After sonication, the lysate was centrifuged (12,000x g, 15
min, 4 °C) and the supernatant was transferred to a fresh tube.
The protein content was quantified with a Pierce protein assay
kit (Pierce, Rockford, IL). Samples of equal concentration
(80 pg/lane) were separated on 10% sodium dodecyl sulfate
polyacrylamide gel electropheresis (SDS-PAGE) and
transferred onto polyvinylidene difluoride (PVDF) transfer
membranes (Immobilon P; Millipore, Billerica, MA). The
membranes were blocked in TBS containing 0.1% Tween-20
and 5% nonfat dry milk for 2 h, followed by overnight
incubation at 4 °C with polyclonal antibodies for ICAM-1
(Abcam, Cambridge, UK) or occludin (Invitrogen, Carlsbad,
CA) at 1:1,000 dilution. After rinsing in TBS with Tween-20
(TBST), the membranes were incubated for 2 h with an HRP-
conjugated secondary antibody against mouse IgG (Dako,
Glostrup, Denmark) in a 1:1,000 dilution and rinsed with
TBST, and bands on the blots were then detected using
SuperSignal West Pico Chemiluminescent Substrate (Pierce).
The densities of the bands were analyzed using Gel-Pro
Analyzer (Media Cybernetics, Bethesda, MD). The
expression of f-actin (1:5000; monoclonal anti-B-actin;
Sigma) was used as an internal control.
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Figure 2. Intracellular reactive oxygen species generation in bovine retinal capillary endothelial cells for 24 h, as determined using the
fluorescent probe CM-H2DCFDA. symmetric dimethylarginine (ADMA) increased intracellular reactive oxygen species (ROS) generation
in bovine retinal capillary endothelial cells (BRCECs). The increased reactive oxygen species (ROS) production induced by asymmetric
dimethylarginine (ADMA) was markedly inhibited by benazepril, telmisartan, diphenyliodonium, or N-acetyl-L-cysteine. In group C, BRCECs
were cultured in endothelial cell medium with 0.4% fetal bovine serum. In group A, BRCECs were cultured in endothelial cell medium with
0.4% fetal bovine serum plus ADMA (100 uM). In group “A+B,” BRCECs were cultured in the same media as A and 10 pM benazepril. In
group “A+T,” BRCECs were cultured in the same media as A and 10 uM telmisartan. In group “A+D,” BRCECs were cultured in the same
media as A and 10 uM diphenyliodonium. In group “A+N,” BRCECs were cultured in the same media as group A and 10 mM N-acetyl-L-
cysteine (mean+SD, n=3). **p<0.01 versus group C, ##p<0.01 versus group A.

Quantitative real-time PCR: After removal of the culture
medium, cells were washed with PBS, then combined with the
TRIzol reagent (Invitrogen). Extracted RNA was then
quantified spectrophotometrically at 260 nm and integrity was
assessed by agarose-formaldehyde gel electrophoresis. Total
RNA samples were treated with DNase I (RQ1; Promega) and
then reverse transcribed using a ReverTra Ace RT-PCR kit
(Toyobo, Osaka, Japan) according to the manufacturer’s
instructions. Primers were designed using DNA Star software
according to the guidelines supplied with the software. The
primer sequences were described in Table 1.

To exclude DNA interference, primers were designed to
span at least one intron. To quantify the amounts of specific
mRNA (mRNA) in the samples, we generated a standard
curve for each run using a plasmid (pGEM-T Easy Vector;
Promega) containing the gene of interest as a standard. This
enabled standardization of the initial mRNA content of cells
relative to the amount of 18S rRNA. PCR assays were
performed using SLAN® RT-PCR system (Hongshi,
Shanghai, China). The quantitative RT-PCR solution
consisted of 2.0 pl of diluted RT-PCR product, 0.5 pl of each
primer pair, 25 ul of RT-PCR Master Mix (Toyobo, Osaka,
Japan), 1.0 pl of fluorogenic probe, and 10 pl of PCR-grade
water. The amplification conditions for ICAM-1 and
occluding were as follows: 94 °C for 3 min, followed by 40
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cycles of 94 °C for 20 s, 55 °C for 20 s, and 72 °C for 20 s.
The results of quantitative RT-PCR were analyzed using the
relative standard curve method with the SLAN software (v.
5.0). Values were normalized relative to the relative amounts
of 18S rRNA, which were obtained from a similar standard
curve.

Statistical analysis: All results are expressed as means
+standard deviation unless otherwise indicated. Statistical
evaluation was performed with the SPSS software (ver. 14.0
for Windows; SPSS, Chicago, IL) using ANOVA with
multiple comparisons between groups and Pearson’s
correlation test. In all analyses, p<0.05 was taken to indicate
statistical significance.

