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Abstract
We analyzed the cancer pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes)
database. The database provides a collective of signaling pathway members involved in cancer
progression. However, the KEGG cancer pathways, unlike signaling pathways, have not been
analyzed extensively with gene expression and mutation data. We transformed the colorectal
cancer pathway into discrete X and Y scales and analyzed the relative expression levels of
adenoma and carcinoma samples as well as the distribution of mutation targets. The X scale
corresponds to the downstream location in a pathway, whereas the Y scale corresponds to the
stage of the tumor. The gene expression values of the early stage pathway members are expressed
significantly higher than the rest of the pathway members in colorectal adenoma tissues. The
colorectal cancer pathway shows some degree of coherence in the carcinoma samples. The
correlated gene pairs responsible for the coherence of the colorectal cancer pathway in the
carcinoma samples are supported, in part, by the literature and may suggest novel regulatory
associations. Finally, there are more mutation targets in the nucleus as well as the late tumor stages
of the KEGG colorectal cancer pathway.
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1 Introduction
Cancer is a complex disease, with many subtypes, affecting various tissues, and according to
the severity of the abnormality, giving rise to different stages and classifications, such as
carcinoma, sarcoma, primary, etc. Physiological and genetic studies identified different
stages in the progression of the various types of cancers. For instance, colorectal
tumorigenesis begins with normal epithelium which proceeds through stages of
hyperproliferative epithelium, early adenoma, intermediate adenoma, late adenoma,
carcinoma, and metastasis [1]. Genetic alterations, such as mutations or deletions of genes,
accumulate as the cancer progresses to the next, more severe and proliferative stage. The
accumulation of changes (e.g., mutations, deletions, etc.) is a key factor in tumor
progression. For example, a more severe stage will have a higher probability than a less
severe stage of having more mutations [1]. On the other hand, the specific number and the
identity of the genetic alterations, such as point mutations, amplifications, or deletions in a
stage, are not determining factors, but rather are general features that characterize the
severity of a stage, and varies from one cancer to another [1].

Omics technologies, such as cDNA and oligonucleotide arrays, and comparative genome
hybridization, have dominated tumor characterization [2]. Genome level analysis have been
applied successfully to differentiate between the different stages of cancer, and revealed
differentially expressed genes and genomic alterations that play important roles in the
development of cancer [2]. More recently, gene set and pathway centric analysis of cancer
progression have gained popularity. These analyses confirmed results currently known about
the role of cell cycle in cancer development, as well as produced novel findings, i.e. the
involvement of the ERBB4 gene in primary prostate cancer [3]. Approaches that integrate
gene expression and pathway analysis of colorectal cancer have proved useful in finding
potential prognostic and diagnostic markers, as well as therapeutic targets [2].

Biological pathways consist of molecular interactions or other biochemical events among a
group of proteins, genes, and other chemicals. They are used to characterize metabolism,
signal transduction, specific cellular processes, diseases, or drug mechanisms. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database contains pathway information on
the progression of different types of cancer, as combinations of signaling pathways
(http://www.genome.ad.jp/kegg/pathway.html#disease) [4,5,6]. Signaling pathways capture
the molecular interactions and reactions that take signals from the outside to the nucleus of
the cell, where transcriptional regulation occurs. Signaling pathways, e.g. the MAPK, Wnt,
TGF-beta signaling, are well studied in the context of cell proliferation [7]. Cancer is the
only human disease for which pathway information of the disease progression is available,
i.e., at different stages of the cancer, from normal tissue to the advanced tumor phase in
KEGG [4,5,6]. KEGG cancer pathways are different in that they contain members of
different signaling pathway members within a single pathway. This is because they contain
information on various stages of the cancer and the various stages involve different signaling
pathways. The pathway information contained in KEGG, i.e., the genes in each stage of the
disease progression that are genetically altered in the colorectal cancer pathway, is derived
from the literature [8,9]. In the KEGG colorectal cancer pathway, the Wnt pathway
members are at the upper positions of the image, corresponding to normal or initial stages of
the cancer progression, which is supported by the literature [8,9,10]. Constant activation of
Wnt signaling targets occurs in adenomatosis polyposis coli (APC) or beta-catenin
mutations, as well as upon phosphorylation by glycogen synthase kinase-3-beta. These
events lead to early dysplastic lesions, which is an early event in colorectal cancer [10].
Similar support exists in the literature to suggest that genes, i.e., DCC and KRAS, should be
below the Wnt pathway members since their alterations occur later in the disease
progression. Furthermore, DCC is located below KRAS in the KEGG pathway because
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DCC alterations are believed to occur later than KRAS alterations in the development of
colorectal cancer [11]. Finally, TGF-beta pathway members are located in the lower portions
of the pathway image because the literature suggests that their alterations occur during more
advanced stages of the cancer [12]. The significance of the KEGG cancer pathways is the
integration of the cancer stages with signaling pathways. Although the integration of
signaling pathways with genome level expression data has been widely performed, it has yet
to be realized with cancer pathways.

