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Abstract
Globally, developed nations spend a significant amount of their resources on healthcare initiatives
that poorly translate into increased population life expectancy. As an example, the United States
devotes sixteen percent of its gross domestic product to healthcare, the highest level in the world,
but falls behind other nations that enjoy greater individual life expectancy. These observations
point to the need for pioneering avenues of drug discovery to increase lifespan with controlled
costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus
(DM) becomes increasingly critical given that the number of diabetic individuals will increase
exponentially over the next twenty years. Here we discuss the elucidation and targeting of novel
cellular pathways that are intimately tied to oxidative stress in DM for new treatment strategies.
Pathways that involve wingless, NAD+ precursors, and cytokines govern complex biological
pathways that determine both cell survival and longevity during DM and its complications.
Furthermore, the role of these entities as biomarkers for disease can further enhance their utility
irrespective of their treatment potential. Greater understanding of the intricacies of these unique
cellular mechanisms will shape future drug discovery for DM to provide focused clinical care with
limited or absent long-term complications.
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Healthcare and metabolic disease
Compared with other nations throughout the world, the United States devotes 16% of the
gross domestic product to healthcare and spending for each individual equal to $7,290, the
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highest levels in the world 1. Total spending on pharmaceuticals is also the highest in the
world with $878 per individual. Yet, life expectancy in years in the United States equals
78.1 years and trails behind other countries such as Japan that allots 8% of the gross
domestic product on healthcare, spends $2,514 for each individual, and has a life expectancy
of 82.6 years. Furthermore, the United States is ranked as having the highest level of obesity
in the population at 34.3% while countries such as Japan have a 3.4% level of obesity 1.
These statistics are the results of multiple factors, but also can support the arguments for not
only improved preventive health measures, but also new directions to treat multiple
disorders that can lead to improved lifespan while minimizing economic burden.

In particular, one can consider diabetes mellitus (DM), a metabolic disorder closely
associated with increased weight gain 2, 3. DM reaches approximately 20 million individuals
in the United States and more than 165 million individuals worldwide 4. By 2030, DM may
affect more than 360 million individuals. Additionally, a significant portion of the
population has undiagnosed diabetes, illustrating the need for improved early diagnosis 5.
The incidence of impaired glucose tolerance in the young also raises further concerns 6.
Individuals with impaired glucose tolerance have a greater than twice the risk for the
development of diabetic complications than individuals with normal glucose tolerance 7.

Type 1 insulin-dependent DM is present in 5-10 percent of all diabetics, but is increasing in
adolescent minority groups 2, 8. Furthermore, Type 1 DM leads to long-term complications
throughout the body involving cardiovascular, renal, and nervous system disease 9. Type 1
DM is associated with the presence of alleles of the Human leukocyte antigen (HLA) class II
genes within the major histocompatibility complex (MHC). The disorder is considered to
have autoimmune origins resulting from inflammatory infiltration of the islets of Langerhans
and the selective destruction of β-cells in the pancreas that leads to insulin loss 10. In Type 1
DM, activation of T-cell clones that are capable of recognizing and destroying β-cells lead
eventually to severe insulin deficiency. These T-cell clones are able to escape from thymus
control that yield high affinity for major histocompatibility complex (MHC) molecules with
T-cell receptors but incorrect low affinity for self-peptides. Once released into the
bloodstream, these T-cell clones can become activated to destroy self-antigens. In many
cases, the insulin gene (INS) and the human MHC or HLA complex are believed to contain
the loci with IDDM1 and IDDM2 to account for the susceptibility to Type 1 DM with
defective antigen presentation 11, 12. Interestingly, a HLA class II molecule has been linked
to Type 1 DM inheritance. HLA-DQ that lacks a charged aspartic acid (Asp-57) in the β-
chain is believed to lead to the ineffective presentation of autoantigen peptides during
thymus selection of T-cells 13. Animal models that involve the nonobese diabetic (NOD)
mice further support these findings, since these mice spontaneously develop diabetes with
the human predisposing HLA-DQ corresponding molecule of H2 I-Ag. Yet, NOD mice
without H2 I-Ag do not develop diabetes 14.

Upon initial diagnosis, approximately ninety percent of individuals with Type 1 DM have
elevated titers of autoantibodies (Type 1A DM). The remaining ten percent of Type 1 DM
individuals do not have serum autoantibodies and are described as having maturity-onset
diabetes of the young (MODY) that can be a result of β-cell dysfunction with autosomal-
dominant inheritance (Type 1B DM) 15. Other variables reported in patients with Type 1
DM include the presence of insulin resistance that is usually characteristic of Type 2 DM
and can lead to neurological and vascular disease 16, 17. Interestingly, there is a converse
overlap with Type 1 and Type 2 DM, since almost ten percent of Type 2 DM patients may
have elevated serum autoantibodies 18.

Monogenic inheritance does not appear to lead to Type 1 DM. Prior work demonstrates that
multiple loci with possible epistatic interactions among other loci may be responsible for
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genetic transmission 19, 20. In addition, several environmental factors may have a role with
Type 1 DM such that investigations have suggested that Type 1 DM in monozygotic twins
can occur with a cumulative risk of seventy percent from birth to 35 years of age 21, 22.
Other studies indicate a concordance between monozygotic twins to be approximately fifty
percent 23, suggesting that environmental factors also may lead to a predisposition for Type
1 DM. Loss of autoimmunity in Type 1 DM can be precipitated also by the exposure to
infectious agents 24.

Type 2 noninsulin-dependent DM represents at least 80 percent of all diabetics, usually in
individuals over 40 years of age, and is dramatically increasing in incidence as a result of
changes in human behavior and increased body mass index 2, 8. Type 2 DM is characterized
by a progressive deterioration of glucose tolerance with early β-cell compensation for
insulin resistance (achieved by β-cell hyperplasia). This is subsequently followed by
progressive decrease in β-cells mass. In contrast, gestational diabetes mellitus that represents
glucose intolerance during some cases of pregnancy usually subsides after delivery.