RESULTS

Cell proliferation assay: Cell proliferation was significantly
inhibited after incubation of BRCECs with 10 uM, 50 uM,
100 uM, or 200 uM ADMA for 24-72 h. Moreover, cell
proliferation showed more significant inhibition with
increasing ADMA concentration (Figure 1).

Reactive oxygen species determination: After incubation with
ADMA (100 pM) for 24 h, intracellular ROS generation in
BRCECs was significantly increased, compared with those
incubated in normal medium (p<0.01). The increased ROS
production induced by ADMA was markedly inhibited by


http://www.hongshitech.com/English/products%20application.htm
http://www.molvis.org/molvis/v17/a39

Molecular Vision 2011; 17:332-340 <http://www.molvis.org/molvis/v17/a39>

9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000

ml/cm2 )

N

FLUX
L

30 min

15 min

#e #H H#

© 2011 Molecular Vision

BcC
A
o A+B
B A+T
E A+D
B A+N

sk

#t

ok

ER o wn H#

60 min

45 min

Figure 3. Horseradish peroxidase (HRP) permeability assay of bovine retinal capillary endothelial cells (BRCECs). Asymmetric
dimethylarginine (ADMA) significantly increased HRP permeability in BRCECs. Treatment with benazepril and NAC for 15 min decreased
HRP permeability in BRCECs. The permeability increase by ADMA was significantly downregulated by benazepril, telmisartan,
diphenyliodonium (DPI), or N-acetyl-L-cysteine (NAC) for 30 min, 45 min, and 1 h. The group C bars are that BRCECs were cultured in
endothelial cell medium (ECM) with 0.4% FBS. In group A, BRCECs were cultured in ECM with 0.4% FBS plus ADMA (100 puM). In group
“A+B,” BRCECs were cultured in the same media as A and 10 pM benazepril. Group “A+T” was the same as for group A and 10 uM
telmisartan. In group “A+D,” BRCECs were cultured in the same media as group A and 10 uM DPI. In group “A+N,” BRCECs were cultured
in the same media as group A and 10 mM NAC (mean+SD, n=3). *p<0.05 versus group C, **p<0.01 versus group C, #p<0.05 versus group

A, ##p<0.01 versus group A.

benazepril (10 uM), telmisartan (10 uM), DPI (10 uM), or
NAC (10 mM; all p<0.01; Figure 2).

Permeability assay: ADMA (100 pM) significantly increased
HRP permeability in BRCECs. Treatment with benazepril
(10 uM) and NAC (10 mM) for 15 min decreased HRP
permeability in BRCECs exposed to ADMA (100 uM). The
increase in permeability by ADMA (100 uM) was
significantly downregulated by benazepril (10 pM),
telmisartan (10 pM), DPI (10 pM), or NAC (10 mM) for 30
min, 45 min, and 1 h (Figure 3).

Western blotting analysis: Western blotting analysis indicated
that exposure to ADMA (100 uM) for 24 h markedly
upregulated ICAM-1 protein expression in BRCECs
(p<0.01). Treatment with telmisartan (10 uM), DPI (10 pM),
or NAC (10 mM) downregulated ICAM-1 protein expression
in BRCECs exposed to ADMA (100 uM; p<0.01). Benazepril
(10 uM) had no effect on ICAM-1 expression (p>0.05; Figure
4).

Experiments performed in vitro also showed that
exposure to ADMA (100 puM) for 24 h significantly
downregulated occludin protein expression in BRCECs
(p<0.01). Treatment with benazepril (10 uM) or telmisartan
(10 uM) upregulated occludin protein expression in BRCECs
exposed to ADMA (p<0.01), while DPI (10 uM) and NAC
(10 mM) had no effect on occludin expression (p>0.05; Figure
5).
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Quantitative real-time PCR analysis: ICAM-1 mRNA
expression in BRCECs was markedly upregulated following
exposure to ADMA (100 uM) for 24 h (p<0.01). Benazepril
(10 uM), telmisartan (10 uM), DPI (10 uM), or NAC (10 mM)
downregulated ICAM-1 mRNA expression in BRCECs
exposed to ADMA (100 uM; p<0.01; Figure 6).

Occludin  mRNA expression in BRCECs was
downregulated when cells were exposed to ADMA (100 uM)
for 24 h (p<0.05). Treatment with benazepril (10 puM),
telmisartan (10 uM), or DPI (10 uM) upregulated the occludin
mRNA Ievel in BRCECs exposed to ADMA (p<0.05).
However, NAC (10 mM) had no effect on the occludin mRNA
level (p>0.05; Figure 7).