Using pathway information to understand genome level expression data has been
extensively applied [13,14,15]. The approach integrates a priori knowledge of a gene's
functional role with expression data to detect for concerted expression changes in a set of
genes responsible for producing a phenotype [13]. Pathway-centric analysis of tumor
microarray data has been successfully applied to identify signaling pathway members [16].
IL-1 and ER-induced pathways were found to be significantly coexpressed in breast cancer
data. In addition to analyzing the entire dataset, analysis of individual samples or a subset of
the data identified significant pathway activities that were relevant to the biological context
of the tissue or organ. For example, pathway analysis uncovered the expected association of
estrogen-induced pathways within a group of clinical breast cancer data [16], and signaling
and metabolic pathways involved in the development of type 2 diabetes [17]. On the other
hand, gene expression level analysis within pathways is an area that mostly has been
ignored. Some studies have analyzed the relationship among the members of protein
complexes or pathways in terms of their gene expression levels [18,19,20,21]. Protein
complexes, such as ribosome and proteasome, show significant correlation in their gene
expression levels [18]. In addition, the cis-element profiles are highly similar for members
within a signaling pathway, such as the KEGG apoptosis pathway, and functionally related
interacting proteins (i.e., protein complexes). This suggests that a strong relationship in the
gene expression levels between members of these pathways should exist [19]. Coherence is
a measure of the level of correlation among a group of genes. A coherent group of genes
may share similar regulation of their gene expression levels. Indeed, genes in the same
pathway with similar functions have been shown to be coherent as compared to a random
group of genes from the genome [20].

Previous studies that integrate gene expression data with pathway information have not
incorporated the dimensionality of the pathways. Most studies have focused on the members
of the pathways. Thus far, there has been one study of pathways that incorporated the
position in the pathways in the analysis of the genome level data. They developed a
statistical impact analysis that used the pathway position to calculate the significance of the
pathway [21]. With this approach they identified the Focal Adhesion Pathway as a
significant pathway for lung cancer, which was not found using classical approaches, such
as gene set enrichment and gene ontology analyses, thereby enhancing the information
content extracted from analyzing genome level data. Impact analysis considers expression
alteration in receptors, such as integrin, receptor tyrosine kinase (RTK), and the receptor
ligand vascular endothelial growth factor (VEGF), as important parameters in the analysis,
since they affect the downstream molecules in the pathway. The Focal Adhesion Pathway,
on the other hand, was not found to be significant using classical approaches because the
other genes in the pathway were not significantly altered. Classical approaches analyze
pathways as a whole without special emphasis on receptor molecules or other position(s) in
a pathway.

In this study, we capitalized upon the progressive nature of the cancer disease captured in
the biological knowledge represented in the KEGG cancer pathways. We analyzed the gene
expression levels, coherence, and mutation target data of the pathway members to determine
if there is a significant relationship or correlation within any group of pathway members
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from the rest of the pathways. Analyzing the KEGG colorectal cancer pathway with
microarray data identified that different parts of the pathways were up-regulated or coherent
at the mRNA level, at the different stages of cancer progression, i.e., adenoma vs.
carcinoma. Since the KEGG cancer pathways integrate different signaling pathways of the
various cancer stages, unlike classical signaling pathways, we analyzed the coherence of the
colorectal cancer pathway, and found the carcinoma expression data was more coherent than
the normal or adenoma data. In addition, mutation targets were found to be localized
primarily in the nucleus of the cell and concentrated at the later stages of the cancer.

2 Materials and methods
2.1 Pathway data

We used KEGG as our source of pathway information [4,5,6]. We focused on the cancer,
apoptosis, oxidative phosphorylation and proteasome pathways. We collected a list of
human genes for these pathways. For each protein/gene in the pathways we used all the
different homologues provided by KEGG (Supplementary Tables 1–17).