Insulin resistance or defective insulin action occurs when physiological levels of insulin
produce a subnormal physiologic response. Skeletal muscle and liver are two of the primary
insulin-responsive organs responsible for maintaining normal glucose homeostasis. Insulin
lowers the level of blood glucose through suppression of hepatic glucose production and
stimulation of peripheral glucose uptake, but metabolic disorders can result in insulin
resistance and elevated serum glucose levels. Although insulin resistance forms the basis for
the development of Type 2 DM, elevated serum glucose levels also are a result of the
concurrent impairment in insulin secretion. This abnormal insulin secretion may be a result
of defective β-cell function, chronic exposure to free fatty acids and hyperglycemia, and the
loss of inhibitory feedback through plasma glucagon levels 25.

Patients with DM can develop multiple complications that include immune dysfunction 26,
sarcopenia 27, depression 28, hepatic dysfunction 29, renal disease 30, anemia and
hematological disease 31-33, neurodegenerative disorders 8, 34, 35, and cardiovascular disease
8, 36. Interestingly, patients with DM are at risk for the development of cognitive disorders
26, 37. In a prospective population based study of 6,370 elderly individuals, patients with
DM had almost twice the risk for the development of dementia 38. DM also has been found
to increase the risk for vascular dementia in elderly subjects 39, 40. Although some studies
have found that diabetic patients may have significantly less neuritic plaques and
neurofibrillary tangles than non-diabetic patients 41, other investigators report a modest
adjusted relative risk of Alzheimer's disease in patients with diabetes as compared with those
without diabetes to be 1.3 42, 43. Additional studies have described the reduced expression of
genes encoding insulin in Alzheimer's patients that suggests a potential link between DM
and the development of Alzheimer's disease 43. Alzheimer's disease can be the result of a
number of etiologies 44, 45, such as changes in cerebral blood flow and metabolism with
aging 46, sialylation and glycosylation of amyloid plaques 47, 48, aberrant cell cycle
induction 49-51, amyloid toxicity 51-55, chemokine induction 56, exogenous toxins 57,
alteration in muscarinic and nicotinic pathways 46, 58, and intracellular calcium changes 59.
Yet, other studies point to metabolic dysfunction 60-62. For example, in animal models with
brain/neuronal insulin receptor knockouts, loss of insulin signaling appears to be linked to
increased phosphorylation of the microtubule-associated protein tau that occurs during
Alzheimer's disease 63.

Oxidative stress, apoptotic injury, mitochondria, and diabetes
Many of the cellular pathways that lead to diabetic complications and insulin resistance have
been linked to the generation of free radicals and oxidative stress 2, 3, 34, 35, 62, 64, 65. In
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animal studies with Type 1 diabetic animals, oxidative stress leads to DNA damage in renal
cortical cells 66. Although early effects of elevated glucose may increase the presence of
potentially protective pathways 67, more prolonged exposure of elevated glucose can lead to
reactive oxygen species (ROS) 32, 68 and can be detrimental even if glucose levels are
controlled 69. In addition, elevated levels of ceruloplasmin during hyperglycemia are
suggestive of increased ROS 70. A number of treatment entities seek to ameliorate the
effects of oxidative stress during DM 55, 71-75.

Oxidative stress also may promote the onset of DM by decreasing insulin sensitivity and
destroying the insulin-producing cells within the pancreas. For example, ROS can penetrate
through cell membranes and cause damage to β-cells of pancreas 76, 77. A high fat diet 78 or
free fatty acids also have been shown to release ROS and contribute to mitochondrial DNA
damage and impaired pancreatic β-cell function 79. Interestingly in non-diabetic rats,
hyperglycemia has been shown to increase muscle protein carbonyl content and elevated
levels of malondialdehyde and 4-hydroxynonenal, indicators of oxidative stress and lipid
peroxidation 80. These biomarkers of oxidative stress and insulin resistance suggest that
ROS contribute to the pathogenesis of hyperglycemia-induced insulin resistance 81, 82 as
well as insulin induced ROS 73. Hyperglycemia can lead to increased production of ROS in
several cell types 82, 83. For example, with increased age in a rat model of nonobese Type 2
DM, increased levels of 8-OHdG and HNE-modified proteins in pancreatic beta-cells have
been reported 84. Elevated glucose also has been shown to increase antioxidant enzyme
levels in human endothelial cells, suggesting that elevated glucose levels may lead to a
reparative process to protect cells from oxidative stress injury 85. Chronic hyperglycemia is
not necessary to lead to oxidative stress injury, since even short periods of hyperglycemia,
generate ROS, such as in vascular cells 86. Recent clinical correlates support these
experimental studies to show that acute glucose swings in addition to chronic hyperglycemia
can trigger oxidative stress mechanisms during Type 2 DM, demonstrating the importance
for therapeutic interventions during acute and sustained hyperglycemic episodes 87.

At the cellular level, ROS are oxygen free radicals and other chemical entities that can lead
to cell injury if left unchecked 49, 88, 89. Oxidative stress can result in hepatic injury 90, 91,
pancreatitis 92, impaired cognition 93, 94, neuronal injury 44, 49, 95-99, Parkinson's disease
100-103, complications of epilepsy 104, cardiovascular disease 105-107, ocular disease 108,
age-related disorders 109, metal ion injury 110, uncontrolled pain sensation 111, and promote
xenobiotic toxicity 112, 113. ROS consist of superoxide free radicals, hydrogen peroxide,
singlet oxygen, nitric oxide (NO), and peroxynitrite 34, 44, 83. ROS usually occur at low
levels during normal physiological conditions and are scavenged by endogenous antioxidant
systems that include superoxide dismutase (SOD), glutathione peroxidase, catalase, and
vitamin D3 114, 115. Additional pathways include vitamins C, E, and K 104, 116-119.