DISCUSSION

Kakimoto and Akazawa [19] first isolated and described
ADMA from human urine in 1970. Since their initial
observation, ADMA has been shown to represent a novel risk
factor for the development of endothelial dysfunction.
Oxidative stress has been shown to increase the activity of
arginine-methylating and ADMA-degrading enzymes,
leading to increased ADMA concentrations; moreover, high
ADMA levels further contribute to the vascular oxidative
stress burden in a positive feedback fashion [20,21]. As
reported previously, BRCECs incubated in the presence of
high glucose concentrations showed elevated ROS
production, PRMT-1 expression, reduced DDAH activity,
and DDAH II expression, and increased the accumulation of
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Figure 4. Intercellular adhesion molecule-1 (ICAM-1) protein expression in bovine retinal capillary endothelial cells. A: western blotting
analysis showing the presence of ICAM-1 protein in bovine retinal capillary endothelial cells (BRCECs). B: Results of statistical analysis of
protein levels relative to f-actin. Asymmetric dimethylarginine (ADMA) markedly upregulated ICAM-1 protein expression in BRCECs.
Telmisartan, diphenyliodonium (DPI), or N-acetyl-L-cysteine (NAC) downregulated ICAM-1 protein expression in BRCECs exposed to
ADMA. Benazepril had no effect on ICAM-1 expression. In group C, BRCECs wrre cultured in endothelial cell medium (ECM) with 0.4%
fetal bovine serum (FBS). In group A, BRCECs were cultured in ECM with 0.4% FBS plus ADMA (100 uM). In group “A+B,” BRCECs
were cultured in the same media as A and 10 uM benazepril. In group “A+T,” BRCECs were cultured in the same media as group A and 10
uM telmisartan. In group “A+D,” BRCECs were cultured in the same media as group A and 10 uM DPI. In group “A+N,” BRCECs were
cultured in the same media as A and 10 mM NAC (mean+SD, n=3). **p<0.01 versus C, ##p<0.01 versus group A.

ADMA in a conditioned medium [5]. In the present study, we
found that ADMA increased intracellular ROS generation in
BRCECs. Thus, we propose that ADMA is not only a marker,
but also a producer of oxidative stress, under high-glucose
conditions.

There have been many recent studies regarding the effects
of different therapeutic interventions on ADMA plasma
concentrations. ACEI and ARB have been shown to reduce
the levels of ADMA and improve endothelial dysfunction in
human essential hypertension and diabetes mellitus [22-24].
Although the mechanisms of the beneficial effects of ACEI
and ARB remain obscure, ADMA is known to upregulate
several components of microvascular RAS, leading to
increased production of angiotensin II, which then activates
NADPH oxidase and increases ROS production [25]. ADMA
improves the p38 mitogen-activated protein kinase activity in
human coronary artery endothelial cells, which may provide
a link between ADMA and RAS, because ACE protein
expression has been shown to be regulated by p38 mitogen-
activated protein kinase [26,27]. In the present study, the
NADPH oxidase inhibitor DPI or the free-radical scavenger
NAC decreased intracellular ROS generation in BRCECs
incubated with ADMA. Benazepril or telmisartan had effects
similar to those from DPI and NAC, indicating that they may
also exert their effects through the oxidase pathway.

It has been reported that ADMA regulates endothelial
permeability and endothelial barrier function. Several
possible mechanisms have been proposed to explain the
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effects of ADMA on endothelial barrier function. A previous
study indicated that ADMA increased pulmonary endothelial
permeability both in vitro and in vivo, and that this effect was
mediated by nitric oxide, acting via protein kinase G and
independent of ROS formation [16]. Others have
demonstrated that ADMA compromises the integrity of the
glomerular filtration barrier by altering the bioavailability of
nitric oxide and superoxide, and that nitric oxide (NO)-
independent activation of soluble guanylyl cyclase preserves
the integrity of this barrier under conditions of NO depletion
[28]. ADMA markedly downregulated connexin43
expression and damaged gap junction function in human
umbilical vein endothelial cells by increasing the production
of intracellular ROS and inducing phosphorylation of p38
MAPK [29]. However, to date, the role of ADMA in the BRB
has not been studied.