2.2 X/Y scale
The X scale represented the direction from receptor to nucleus. The Y scale (analyzed only
for the colorectal cancer pathway) represented the direction from normal tissue to advanced
tumor or metastasis (Figure 1). We ignored the sub-pathway distinction (such as
Chromosome Unstable Pathway and Microsatellite Unstable Pathway in colorectal cancer
pathway) (Figure 1). We generated 3 X-dependent and 4 Y-dependent groups in the KEGG
colorectal cancer pathway, and 2 X-dependent groups in the KEGG apoptosis pathway. For
X, receptor ligands and receptors are designated by a value of 1. If there is a nuclear
distinction in the pathway; molecules in the cytosol are designated by a value of 2, and
molecules in the nucleus are designated by a value of 3, otherwise molecules in the
cytoplasm are designated by a value of 2. For Y (analyzed only for the KEGG colorectal
cancer pathway), the first stage of the pathway, which signified the first initial molecular
events (in the colorectal cancer pathway, the first stage is represented by the transition from
normal epithelium to early adenoma) is designated by a value of 1 and the next stages in the
cancer progression are designated by values of 2, 3, 4 (the last stage). The last stage is
defined by the latest events in the progression of the disease in the KEGG pathway. For
example, in the colorectal cancer pathway, the last stage is represented by the transition
from late adenoma to carcinoma. The biomolecules involved in the transition to the different
stages provided by KEGG are supported by the literature, as discussed in the Introduction
above. The KEGG information was used as is, unless the stage is an insignificant one. For
example, dysplastic aberrant crypt foci stage was ignored in our analysis of the colorectal
cancer pathway, because this stage covered a very small part of the pathway and it was
unclear which molecules were associated with this stage. In the colorectal cancer pathway,
normal epithelium to early adenoma is designated by a Y value of 1 and includes proteins
such as, Frizzled, glycogen synthase kinase-3-beta (GSK-3β), adenomatosis polyposis coli
(APC), T cell factor/lymphoid enhancer factor (TCFLEF), Survivin, etc. Early adenoma to
intermediate adenoma is designated by a Y value of 2 and includes proteins such as, RTK,
K-Ras, protein kinase B (PKB), extracellular signal regulated protein kinase (ERK), C-Fos,
etc. Intermediate adenoma to late adenoma is designated by a Y value of 3 and includes
proteins such as, deleted in colon cancer (DCC), caspase 3 (CASP3), human mutL homolog
1 (hMLH1), etc. Late adenoma to carcinoma is designated by a Y value of 4 and includes
proteins such as cytochrome c (Cytc), p53, etc. Since our analysis focused on the potential
of the genes in contributing to the progression of cancer, we used the larger value of Y for a
gene if there were more than one value associated with the gene. For consistency, the same
approach was taken for the X value, i.e., the larger of the two values was used. For example,

Dalkic et al. Page 4

Proteomics Clin Appl. Author manuscript; available in PMC 2011 February 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



if a protein is present in more than one location, the larger value is assigned, for instance,
CyclinD1 is present in two Y locations, 1 and 2, but was assigned a Y value of 2, and
transforming growth factor beta receptor 2 (TGFBR2) is located in two X locations, 1 and 3,
but was assigned a X value of 3 (Figure 1).

2.3 Expression data
Normalized microarray data (GSE4183 and GSE8671) were downloaded from the NCBI
GEO database (http://www.ncbi.nlm.nih.gov/geo/) GSE4183 includes normal colon tissue,
colon adenoma and colon carcinoma gene expression datasets for several biopsy samples
obtained from individuals. The GSE8671 dataset includes the whole genome mRNA
expression level for 32 colorectal adenomas paired with the normal mucosa from the same
individuals. In these large-scale datasets, we focused on the expression values of the
pathway members, as oppose to analyzing all the genes. Both datasets contained expression
values for all the gene members in the colorectal cancer pathway. If there were more than
one value for a gene in a sample (same column), the mean values were used. We combined
the normal and the adenoma samples from both datasets, to obtain a set of expression values
for normal, adenoma and carcinoma samples. We calculated expression ratio for adenoma
(or carcinoma) by dividing the average value of adenoma (or carcinoma) samples to the
average value of normal samples. For adenoma, the ratio was calculated by dividing the
average of the combined adenoma values to the average of the combined normal values.
Since carcinoma data is present only in GSE4183, the average of the carcinoma values in
GSE4183 were divided by the average of the normal values in GSE4183. For the calculation
of carcinoma/adenoma ratio, the carcinoma ratio was divided by the adenoma ratio for each
gene (Supplementary table 1).