Oxidative stress results in cell injury through apoptotic and non-apoptotic pathways. In
regards to programmed cell death (apoptosis), apoptosis can occur during DM 2, 3, 120, 121,
anesthetic exposure 122, tissue ischemia 123-126, bone fatigue 127, neurodegenerative
disorders 34, 128-130 and Alzheimer's disease 51-54, 59, 131-136, plasticity associated with
ischemic preconditioning 137, aging-related diseases 35, 138, 139, and toxic conditions during
development 122, 140.

During apoptosis, the cleavage of genomic DNA into fragments occurs 129, 141, 142 as a later
event during apoptotic injury 142-145 after the exposure of membrane phosphatidylserine
(PS) residues 146, 147. Membrane PS exposure occurs in neurons, vascular cells, and
inflammatory microglia during reduced oxygen exposure 50, 89, 141, 148, 149, β-amyloid (Aβ)
exposure 53, 55, nitric oxide exposure 150-154, and during the administration of agents that
induce the production of reactive oxygen species (ROS), such as 6-hydroxydopamine 103
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(Figure 1). Membrane PS externalization also occurs on platelets and has been associated
with clot formation in the vascular system 155.

Membrane PS exposure also is involved in the activation of inflammatory cells such as
microglia of the central nervous system that can dispose of injured cells 156, 157. For their
own survival, microglia and non-neuronal cells of the brain are dependent upon several
intracellular pathways, such as mTOR 158, 159 and zinc regulation 160. Non-neuronal cells of
the brain can be beneficial to modulate neurogenesis 161, to function as immune surveillance
for toxic products 162, such as for β-amyloid 48, to block foreign organisms and viral agents
from proliferating in the brain 163, to modulate vascular growth 164, and to allow for the
repair of tissues composed of neuronal and vascular cells 158, 165. Yet, microglia have
another side that may be detrimental to an organism. They can generate ROS 166, 167, may
worsen events with oxidative stress injury 168, and activate cytokines that in some
circumstances may initially lead to cell proliferation 169, but later can result in the demise of
cells 56, 163, 164. For these reasons, it is important to understand the mechanisms that can
activate microglia. Membrane PS exposure can become a signal for microglia to dispose of
injured cells 61, 145, 170-172. This process can be controlled by caspase 1 and caspase 3 89,
173, 174. Increased expression of the phosphatidylserine receptor (PSR) on microglia also
occurs to facilitate activation of microglia 116, 175.

Oxidative stress and apoptotic cell death during disorders such as DM are also strongly
associated to cellular energy maintenance and intact mitochondrial function 8, 26, 64, 176-178.
ROS exposure can result in the opening of the mitochondrial membrane permeability
transition pore 145, 179-181, reduce mitochondrial NAD+ stores, and result in apoptotic cell
injury 44. Free fatty acids also can lead to ROS release, mitochondrial DNA damage, and
impaired pancreatic β-cell function 79. In patients with Type 2 DM, skeletal muscle
mitochondria have been described to be smaller than those in control subjects 182. A
decrease in the levels of mitochondrial proteins and mitochondrial DNA in adipocytes also
has been correlated with the development of type 2 DM 183.

Innovative drug discovery for DM
Multiple pathways may lead to a loss in cell survival and longevity during DM that are
broad in nature and consist of several precipitating factors. Yet, oxidant-induced injury and
the cellular pathways responsible for this signaling are thought to be primary mediators of
the disability that ensues during DM. As a result, novel and pioneering directions for drug
discovery are required for safe and effective treatments for DM. In addition, it is the
understanding of the complex nature of cellular pathways and their intimate relationship that
is critical for the development of successful drug platforms. Here we present novel cellular
pathways that are strongly bound to oxidant pathways in DM. These pathways involve
wingless genes with Wnt, NAD+ precursors with nicotinamide, forkhead transcription
factors of the “O” class, and the cytokine and growth factor erythropoietin (EPO), each of
which determine cellular development, survival and injury mechanisms, and longevity.

Novel cellular pathways and diabetes
Wnt

Proteins derived from the Drosophila Wingless (Wg) and the mouse Int-1 genes are secreted
cysteine-rich glycosylated proteins that play a role in a variety of cellular functions 53, 72,
175, 184. Wnt proteins determine multiple cellular functions that involve embryonic cell
proliferation, cell differentiation, and cell survival that involve neurons, cardiomyocytes,
endothelial cells, red blood cells, tumors, adipose tissue as well as several other cell types
185-198. Recent work in clinical disease indicates that abnormalities in Wnt pathways, such
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as with transcription factor 7-like 2 gene, may impart increased risk for type 2 DM in some
populations 199-201 and have a strong association with the development of obesity 202 (Table
1). The family member Wnt5b has been shown to have an elevated expression in adipose
tissue, the pancreas, and the liver in patients with DM, suggesting control of metabolic
pathways by Wnt 203. In addition, clinical studies in patients with coronary artery disease
and the combined metabolic syndrome with hypertension, hyperlipidemia, and DM have
shown impaired Wnt signaling through a missense mutation in LRP-6 204. Experimental
studies in mice with hyperglycemia through a high fat diet also show increased expression
of Wnt3a and Wnt7a 205.

It also has been suggested that intact Wnt family members may offer glucose tolerance and
increased insulin sensitivity 206 as well as protect glomerular mesangial cells from elevated
glucose induced apoptosis 207. Animals that over express Wnt10b with a high-fat diet
experienced a reduction in bodyweight, hyperinsulinemia, triglyceride plasma levels, and
improved glucose homeostasis 208. Cell culture studies demonstrate that the Wnt1 protein
that can be controlled by the growth factor EPO is necessary and sufficient to impart cellular
protection during elevated glucose exposure 72, 209, 210. EPO maintains the expression of
Wnt1 during elevated glucose exposure and prevents loss of Wnt1 expression that would
occur in the absence of EPO during elevated glucose. In addition, blockade of Wnt1 with a
Wnt1 antibody can neutralize the protective capacity of EPO, illustrating that Wnt1 is a
critical component in the cytoprotection of EPO during elevated glucose exposure 72.