The BRB, an important ocular barrier, consists of two
components: the inner and outer BRB. The inner BRB is
formed by retinal microvascular endothelial cells with tight
junctions between them. The normal inner BRB is determined
by the homeostasis of retinal microvessels, and plays a critical
role in normal visual function. Enhanced retinal vascular
permeability has been shown to aggravate microvascular
endothelial cell damage and capillary nonperfusion [30].
Several studies linked inflammation to vascular leakage in
diabetic retinopathy. Leukocytes adhere to the retinal vascular
endothelium early in diabetic retinopathy, the onset of which
occurs before the development of any clinical pathology
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Figure 5. Occludin protein expression in bovine retinal capillary endothelial cells. A: western blotting analysis showing the presence of occludin
protein in bovine retinal capillary endothelial cells (BRCECs). B: The results of statistical analysis of protein level relative to B-actin.
Asymmetric dimethylarginine (ADMA) significantly downregulated occludin protein expression in BRCECs. Benazepril and telmisartan
upregulated protein expression of occludin in BRCECs exposed to ADMA. However, diphenyliodonium (DPI) and N-acetyl-L-cysteine (NAC)
had no effect on occludin expression. In group C, BRCECs were cultured in ECM with 0.4% fetal bovine serum (FBS). In group A, BRCECs
were cultured in ECM with 0.4% FBS plus ADMA (100 uM). Group “A+B” represents same as for group A and 10 uM benazepril. Group
“A+T” represents same as for group A and 10 uM telmisartan. Group “A+D” represents same as for group A and 10 uM DPI. Group “A+N”
represents same as for group A and 10 mM NAC (mean£SD, n=3). **p<0.01 versus group C, ##p<0.01 versus group A.
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[14]. Further, leukocyte adhesion coincides with the specific inhibition of ICAM-1 prevents diabetic retinal
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Figure 6. The statistical analysis results of bovine retinal capillary

endothelial cells (BRCECs) intercellular adhesion molecule-1 Figure 7. Results of statistical analysis of occludin gene expression
(ICAM-1) gene expression relative to 18S rRNA for 24 h. relative to 18S rRNA in bovine retinal capillary endothelial cells
Asymmetric dimethylarginine (ADMA) markedly upregulated (BRCECs) for 24 h. ADMA downregulated occludin mRNA
ICAM-1 mRNA expression in BRCECs for 24 h. Benazepril, expression in BRCECs for 24 h. Benazepril, telmisartan, or
telmisartan, diphenyliodonium (DPI), or N-acetyl-L-cysteine (NAC) diphenyliodonium (DPI) upregulated occludin mRNA level.
downregulated ICAM-1 mRNA expression in BRCECs exposed to However, N-acetyl-L-cysteine (NAC) had no effect on occludin
ADMA. In group C, BRCECs were cultured in endothelial cell mRNA level. In group C, BRCECs were cultured in endothelial cell
medium (ECM) with 0.4% fetal bovine serum (FBS). In group A, medium (ECM) with 0.4% fetal bovine serum (FBS). In group A,
BRCECs were cultured in ECM with 0.4% FBS plus ADMA (100 BRCECs were cultured in ECM with 0.4% FBS plus ADMA (100
uM). “A+B” represents same as for group A and 10 uM benazepril. uM). In group “A+B,” BRCECs were cultured in the same media as
In group “A+T,” BRCECs were cultured in the same media as group group A and 10 uM benazepril. In “A+T,” BRCECs were cultured
A and 10 pM telmisartan. In group “A+D,” BRCECs were cultured in the same media as group A and 10 pM telmisartan. In group “A
in the same media as group A and 10 pM DPI. In group “A+N,” +D,” BRCECs were cultured in the same media as group A and 10
BRCECs were cultured in the same media as group A and 10 mM uM DPL. In group “A+N,” BRCECs were cultured in the same media
NAC (mean£SD, n=3). **p<0.01 versus group C, ##p<0.01 versus as group A and 10 mM NAC (mean+SD, n=3). *p<0.05 versus group
group A. C, #p<0.05 versus group A.
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the levels of the tight-junction protein occludin and
upregulation of [CAM-1 expression in BRCECs. ACEI, ARB,
or antioxidants significantly downregulated cell permeability
increased by ADMA at 30 min, 45 min, and 1 h. Furthermore,
we observed that benazepril, telmisartan, and the antioxidant
DPI reversed the effects of ADMA on occludin and ICAM-1
expression. Based on our findings, we hypothesize that the
mechanism of ADMA damage to the BRB is partly mediated
by ROS and/or RAS pathways.

In summary, ADMA can inhibit BRCEC proliferation,
increase intracellular ROS generation, increase cell
permeability and in BRCECs, can reduce levels of the tight-
junction protein occludin and increase ICAM-1 expression.
Further studies are required to determine the precise
mechanisms underlying the effects of ADMA in diabetes-
induced BRB breakdown and the roles of ACEI, ARB, and
antioxidants in the control of retinal endothelial barrier
function under diabetic conditions.
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