2.4 Drug and mutation targets
We collected drug information from the National Cancer Institute web page
(http://www.cancer.gov/cancertopics/druginfo/alphalist). The drugs, cancers for which they
are used, and their targets are listed in Supplementary Table 19. We limited the drug list to
ones which targeted a cellular signaling protein. Drugs that targeted molecules with a
general role in the cell were excluded; for example, Bortezomib, a drug approved for
leukemia, was excluded because it targeted the proteasome. We collected mutation target
information from two sources. The first source was the Cancer Gene Census of the Cancer
Genome project [22] (http://www.sanger.ac.uk/genetics/CGP/Census/). We used only the
cancer types provided by this dataset. For some mutation targets, such as p53, “others” was
mentioned in addition to the cancer type listed, therefore we were not able to include the
cancer types referred to as “others” in the analysis. The second source was a list of
genetically altered genes provided by KEGG for each pathway. We combined these two
sources of data to obtain a list of mutation targets for each cancer pathway. The list from the
two sources did not overlap, for example, BRAF was identified as a mutation target only in
the Cancer Gene Census dataset, while TGFBR2 was identified as a mutation target only in
the KEGG dataset. The list of members of the colorectal cancer pathway, the tumor
expression ratio values, X/Y values, and mutation and drug target information are provided
in Supplementary Table 1. If the gene is a mutation or drug target, it was denoted by 1, if
not, it was denoted by 0. Only mutation and drug target information for the list of members
of the remaining cancer pathways are provided in Supplementary Tables 1, 5–17. For
mutation targets we calculated the frequency as the number of mutation targets in a group
divided by the total number of genes in the group.

2.5 Statistical Analysis
Analysis of groups of genes or members of a pathway was performed for their coherence in
the normal, adenoma, and carcinoma tissues. We calculated the Pearson’s correlation
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coefficient for the expression values of every pair of genes in both datasets. We selected the
same number of random genes from the entire microarray dataset, whether the genes
belonged in the pathway or not, and performed the same calculation for this random group.
For the range between 0–1, at increments of 0.01, we calculated the fraction of pairs with a
correlation coefficient for both the real groups (pathways, subgroups inside pathways) and
the random groups. For each gene, we performed the randomizations 1000 times for the
pathways and 100 times for the subgroups within the pathways, and calculated the fraction
of random pairs with a correlation coefficient threshold of 0.5. In addition to the colorectal
cancer pathway, we analyzed the apoptosis pathway because it was previously shown to be
coherent in colorectal cancer [20]. We also analyzed the oxidative phosphorylation and
proteasome pathways which were shown to be coherent both in normal and cancer tissues
[20]. The oxidative phosphorylation pathway has more genes than the colorectal cancer and
apoptosis pathways, while the proteasome has fewer genes. Therefore any size effect of the
pathway should be accounted for. For each X/Y dependent subgroup, randomizations of the
same size were performed and whether the subgroups differed significantly from random
was determined at a correlation coefficient threshold of 0.5. For the analysis of expression
ratios, we performed t-test on groups of 2 (i.e., comparing gene expression profiles of
pathway members in group Y=1 to members in the rest of the pathway, namely Y=2, 3, 4).
For more than two groups (i.e., comparing gene expression profiles of pathway members in
groups X=1, X=2, and X=3), we used ANOVA.

2.6 Selection of the Colorectal Cancer Pathway
We combined information of the mutation and drug targets with information on the pathway
to analyze the coverage, namely, the number and distribution of mutation and drug targets in
the pathways for several types of cancer (Supplementary Table 1, 5–17). Although, Acute
Myeloid Leukemia (AML) had the highest known number of mutation targets, 82, the
KEGG pathway did not include many of their targets as compared to thyroid and colorectal
cancers, which had 25 and 20 mutation targets, respectively. 11 mutation targets are present
in the KEGG pathway for AML, while thyroid and colorectal cancers had 14 mutation
targets in their KEGG pathway. Therefore, the KEGG pathway provided a higher coverage
of the mutation targets for thyroid and colorectal cancers. Glioma also had a high
representation of their mutation targets, namely 11 of 11 total targets are present in the
KEGG pathway. In contrast to mutation targets, there were a limited number of drug targets
shown in the KEGG pathway for Glioma; therefore AML and Glioma were not analyzed
extensively. Similarly, thyroid cancer had a very low number of total pathway members and
thus was also not analyzed.

We considered the high number of pathway members and mutation targets, availability of
large-scale expression data, and the clarity and complexity of the stage information of the
KEGG pathway in selecting the cancer type(s) for this integrative analysis. For example, the
presence of the many stages in AML without a clear distinction of the pathways between the
different stages of this cancer made it inappropriate for this analysis. Similarly, the
simplicity of the glioma pathway (presence of only one stage, or presence of too many
proteins in a stage and very few proteins in the other stages) and thyroid cancer pathway
(too few pathway members) made them inappropriate for this integrative pathway analysis.
Therefore given the availability of the different types of data (i.e., mutation and drug targets,
and expression data) that is required and the clarity and the size of the KEGG pathway, we
focused on the colorectal cancer pathway to demonstrate the feasibility of this integrative
approach.
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3 Results and discussion
3.1 Gene expression ratio analysis of dimensional grouping of the colorectal cancer
pathway

We analyzed the tumor expression levels of the members of the KEGG colorectal cancer
pathway. We investigated whether the pathway members are differentially expressed with
respect to their X (cellular location), and Y (stage of the tumor) values in the KEGG
pathway, see Materials and Methods for details. The colorectal cancer pathway in KEGG
provides some of the molecular events that underlie the progression of cancer, from normal
to carcinoma. We assessed whether a relationship existed between the progression of
colorectal cancer and the gene expression levels of the members of the colorectal cancer
pathway. The normal and the adenoma samples from both datasets (GSE4183, GSE8671)
were combined and the carcinoma dataset came from GSE4183.