Wnt may foster cellular protection during DM through the novel regulation of protein kinase
B (Akt) (Table 1). Activation of Akt can promote cell survival, such as during cell
proliferation 211, progenitor cell development 169, blood-brain barrier permeability 212,
inflammation 163, 213. Ischemic-preconditioning 214, neurodegeneration 103, hyperglycemia
67, 215, hypoxia 216, amyloid toxicity 52, 53, 131, 132, 217, excitotoxicity 95, amyloid
production 218, cardiomyopathy 219, cellular aging 220, and oxidative stress 145, 171, 221. Akt
activation also can modulate microglial cell activation 145, 171, 180, regulate transcription
factors 222, maintain mitochondrial membrane potential (ΔΨm ), prevent cytochrome c
release 150, 180, 223, and block caspase activity 180, 216, 223. However, as a “pro-survival
pathway”, it should be recognized that Akt activation may be deleterious, such as during
cancer resistance to chemotherapy 224.

A number of observations support the dependence of Wnt on Akt activation and support the
premise that Wnt can modulate DM complications through Akt 192, 225, 226. For example,
neuronal cell differentiation requires Wnt signaling and trophic factor induction through Akt
activity 227 and differentiation of cardiomyocytes proceeds only with Akt activation 228.
Wnt also has been shown in preadipocytes to increase Akt phosphorylation 229 and the Wnt-
induced secreted protein in a fibroblast cell line uses Akt to block apoptotic death 230.
Secreted Frizzled-related proteins (sFRPs), which can modulate Wnt signaling, also employ
Akt for cardiac tissue repair 231, reduction in tissue injury during pressure overload cardiac
hypertrophy is tied to Akt activation 232, and cardiac ischemic preconditioning appear to rely
upon Akt 233. In the neuronal system, Wnt over-expression can independently increase the
phosphorylation and the activation of Akt to promote neuronal protection. Inhibition of the
phosphatidylinositol 3-kinase (PI 3-K) pathway or gene silencing of Akt expression prevents
Wnt from blocking apoptotic injury and microglial activation 53.

Nicotinamide
As the amide form of vitamin B3 (niacin), nicotinamide or nicotinic acid which is the water
soluble form vitamin B3, is obtained through synthesis or as a dietary source and supplement
234. The principal form of niacin in dietary plant sources is nicotinic acid that is rapidly
absorbed through the gastrointestinal epithelium 235. Nicotinamide is subsequently
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generated through the conversion of nicotinic acid in the liver or through the hydrolysis of
NAD+ 62. After nicotinamide is obtained in the body, it functions as the precursor for the
coenzyme ß-nicotinamide adenine dinucleotide (NAD+) 61, 236 and also is essential for the
synthesis of nicotinamide adenine dinucleotide phosphate (NADP+) 237. Initially,
nicotinamide is changed to its mononucleotide form (NMN) with the enzyme nicotinic acid/
nicotinamide adenylyltransferase yielding the dinucleotides NAAD+ and NAD+. NAAD+

also yields NAD+ through NAD+ synthase 238 or NAD+ can be synthesized through
nicotinamide riboside kinase that phosphorylates nicotinamide riboside to NMN 239, 240.

The cellular pathways of nicotinamide are essential for energy metabolism and may directly
impact normal physiology as well as disease progression 241-244. Nicotinamide through
NAD+ has a critical physiological role in cellular metabolism and can be directly utilized by
cells to synthesize NAD+ 34, 61, 116. Nicotinamide also participates in energy metabolism
through the tricarboxylic acid cycle by utilizing NAD+ in the mitochondrial respiratory
electron transport chain for the production of ATP, DNA synthesis, and DNA repair 245-247.
In addition, nicotinamide can significantly increase NAD+ levels in vulnerable regions of the
ischemic brain, suggesting that nicotinamide may prevent cell injury through the
maintenance of NAD+ levels 248. During axonal degeneration, nicotinamide also may
promote protection through NAD+-dependent mechanisms 249. Nicotinamide also appears to
function directly at the level of mitochondrial membrane pore formation 61, 250, 251 to
prevent the release of cytochrome c 252. Nicotinamide can prevent mitochondrial membrane
depolarization during exposure to either tert-butylhydroperoxide or atractyloside 253. There
are other mechanisms that nicotinamide may use to maintain cellular metabolic homeostasis
through the maintenance of mitochondrial membrane potential 181, 250. Nicotinamide can
phosphorylate Bad 252 to prevent mitochondrial membrane depolarization and subsequent
cytochrome c release. Nicotinamide also may inhibit the assembly of the mitochondrial
permeability transition pore complex similar to the action of cyclosporin A 254 as well as
stabilize cellular energy metabolism through ATP pathways 255.

In addition to its role in metabolism, nicotinamide can be essential for cellular
differentiation, such as for human embryonic stem cells 256. Nicotinamide has protean
endocrine effects 257, 258, can scavenge ROS, and offers cellular protection for both
neuronal 253, 259, 260 and vascular cells 34, 61, 116, 236. In neuronal cell populations,
nicotinamide protects against free radical injury 181, anoxia 261, excitotoxicity 262,
homocysteine toxicity 263, ethanol-induced neuronal injury 264, and oxygen-glucose
deprivation 253, 265. In cortical neurons, nicotinamide blocks cell injury during ROS
generating toxins such as tertiary butylhydroperoxide 266. Nicotinamide also can protect
both rod and cone photoreceptor cells against N-methyl-N-nitrosourea toxicity 267, 268 as
well as against glycation end products in all layers of the retina 269. In animal studies,
nicotinamide improves cognitive function, cell survival, and reduces edema following
cortical trauma 270-275, limits axonal degeneration 249, reduces cerebral ischemia 276-278

sometimes more effectively in models that were absent of comorbidities 279, prevents spinal
cord injury 280, 281, and lessens disability in models of Parkinson's disease 100, 282, 283.

In regards to the vascular system 253, 259, 260, nicotinamide promotes vascular integrity 61,
116, 236 which may be crucial for tissue growth and repair 284. Nicotinamide can protect the
function of the blood brain barrier 270, 271, influence arteriolar dilatation and blood flow 285,
increase skin vascular permeability 286, inhibit atherosclerotic plaque formation through
inhibition of poly(ADP-ribose) polymerase 287, and foster platelet production through
megakaryocyte maturation 288. Nicotinamide can enhance endothelial cell viability during
ROS exposure 181, 250, 261, 289. Nicotinamide also may reverse a previously sustained early
apoptotic injury 61, 181, 250, 252, 253, 261, suggesting that apoptosis prior to reaching genomic
DNA degradation is dynamic and reversible in nature 61, 181, 251, 261. Yet, some studies in
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mice suggest that nicotinamide may either prevent or contribute to atherosclerotic plaques
over a three to six month progression 290. Although the mechanisms are not clear, it is
conceivable that these events may occur during oxidative stress and the production of
acidosis-induced cellular toxicity 291-293. Nicotinamide cannot prevent cellular injury during
intracellular acidification paradigms 181.

Since nicotinamide is closely aligned with cellular energy management, it may play a
significant role during DM and the complications of this disorder (Table 1). For example,
nicotinamide appears to have a close relationship with metabolic pathways that may lead to
clinical cognitive changes 294. Nicotinamide also has been shown to maintain normal fasting
blood glucose with streptozotocin-induced DM in animal models 295, 296. Nicotinamide can
limit peripheral nerve injury during elevated glucose 297, reverse Type 1 DM in mice with
acetyl-lcarnitine 298, and block oxidant stress 242, 250, 252, 264, 299. Nicotinamide also affects
levels of O-N-acetylglucosamin(O-GlcNAc)ylated proteins 300 and can significantly
improve glucose utilization, prevent excessive lactate production in ischemic animal models
301. In clinical conditions, oral nicotinamide administration, nicotinamide (1200mg/m2/day)
protects β-cell function and prevents clinical disease in islet-cell antibody-positive first-
degree relatives of Type 1 DM 302. Nicotinamide administration (25mg/kg) has been shown
in patients with recent onset Type 1 DM combined with intensive insulin therapy for up to
two years after diagnosis to reduce HbA1c levels 303. Also relevant to patients with DM and
renal insufficiency, nicotinamide can reduce intestinal absorption of phosphate and prevent
the development of hyperphosphatemia 304. As a caveat for caution, some studies have
reported that prolonged exposure to nicotinamide may lead to impaired β-cell function and
reduction in cell growth 305, 306 as well as elevated nicotinamide levels may foster DM 307.
Furthermore, nicotinamide also may inhibit P450 and hepatic metabolism 308 and play a role
in the progression of other disorders such as Parkinson's disease 283.

One novel pathway that may control some of the beneficial effects of nicotinamide during
DM involves the forkhead transcription factors of the “O” class (FoxOs) 309, 310 (Table 1).
These transcription factors either inhibit or activate target gene expression by binding bind
to DNA through the forkhead domain that relies upon fourteen protein-DNA contacts 309,
311-314. The term for these transcription factors is derived in part from imaging studies. On
X-ray crystallography 315 or nuclear magnetic resonance imaging 316, the forkhead domain
is described as a “winged helix” as a result of a butterfly-like appearance. The original
nomenclature for these proteins, such as forkhead in rhabdomyosarcoma (FKHR), the
Drosophila gene fork head (fkh), and Forkhead RElated ACtivator (FREAC)-1 and -2, has
been replaced 317. The current nomenclature for human Fox proteins places all letters in
uppercase, otherwise only the initial letter is listed as uppercase for the mouse, and for all
other chordates the initial and subclass letters are in uppercase 318. Members of this family
that include FoxO1, FoxO3, FoxO4, and FoxO6 are found throughout the body 82, 191, 317.
These proteins are expressed in tissues of the reproductive system of males and females,
skeletal muscle, the cardiovascular system, lung, liver, pancreas, spleen, thymus, and the
nervous system 157, 313, 314, 319. Modulation of FoxOs is a viable therapeutic target for
systems that involve metabotropic glutamate receptors 96, neurotrophins 320, cancer 157, 313,
321, and cytokines 222 to foster intended cell survival.

Interestingly, FoxO proteins can modulate cell cycle progression to prevent tumor growth
157, 313, 322. For example, administration of the Bcr-Abl tyrosine kinase inhibitor imatinib in
chronic myelogenous leukemia cell lines blocks cell proliferation and promotes apoptotic
cell death through FoxO3a and increased TRAIL production 323. The transcription factor
E2F-1 that that oversees cell cycle progression increases expression of FoxO1 and FoxO3a
to lead to cell cycle arrest 324. Other work indicates that FoxO proteins utilize the p53
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upstream regulator p19(Arf) through Myc to block cell cycle induction and lymphoma
progression 325.

Since attempted initiation of the cell cycle such as in neurons may be detrimental and can
lead to cell death 49, 50, 326, 327, one may consider the ability of FoxO proteins to block cell
cycle progression to be beneficial in these circumstances. In regards to cell metabolism and
DM, FoxO proteins may be cytoprotective. Interferon-gamma driven expression of
tryptophan catabolism by cytotoxic T lymphocyte antigen 4 may activate Foxo3a to protect
dendritic cells from injury in nonobese diabetic mice 328. In addition, adipose tissue-specific
expression of Foxo1 in mice improves glucose tolerance and sensitivity to insulin during an
elevated fat diet 329. FoxO proteins also may protect against diminished mitochondrial
energy levels known to occur during insulin resistance such as in the elderly populations 2,
3, 8. In caloric restricted mice that have decreased energy reserves, Foxo1, Foxo3a, and
Foxo4 mRNA levels were noted to progressively increase over two years 330. These
observations complement studies in Drosophila and mammalian cells that demonstrate an
increase in insulin signaling to regulate cellular metabolism during the up-regulation of
FoxO1 expression 331.