Analyzing the genes that were highly differentiated among the pathway members in the
carcinoma and adenoma datasets, we found AXIN2 and FZD3 genes were the most down-
regulated in the carcinoma and the most upregulated in the adenoma samples. These genes
had the lowest carcinoma to adenoma expression ratio, whereas PDGFRB and FZD2 were
the most upregulated genes in the carcinoma samples and thus had the highest carcinoma to
adenoma expression ratio (Figure 2). The average expression level of all the genes in the
pathway did not change significantly for the adenoma and carcinoma samples (or stages),
which centered around a ratio of 1. Analyzing the members at particular locations of the
pathway suggested that different genes are differentially expressed and thus possibly
differentially regulated, depending on the stage of the cancer tissues from which the
expression data were obtained (Figure 2, Supplementary table 1). This demonstrated one of
the findings that could be obtained with this integrative approach and would have been lost
by analyzing all the pathway members. Analysis of all the pathway members as a whole,
suggested no difference between the stages (i.e., ratio = 1) and did not identify a potential
for any genes to be differentially regulated. FZD2 and FZD3 are different homologues of
Frizzled, which is the receptor for Wnt signaling molecules and is known to be important in
early development of colorectal cancer [8]. AXIN2 (Axin) is also a member of Wnt
signaling and has been shown to be a mutation target in the development of colorectal
adenoma [8]. Our analysis suggests that Wnt signaling members, such as different
homologues of Frizzled receptor (FZD2, FZD3), may play a role in early (adenoma) and late
(carcinoma) events of colorectal cancer progression. Wnt signaling is known to be activated
during the earlier stages of colorectal cancer progression and is suggested to be involved in
also the later stages of the progression [10]. Platelet-derived growth factor receptor beta
(PDGFRB) is known to play a role in advanced and metastatic stages of colorectal cancer
development [23]. It is noteworthy that most genes that showed differential expression in
adenoma and carcinoma samples were receptors, i.e. Frizzled and PDGFRB. In support of
this integrative pathway analysis, a previous study [21] also found that pathway information,
i.e. whether it is a receptor, was important in identifying physiologically relevant functional
groups. Currently, the drugs, Erbitux and Vectibix, used to treat colorectal cancer, target a
receptor, EGFR (RTK) (Supplementary table 19). The location of the gene in the colorectal
cancer pathway corresponds to the early cancer stage and the receptor region. The analysis
appears to suggest that receptors could be important regulatory regions in colorectal cancer
development, and as such, other receptors, i.e. FZD2, FZD3 and PDGFRB, could be
possible candidates for drug development. However, more data is needed to confirm this
relationship.

Next, we analyzed the possibility of dimensional (X and Y) distinction of the overall
pathway, in other words, whether a group of pathway members defined by a stage (Y) or a
cellular location (X) showed a significant difference in terms of expression levels, and the
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presence of mutation and drug targets, as compared to the other members of the pathway.
We set the X values to vary from 1 to 3, corresponding to the following locations: receptor/
ligand (denoted as 1), cytosol (denoted as 2), and nucleus (denoted as 3). We examined the
significance of grouping the expression profiles of the pathway members according to their
X values. There was a significant grouping of both the adenoma and carcinoma expression
profiles of the pathway members across the X groups (Table 1). In the adenoma and the
carcinoma datasets, cytosolic members of the colorectal cancer pathway (X=2) had
significantly lower gene expression values (Figure 3A, 3B, Table 2), on the other hand,
nuclear members of the colorectal cancer pathway (X=3) had significantly higher gene
expression values relative to other X groups (Figure 3C, 3D, Table 2).