However, the role of FoxO proteins in different cell systems can be variable and do not
consistently point to a beneficial effect of FoxO proteins. FoxO3a controls early activation
and subsequent apoptotic injury in microglia through caspase action of caspase 3, 8, and 9
55, 75, illustrating that targeting FoxO3a activity may limit apoptotic caspase activity and
promote cell survival (Figure 1). In clinical conditions, analysis of the genetic variance in
FOXO1a and FOXO3a on metabolic profiles, age-related diseases, fertility, fecundity, and
mortality in patients have observed higher HbA1c levels and increased mortality risk
associated with specific haplotypes of FOXO1a 332. These clinical observations may
indicate that elevated glucose levels can reduce post-translational phosphorylation of
FOXO1, FOXO3a, and FOXO4 and initiate cellular apoptosis 333. In addition, mice with a
constitutively active Foxo1 transgene have increased microsomal triglyceride transfer
protein and high plasma triglyceride levels 334. Increased transcriptional activity of FoxO1,
such as by the Sirt1 activator resveratrol, also can decrease insulin mediated glucose uptake
and result in insulin resistance 335. Overexpression of Foxo1 in skeletal muscles of mice can
lead to reduced skeletal muscle mass and poor glycemic control 336. Other studies that block
the expression of Foxo1 in normal and cachectic mice 337 or reduce FoxO3 expression 338

demonstrate positive effects with an increase in skeletal muscle mass or resistance to muscle
atrophy.

As the pathways with cellular metabolism and FoxOs begin to unravel, nicotinamide
becomes an attractive agent to consider for DM 61, 62, 116, 236. Nicotinamide inhibits FoxO
protein activity through phosphorylation 253 and may be protective through two separate
mechanisms of post-translational modification of FoxO3a 35, 157, 191, 314, 317. Nicotinamide
not only can maintain phosphorylation of FoxO3a and inhibit its activity to potentially block
caspase 3 activity 253, but also can preserve the integrity of the FoxO3a protein to block
FoxO3a proteolysis that can yield pro-apoptotic amino-terminal fragments 253. During
oxidative stress, an initial inhibitory phosphorylation of FoxO3a at the regulatory
phosphorylation sites (Thr32 and Ser253) occurs 253, 339. Yet, loss of phosphorylated FoxO3a
expression appears to subsequently result over twelve hours, possibly by caspase
degradation, which can raise the vulnerability of neurons to apoptotic injury 253. The loss of
both FoxO3a phosphorylation and the integrity of this transcription factor may then lead to
apoptosis. FoxO3a proteolysis occurs during cell injury yielding an amino-terminal (Nt)
fragment that can become biologically active and lead to cellular injury 340. Nicotinamide,
through the phosphorylation of FoxO3a blocks apoptotic cell injury and prevents caspase 3
activity 253.
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Nicotinamide is closely linked to cell longevity pathways that involve not only FoxOs, but
also sirtuins 116, 341, 342. FoxO proteins are deacetylated by histone deacetylases. These
include the sirtuin Sirt1, a NAD+-dependent deacetylase and the mammalian ortholog of the
silent information regulator 2 (Sir2) protein 310, that can control multiple processes such as
cell injury, lifespan, and metabolism 343, 344. FoxO proteins and sirtuins have been
associated with cell longevity and aging as shown by early studies linking DAF-16 in
Caenorhabditis elegans 157, 310, 344-346. Furthermore, sirtuins are tied to cellular
metabolism 343, 347 and increased cell survival 344, 345, 348-350. Yet, the relationship among
nicotinamide, FoxO transcription factors, and sirtuins is not entirely clear (Table 1). For
example, some studies suggest that stimulation of Sirt1 during starvation is dependent upon
FoxO3a activity as well as p53 351. During exercise, an up-regulation of FoxO3a and Sirt1
activity is observed in the heart of rats 352, suggesting that physical activity may be
beneficial for the cardiovascular system through FoxO proteins. Other work has shown that
Sirt1 may repress the activity of FoxO1, FoxO3a, and FoxO4, illustrating that cellular
longevity may benefit from reduction in FoxO protein generated apoptosis 353.

However, nicotinamide prevents oxidant-induced apoptotic injury usually in a specific
concentration range. Administration of nicotinamide in a range of 5.0 - 25.0 mmol/L
significantly protects cells during oxidative stress injuries. This concentration range is
similar to other injury paradigms in both animal models 268 and in cell culture models 61,
181, 250. In contrast to these cytoprotective concentrations of nicotinamide that also can
modulate offers gene regulation 354, a reduction in nicotinamide levels during
nicotinamidase expression supports increased cellular survival and longevity 348, 350.
Nicotinamide can block cellular Sir2 by intercepting an ADP-ribosyl-enzyme-acetyl peptide
intermediate with the regeneration of NAD+ (transglycosidation) 355. Physiological
concentrations of nicotinamide noncompetitively inhibit Sir2, suggesting that nicotinamide
is a physiologically relevant regulator of Sir2 enzymes 356. Interestingly, nicotinamidase
expression which reduces nicotinamide concentrations prevents both apoptotic late DNA
degradation and early PS exposure that appears to depend upon increased Sirt1 activity and
may serve to modulate inflammatory cell activation 348, 350. In addition, inhibition of sirtuin
(Sirt1) activity either by pharmacological methods or siRNA gene silencing is detrimental to
cell survival during oxidative stress and blocks nicotinamidase protection, further supporting
that Sirt1 activity may be necessary for nicotinamidase protection during oxidative stress. As
a result, in relation to cell longevity, it is the lower concentrations of nicotinamide that can
function as an inhibitor of sirtuins that are necessary for the promotion of increased lifespan
and cellular survival 250, 252, 253, 261, 348, 350, 357, at least in yeast and metazoans 116, 341,
342. Sirtuins also may prevent nicotinamide from assisting with DNA repair by altering the
accessibility of DNA damaged sites for repair enzymes 358. Furthermore, sirtuin activators,
at least at the experimental animal level, may promote glucose homeostasis and insulin
sensitivity 62, 343, 344, 350, 359 while also reducing the risk of obesity 360.

Erythropoietin
The growth factor and cytokine EPO is approved by the Food and Drug Administration for
the treatment of anemia, but continued new work has identified this agent for the potential
treatment of multiple disorders 209, 361. Clinical considerations include treatment for
depression 362, Alzheimer's disease 52, 363, 364, Parkinson's disease 365, immune system
dysfunction 150, 222, 223, 366, 367, neurodegeneration 52, 71, 150, 223, 368-371, cardiovascular
disorders 180, 216, 222, 372-379, spinal cord injury 380, 381, brain edema 382, fertility 383,
trauma 384-386, shock 387-389, infection 390-392, pulmonary disease 393-395, renal disease 68,
396-398, gastrointestinal disorders 399-401, ocular disease 402-404, and metabolic disorders 2,
33, 34, 71, 72, 405. New studies further support the use of intravitreal EPO injections in
patients 406.
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EPO is required for erythropoiesis 407-409, but also functions in other organs and tissues,
such as the brain, heart, and vascular system 216, 222, 223, 410-412. EPO production is
believed to occur throughout the body 83, 361, 413 and can be detected in the breath of
healthy individuals 414. The principal organs of EPO production and secretion are the
kidney, liver, brain, and uterus 210, 339, 415.

In regards to EPO during DM, plasma EPO is often low in diabetic patients with anemia 416

or without anemia 417. The inability of these individuals to produce EPO in response to a
declining hemoglobin levels suggests an impaired EPO response during DM 418 (Table 1).
Yet, increased EPO secretion during diabetic pregnancies may represent the body's attempt
at endogenous protection against the complications of DM 419, 420. This potential
cytoprotective capacity of EPO may be important during complications of DM, such as
those that involve cognitive impairment. For example, EPO may improve cognitive ability.
EPO may reduce in animal models apoptotic pathways during periods of hyperoxia in the
developing brain 421, 422. Furthermore, clinical disorders may have periods of hyperoxia
followed by cerebral hypoperfusion and hypoxia that can lead to cerebral injury with
associated oxidative stress 423. EPO under these conditions also may be protective since it
can promote neurite outgrowth 424 and also may regulate hemoglobin levels that have
recently been associated with cognitive decline 425. Elevated EPO concentrations during
infant maturation have been correlated with increased Mental Development Index scores 426

and EPO may prevent toxic effects of agents used to control cognitive function such as
haloperidol 427.

In relation to clinical relevance, EPO in diabetic as well as non-diabetic patients with severe,
resistant congestive heart failure can decrease fatigue, increase left ventricular ejection
fraction, and significantly decrease hospitalization stay 428 (Table 1). In addition, EPO can
serve to reverse the complications of anemia during DM 33. Experimental work during
elevated glucose also has demonstrated that EPO can significantly improve vascular cell
survival in a 1.0 ng/ml range 72. EPO administration in patients also can significantly
increase plasma levels of EPO well above this range of 1.0 ng/ml that has been associated
with potential EPO cellular protection in patients with cardiac or renal disease 429, 430,
illustrating that the effects of EPO observed during in vitro studies may parallel the cellular
processes altered by EPO in patients with DM 426.

Protection in the hematological and vascular system by EPO may rely upon modulation of
FoxOs and Wnt signaling 209, 361 (Table 1). EPO fosters eythroid progenitor cell
development through the regulation of FoxO activity 361, 413, 431 and may require regulation
of specific gene expression through an EPO-FoxO3a association to promote erythropoiesis
in cultured cells 432. In addition, EPO exerts cellular protection through Wnt signaling. Cell
culture studies demonstrate that the Wnt1 protein is necessary and sufficient to impart
cellular protection during elevated glucose exposure 72. EPO maintains the expression of
Wnt1 during elevated glucose exposure and prevents loss of Wnt1 expression that would
occur in the absence of EPO during elevated glucose. In addition, blockade of Wnt1 with a
Wnt1 antibody can neutralize the protective capacity of EPO, illustrating that Wnt1 is a
critical component in the cytoprotection of EPO during elevated glucose exposure 72.
Furthermore, EPO during elevated glucose and similar to other models of oxidative stress
can block neuronal degeneration 71, prevents renal cell apoptosis 405, apoptotic DNA
degradation, and degeneration in cardiac and vascular cell models 180, 216, 222, 411, 433.
Protection by EPO also is related to the maintenance of mitochondrial membrane potential,
since loss of mitochondrial membrane potential is known to lead to apoptotic cell injury 166,
434. EPO has the capacity to prevent the depolarization of the mitochondrial membrane that
also affects the release of cytochrome c 150, 216, 435 (Figure 2).
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Biomarkers and future considerations
Primary cellular pathways that may be critical for the development of new drug therapies
also may possess great utility to function as biomarkers that can predict the diagnosis, onset,
or progression of disease. Biomarkers can be used for the determination of specific genes,
proteins, or products of cellular and biological processes. In addition, biomarkers can
represent the response of cells or tissues to therapeutic strategies 81. Many of the biological
outcomes described for Wnt, nicotinamide, and EPO encompass necessary cellular pathways
for development, growth, and survival. Yet, these entities also hold the potential to further
disease progression or be set in motion during disease onset as an endogenous protective
response. In regards to Wnt, signaling for this glycoprotein may indicate the onset of early
tissue injury during conditions such as elevated glucose 72, amyloid toxicity 53, or cardiac
ischemia 233, 436 and alert the need for rapid responsive treatments to limit cell injury. Yet,
increased Wnt expression also may suggest disease progression as well as a poor prognostic
response to prior therapies 34, 177, 192. Aberrant Wnt signaling has been associated with
advanced prostate cancer and bone metastases 437, the genesis of cancer stem cells 185, the
reliance of FoxO pathways to promote unregulated cell proliferation in cancer 438, and the
vulnerability of patients with Type 2 DM to develop colorectal tumors 439.