Similar analysis was performed for the Y values, where the Y values ranged from 1 to 4, to
correspond to the different stages, from normal tissue to early adenoma (denoted as 1), early
to intermediate adenoma (denoted as 2), intermediate to advanced adenoma (denoted as 3),
and advanced adenoma to carcinoma (denoted as 4). There was a significant difference
across the Y groups for the adenoma but not the carcinoma datasets (Table 1), which may be
attributed to a significant difference in the expression values of the pathway members with
Y values of 1 as compared to the other pathway members (Y values of 2–4) in adenoma
(Figure 3E, Table 2). In the adenoma tissue samples, the gene expression values of the
pathway members, which play a role in the normal epithelium to early adenoma stage (Y=1)
were expressed significantly higher than the other pathway members. The key genes that
contribute to these results were BIRC5 (Survivin), FZD3, and AXIN2 (Axin), which are
highly expressed and are located at Y=1, and PIK3CG, and PDGFRA, which are lowly
expressed in the colorectal adenoma samples and located at Y=2 (Supplementary Table 1).
This result is in line with our previous observation that a group of genes in a particular
pathway could be differentially expressed from the other members in the pathway depending
on the stage of the cancer. In addition to the adenoma tissue samples, we analyzed the
expression values of the colorectal pathway members in the carcinoma tissue samples for
possible distinctive patterns but found no significant grouping of the carcinoma expression
with respect to Y (Figure 3F, Table 1, 2). If we consider that the colorectal cancer pathway
includes the stages from normal epithelium to carcinoma, with several adenoma stages but
only a single stage of carcinoma development, and also only one set of gene expression data
from carcinoma tissues, there is likely insufficient information to distinguish the molecular
events in the carcinoma pathway(see Figure 1).

3.2 Coherence of the colorectal cancer pathway
The KEGG cancer pathways represent a collective behavior of a group of proteins that
underlies the disease, and as such, are built from proteins that belong to multiple signaling
pathways. A coherence indicator has been defined as the ratio of the number of correlated
gene pairs to the total number of gene pairs in a pathway, which is deemed significant based
upon a statistical measure [20]. Using this indicator, the gene expression levels of the
signaling and metabolic pathway members were shown to be coherent, suggesting that
coherence may be an important measure of functionally related genes [20]. Cancer
pathways, due to their very nature of involving multiple signaling groups, may not be
expected to show the same level of coherence. Therefore, we examined whether the gene
expression levels of the KEGG colorectal cancer pathway members were coherent, as
compared to apoptosis, oxidative phosphorylation and proteasome pathway members, the
latter were previously shown to be coherent [20]. The degree of coherence is determined by
plotting the correlation in gene expression of the pathway members. We analyzed normal
colorectal, adenoma and carcinoma samples. In normal colorectal tissue expression data, the
oxidative phosphorylation and proteasome pathways show a distinct positive correlation
among their pathway members, the apoptosis pathway show a slightly negative correlation,
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whereas the correlation distribution of the colorectal cancer members are closer to the
random distributions and hence uncorrelated (Figure 4A). In addition to the correlation
distribution of the expression levels, we analyzed the cumulative distributions of the
absolute values of the correlation coefficients. Similar results for the cumulative and non-
cumulative correlation distributions are observed for normal colorectal tissue, i.e. the
pathway is uncorrelated (Figure 4A, 4B). Oxidative phosphorylation and proteasome
pathways are coherent in all 3 groups (normal, adenoma, and carcinoma tissues), while the
colorectal cancer pathway is coherent only in the carcinoma samples (Figure 4B–4D). We
compared whether the colorectal cancer and apoptosis pathways differed significantly from
random at a correlation coefficient of 0.5 (Table 3). The colorectal cancer pathway appears
to be coherent for colorectal carcinoma but not for the normal and adenoma datasets. This
suggests that a cancer pathway may be coordinately regulated to achieve a biological
function or phenotype, which, in this case, is the progression of the colorectal tissue to the
tumor stage. The apoptosis pathway appears to be coherent in normal colorectal sample but
not in the colorectal adenoma or carcinoma data (Table 3). This is in contrast to a previous
report which used different gene expression data and found the data was coherent in the
colorectal tumor but not in the normal samples [20]. In addition to the entire pathway, we
studied the possibility of coherence of dimensional groupings in colorectal cancer and
apoptosis pathways. Our analysis suggests that members within the pathways could be
coherent, for example X=2 in the colorectal cancer pathway could be coherent in normal and
adenoma samples (Supplementary table 20) even though the entire pathway may not be
coherent (Table 3). However, more data is required to confirm these analyses.