Independent from Wnt, FoxOs and EPO may serve as essential biomarkers. For example,
the absence of FoxO proteins can suggest tumor progression 440. On the converse side, the
up-regulation of FoxO proteins can indicate a positive response to chemotherapy 321, 441, 442

and also be an indicator and responsive agent to ischemic tissue 443. In some scenarios,
expression of FoxO proteins may suggest tissue protection and recovery, since FoxO3a
activity may enhance vascular smooth muscle antioxidant properties in aged animals and be
beneficial to the cardiovascular system during physical exertion 352. In a similar manner,
EPO also may be a positive indicator of cytoprotective responses 209, 210, 339. Although
EPO has not been shown to correlate with Psychomotor Development Index or an overall
incidence of neurodevelopmental impairment, in clinical studies infants with elevated EPO
possessed higher Mental Development Index scores than infants with lower EPO
concentrations, suggesting that the presence of EPO may correlate with a positive
developmental course. Advanced cognitive function also may rely upon appropriate levels
of EPO that can be followed since both low and high levels of EPO in the elderly can be
associated with diminished cognitive function 425. Yet, the presence of EPO may affect a
number of other systems in addition to the brain 444. Recent work has shown that the
presence of a truncated form of EPO receptor can function as a dominant negative regulator
of EPO signaling and lead to hypertension, suggesting that monitoring of this biomarker
may identify individuals susceptible to hypertension 445. Although EPO has recently been
reported to prevent drug-induced fibrosis and possible endothelial damage during
chemotherapy 446, it is important to note that EPO also may foster tumor progression 447,
448. EPO and its receptor are present in tumor specimens, may block tumor cell apoptosis
through Akt 449, enhance metastatic disease, 450, and complicate radiotherapy by assisting
with tumor angiogenesis 451.

Drug development for any disorder becomes a complex enterprise, especially for disorders
such as DM with the multiple complications of this disease that can ensue through oxidant
stress pathways. Nevertheless, elucidation of novel pathways and their biological role that
have an intimate relationship with agents such as Wnt, nicotinamide, and EPO are vital for
the successful treatment of clinical disease. In addition, defining the ability of these agents
to function as potential biomarkers for disease can further enhance the utility of new entities
irrespective of their treatment potential. Given that the present percentage of the gross
domestic product for U.S. healthcare spending is the highest in the world, life expectancy in
the U.S. trails behind other countries, and that the number of individuals affected by DM
globally is expected to climb exponentially over the years, it becomes critical to understand
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both the clinical efficacy of novel treatments as well as the potential complications of these
agents especially in a variety of circumstances that may not only involve essential cellular
repair but also undesirable cellular proliferation.
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Figure 1. Transfection of FoxO3a siRNA in endothelial cells prevents apoptotic
phosphatidylserine (PS) exposure during elevated D-glucose
Representative images illustrate that gene knockdown of FoxO3a with FoxO3a siRNA
(siRNA) significantly blocks endothelial cell membrane PS externalization assessed by
annexin V phycoerythrin (green fluorescence). FoxO3a siRNA alone was not toxic and non-
specific scrambled siRNA did not reduce PS exposure during elevated D-glucose.
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Figure 2. Erythropoietin (EPO) blocks mitochondrial depolarization during elevated D-glucose
Elevated D-glucose (20 mM) resulted in a significant decrease in the red/green fluorescence
intensity ratio of mitochondria using a cationic membrane potential indicator JC-1 within 48
hours when compared with untreated endothelial cells, illustrating that elevated D-glucose
leads to mitochondrial membrane depolarization. In contrast, pre-treatment with EPO (10
ng/ml) during elevated D-glucose significantly increased the red/green fluorescence
intensity of mitochondria in endothelial cells, indicating that mitochondrial membrane
potential was restored by EPO.

Maiese et al. Page 38

J Clin Pharmacol. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Maiese et al. Page 39

Table 1

Summary of Clinical Outcomes and Signaling Pathways with Wnt, Nicotinamide, and Erythropoietin

Therapeutic
Presentation and
Potential During
Diabetes Mellitus (DM)

Clinical Outcomes Signaling Pathways

Wnt Wnt pathways, such as with transcription factor 7-like 2 gene,
may impart increased risk for type 2 DM
Wnt may have an association with the development of obesity
Wnt has an elevated expression in adipose tissue, the pancreas,
and the liver in patients with DM
Impaired Wnt signaling through a missense mutation in LRP-6
during metabolic syndrome

Vascular/renal cell early and late apoptotic
programs decreased by Wnt
Wnt utilizes EPO for protection against elevated
glucose
Protection by Wnt through Akt and Secreted
Frizzled-related protein pathways

Nicotinamide Nicotinamide can maintain normal fasting blood glucose and
improve glucose utilization in animal models of DM
Nicotinamide can limit peripheral nerve injury during elevated
glucose
Nicotinamide protects β-cell function in islet-cell antibody-
positive first-degree relatives of Type 1 DM
Nicotinamide combined with intensive insulin therapy reduces
HbA1c levels
Nicotinamide can reduce intestinal absorption of phosphate
and prevent the development of hyperphosphatemia

Nicotinamide functions through transcription
factors of the forkhead family and caspases
Nicotinamide has an inverse relationship with
sirtuins that can alter cell survival and cell
longevity

Erythropoietin (EPO) EPO is often low in DM, suggesting an impaired EPO
response
EPO in diabetic patients with severe, resistant congestive heart
failure can decrease fatigue, increase left ventricular ejection
fraction, and significantly decrease hospitalization stay
EPO can serve to reverse the complications of anemia during
DM
EPO can protect vascular cells during DM

EPO protection in the hematological and
vascular systems relies upon modulation of
FoxO and Wnt
EPO fosters eythroid progenitor cell
development through FoxO activity
EPO during elevated glucose and similar to
other models of oxidative stress can block cell
degeneration through Wnt
Protection by EPO is governed by the
maintenance of mitochondrial membrane
potential
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