In order to determine which proteins contribute to the coherence of the colorectal cancer
pathway in the carcinoma stage, we obtained pairs of genes with an absolute correlation
coefficient of at least 0.5 (Supplementary table 21). There were 683 correlated gene pairs in
the carcinoma samples, most of which were specific to carcinoma (Figure 5A). On the other
hand, the normal and adenoma samples had fewer correlated gene pairs and shared more
than half of them with each other. The pairs of correlated genes specific to normal and
adenoma tissues included mostly genes in the early stage members of the pathway, such as
AKT homologues (Gene ID of 207 and 208), DVL homologues (Gene ID of 1856 and
1857), and FZD homologues (Gene ID of 8321, 8322, 8323, 8324). On the other hand, pairs
of correlated genes specific to carcinoma included mostly pairs of genes from different parts
of the pathway, such as TGFBR2 homologue (Gene ID of 91) from late stage of the
pathway, APC (Gene ID of 324) from early stage of the pathway, KRAS (Gene ID of 3485)
and MET (Gene ID of 4233) from mid stage of the pathway. (Supplementary Table 21).
Next, we analyzed an absolute correlation coefficient of at least 0.8, suggesting these gene
pairs are highly correlated, which are provided in Table 4 (0 indicates absolute correlation
below 0.8 and 1 indicates absolute correlation of at least 0.8). We identified 10 gene pairs
which were highly correlated in both the normal and adenoma but not in carcinoma samples
(Figure 5B, Table 4). These pairs, unlike the carcinoma specific gene pairs, suggest
coordination within the members of the Wnt signaling pathway, such as FZD, DVL and
AXIN. In addition, these members are highly correlated with RAC, which is downstream of
RAS oncogene (in the adenoma stage of the colorectal cancer pathway). The coordination
between the members of the Wnt signaling pathway and RAC is supported by protein level
interactions [10]. On the other hand, there were 38 gene pairs in the carcinoma samples,
none of which were correlated in the normal or adenoma samples (Figure 5B, Table 4).
These strongly correlated gene pairs may suggest direct or indirect protein-protein or
transcriptional interactions specific to the carcinoma stage of the colorectal cancer pathway.
For example, the list included the gene pair TGFBR1 and TGFBR2, whose protein products
are known to interact directly and play a role in advanced stages of colorectal cancer [12].
The presence of a strong correlation between these two genes suggests that the interaction of
these two receptors may be relevant only in the carcinoma stage, for the samples we
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analyzed in this study. Another significantly correlated pair was MYC and MSH2 (Table 4).
MYC is a transcriptional regulator of MSH2 [24]. Therefore, MYC driven regulation of
MSH2 may be important in carcinoma but not in the normal or adenoma samples. In
addition, BIRC5 was identified to be highly correlated with various other genes, such as
ACVR1B and EGFR, suggesting that BIRC5 may also affect the regulation of ACVR1B and
EGFR. While some of the strongly correlated gene pairs of the colorectal cancer pathway
are supported by the literature, our analysis suggests there are others that may be correlated
but currently are not supported by the literature. These results suggest potentially novel
direct or indirect interactions, or common regulations by upstream molecules. Since the
analysis identified the colorectal cancer pathway to be significantly coherent only in the
carcinoma samples, further experimental investigation of these correlations is needed to
confirm these novel regulatory mechanisms for colorectal carcinoma.

3.3 Mutation target analysis
In addition to gene expression, the distribution of mutation targets of the colorectal cancer
pathway members was compared with respect to their X and Y values. The pathway
members with high X values had higher frequencies of mutation targets. The nuclear
members (X=3) had the highest number of mutation targets, followed by the cytosolic
members (X=2) and the receptor/ligand members (X=1) (Table 5). Most of the mutation
targets were concentrated at the later two stages of the pathway (Y=3, Y=4); covering the
progression from intermediate adenoma to carcinoma, with the highest number of mutation
targets found in the last stage, from late adenoma to carcinoma. In other words, colorectal
cancer mutation targets were represented more in the late tumor stages of the KEGG
pathway. This result is supported by the current view that mutations accumulate and
increase as the tumor grows and cancer progresses [8]. Lastly, we analyzed whether the
mutation targets were differentially expressed in the adenoma or carcinoma tissues as
compared to the other pathway members, and found there was no statistically significant
difference between the mutation targets and the other pathway members. This may be due to
the sparsity of expression and mutation data. Note that our list of mutations targets is a
collection of several genes which were reported to be mutated in at least a single sample.
Therefore only some of these mutation targets may actually be mutated in the samples from
which the expression data were collected. Furthermore, we do not know whether these
mutations are the cause or the effect of the gene expression level changes. Currently, not
enough mutation and gene expression data are available to perform an extensive mutation
analysis with respect to the X and Y groups.

Mutations alter important residues or domains of proteins that could lead to alteration in the
binding properties of proteins to other proteins or regulatory DNA sequences, thus the levels
of other genes and proteins may change. Previous reports have suggested an association
between mutation events and changes in the gene expression levels [25,26]. There is no
evidence to suggest a correlation between the mutation of a gene and its own mRNA
expression levels, however, a mutation in the TP53 gene has been shown to be correlated
with its protein expression level in cancer [27]. This current study also did not find a strong
relationship between a mutation target and its gene expression level for the colorectal cancer
pathway members.

4 Concluding remarks
In this study, we analyzed expression and mutation data of the KEGG colorectal cancer
pathway members. Previous studies focused predominantly on analyzing gene expression
data for an entire signaling pathway and assessing whether the entire pathway is
differentially expressed in a microarray dataset. Here we demonstrate an integrative analysis
that investigates the distribution of expression values of the pathway members. Our analysis
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incorporated the location of the pathway members and found the expression values and the
number of mutation targets varied depending on the cellular location (X) and stage of the
cancer (Y) (Figure 4, Tables 2, 3). Previous studies found signaling and metabolic pathways
to be coherent, and we show that the colorectal cancer pathway is coherent as well,
depending on the stage at which the expression data was obtained. The members of the
KEGG colorectal cancer pathway showed some degree of correlation in the expression
profile of the carcinoma data (GSE4183).

This analysis has the potential to help uncover the roles of the different genes in the
pathways in the progression of colorectal cancer. We were able to analyze only the
colorectal cancer pathway in this study. However, we anticipate that as more information on
cancer pathways and expression data for the various cancer stages becomes available, this
approach to pathway analysis could be more widely applicable and may help contribute to
our understanding of the similarities and differences in the progression of cancer in the
different tissues. Similarly, this integrative analysis could be applied to analyze the
progression of other diseases or biological processes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Adapted from KEGG colorectal cancer pathway [20,21,22].
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Figure 2.
The ratio of carcinoma expression ratio to the adenoma expression ratio given for the
maximum and minimum 2 genes and the average.
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Figure 3.
X/Y dependent analysis of colorectal cancer pathway gene expression levels. A)
Comparison of expression ratio values of X=2 to other X groups in adenoma. B)
Comparison of expression ratio values of X=2 to other X groups in carcinoma. C)
Comparison of expression ratio values of X=3 to other X groups in adenoma. D)
Comparison of expression ratio values of X=3 to other X groups in carcinoma. E)
Comparison of expression ratio values of Y=1 to other Y groups in adenoma. F)
Comparison of expression ratio values of Y=1 to other Y groups in carcinoma.
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Figure 4.
Pathway correlation and cumulative fraction distributions. A) Pearson’s correlation
coefficient distributions among members of apoptosis, colorectal cancer, oxidative
phosphorylation, and proteasome pathways shown together with 100 random selections of
size 84 for GSE4183 expression data of normal colorectal tissue, B–D) Cumulative absolute
value fractions of correlation coefficient distributions among members of apoptosis,
colorectal cancer, oxidative phosphorylation, and proteasome pathways shown together with
10 random selections of size 84 for B) normal colorectal tissue, C) colorectal adenoma, and
D) colorectal carcinoma. Random is shown as grey, colorectal cancer pathway is shown as
red, apoptosis pathway is shown as blue, oxidative phosphorylation pathway is shown as
green and proteasome pathway is shown as yellow.
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Figure 5.
Vend diagram of correlated pairs of genes in colorectal normal, adenoma and carcinoma
samples. A) Correlated pairs with at least 0.5 absolute correlation coefficient. B) Correlated
pairs with at least 0.8 absolute correlation coefficient.
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Table 1

ANOVA p values

Group Sample set P value

X=1, 2, 3 Adenoma 0.0005

X=1, 2, 3 Carcinoma 0.0058

Y=1, 2, 3, 4 Adenoma 0.0265

Y=1, 2, 3, 4 Carcinoma 0.6136
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Table 2

Pair-wise t- test p values

Group 1 Group 2 Adenoma p value Carcinoma p value

X=1 X=2, 3 0.9470 0.2051

X=2 X= 1, 3 0.0038 0.0023

X=3 X=1, 2 0.0002 0.0149

Y=1 Y=2, 3, 4 0.0049 0.8826

Y=2 Y=1, 3, 4 0.1654 0.3116

Y=3 Y=1, 2, 4 0.0882 0.3050

Y=4 Y=1, 2, 3 0.7675 0.5209
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Table 3

Apoptosis and colorectal cancer pathway coherence at correlation coefficient of 0.5

Sample set Apoptosis pathway Colorectal cancer pathway

Normal 0.021 0.255

Adenoma 0.182 0.244

Carcinoma 0.119 0.002
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Table 5

Mutation frequency values of X/Y groups

Group Average mutation frequency

X=1 0.0455

X=2 0.1702

X=3 0.3333

Y=1 0.0833

Y=2 0.0789

Y=3 0.3333

Y=4 0.5714
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