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Purpose: The streak artifacts caused by metal implants have long been recognized as a problem
that limits various applications of CT imaging. In this work, the authors propose an iterative metal
artifact reduction algorithm based on constrained optimization.
Methods: After the shape and location of metal objects in the image domain is determined auto-
matically by the binary metal identification algorithm and the segmentation of “metal shadows” in
projection domain is done, constrained optimization is used for image reconstruction. It minimizes
a predefined function that reflects a priori knowledge of the image, subject to the constraint that the
estimated projection data are within a specified tolerance of the available metal-shadow-excluded
projection data, with image non-negativity enforced. The minimization problem is solved through
the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective
function. The constrained optimization algorithm is evaluated with a penalized smoothness objec-
tive.
Results: The study shows that the proposed method is capable of significantly reducing metal
artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type meth-
ods and ART and EM methods and yields artifacts-free images.
Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with
embedded metal objects. Although the method is presented in the context of metal artifacts, it is
applicable to general “missing data” image reconstruction problems. © 2011 American Association
of Physicists in Medicine. �DOI: 10.1118/1.3533711�
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I. INTRODUCTION

Streak artifacts from high attenuation objects are a common
problem in CT. This type of artifacts typically occurs from
metallic implants such as dental fillings, hip prostheses, im-
planted marker bins, and branchy-therapy seeds. The arti-
facts not only blur the CT images and lead to inaccuracies in
diagnosis, but also make the delineation of anatomical struc-
tures intractable, which is important in image-guided inter-
vention procedures. Mathematically, the artifacts originate
from the dark shadows in the measured sinogram due to the
strong attenuation of the metal objects when x rays pass
through them. These “metal shadows” provide little informa-
tion for image reconstruction. How to deal with “missing
data” is the essence of metal artifacts removal in reconstruc-
tion.

In the past three decades, numerous methods have been
proposed to tackle the problem described above. These meth-
ods can generally be categorized into two classes. One is to
identify the metal-contaminated region in the projection
space and then fill in the missing data by using different
interpolation schemes1–3 based on the uncontaminated pro-
jection data. CT images are then reconstructed from the com-

pleted projection data by analytical FBP-type algorithms.
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The interpolation-based algorithms can make unrealistic as-
sumptions about the missing data, leading to prominent er-
rors in the reconstructed images. Alternatively, metal arti-
facts are reduced by using model-based iterative
reconstruction algorithms.4–6 The metal shadows are either
manually or automatically segmented in the projection do-
main and iterative reconstruction is applied to better interpret
the regions with incomplete projection database on some
physical considerations. Compared to analytical reconstruc-
tion algorithms, an iterative technique more effectively uti-
lizes prior knowledge of the image physics, noise properties,
and imaging geometry of the system and thus can yield im-
proved images. The performance of the method, however,
may suffer from the inaccuracy of the metal object segmen-
tation in the projection space.7 There are also a few case-by-
case techniques to reduce metal artifacts,8–14 but a systematic
approach is highly desirable.

A necessary step to ensure the success of iterative CT
scan is to know about the shape and location and sometimes
even the attenuation coefficients15 of the metal objects in
image domain. We have recently proposed an image recon-
struction method capable of autoidentifying the shape and
location of metallic object�s� in the image space16–18 based

on a penalized weighted least-squares �PWLS� method. The
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yielded binary image contains only metal and background
and a forward projection of the image to the projection space
provides accurate information of the metal corrupted projec-
tion data. In this work, we develop a constrained optimiza-
tion method to effectively utilize this information to deter-
mine the tissue density distribution in the remaining part of
the patient being scanned.

The statistics-based iterative reconstruction algorithms are
usually formulated as unconstrained optimization models
that minimize or maximize a cost function, constructed from
noise characteristics of the measured data. There are usually
two terms in the objective function: A data fidelity term and
a regularization term that uses prior information to regularize
the solution. Such a formulation is sensible for fully sampled
tomographic systems where a unique image that minimizes
the data-fidelity-objective function exists.19 However, when
part of the projection data is missing in the form of metal
shadows, there is, in general, no unique solution of the data-
fidelity-objective function. In this situation, it is natural to
use a constrained optimization model, where data fidelity
becomes an inequality constraint to determine the feasible
set of images that agree with the available measurement data
within a specified tolerance, while image regularity is con-
verted to the objective function and is used to select an op-
timal image out from the feasible set. The constrained opti-
mization formulation is also flexible and allows easy
incorporation of other constraints such as image positivity,
extreme values, and bound on roughness.

In this work, we will first describe the image reconstruc-
tion procedure to identify metal object�s� in the projection
domain. The constrained optimization model that recon-
structs image with metal-shadow-excluded projection data,
as well as the penalized smoothness �PS� objective function
and the strategy to solve the optimization problem, will be
introduced in Sec. II. In Sec. III, evaluation of the proposed
algorithm is presented using a digital quality assurance �QA�
phantom and an experimental QA phantom, followed by dis-
cussions and conclusions in Sec. IV.

II. METHODS AND MATERIALS

II.A. Metal localization and reconstruction

We use an image intensity threshold-based reconstruction
method to identity the metal object�s� from the x-ray projec-
tion data. When a metal object is present in a patient, an
image can be divided into two prominent components and
the task here is to find the boundary between the high and
low density regions from the projection data. An iterative
image reconstruction algorithm based on the PWLS criterion
is implemented to accomplish the goal.

Mathematically, the PWLS criterion can be written as20,21

���� � = �p� − A�� ���−1�p� − A�� � + �̂R��� � . �1�

The first term in Eq. �1� is the weighted least-squares crite-
rion, where p� is the vector of log-transformed projection
measurements and �� is the vector of attenuation coefficients

to be reconstructed. Symbol � denotes the transpose opera-
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tor. Operator A represents the system or projection matrix.
The projection data p� and the attenuation map �� are related
by p� =A�� . Thus, the least-squares criterion actually reflects
the data fidelity. � is a diagonal matrix with the ith element
of �i

2, i.e., an estimate of the variance of repeatedly measured
p� i at detector bin i which can be estimated from the mea-
sured projection data according to a mean-variance relation-
ship of projection data.22,23 The second term in Eq. �1� is a

smoothness penalty or a prior constraint, where �̂ is the
smoothing parameter that controls relative contribution from
the measurement and prior constraint. The second term in
Eq. �1� enforces a roughness penalty on the solution. In order
to reconstruct binary image �i.e., metals and normal tissues�,
we design a special quadratic penalty term in Eq. �2� by
introducing a gradient-controlled parameter cjm. The form of
the new penalty is expressed as:

R��� � = �� �R�� =
1

2�
j

�
m�Nj

cjmwjm�� j − �m�2, �2�

where

cjm = �0 �� j − �m� � �

1 �� j − �m� � �
� . �3�

Where the index j runs over all image elements in the image
domain, Nj represents the set of neighbors of the jth image
pixel. The parameter wjm was set to 1 for first-order neigh-
bors and 1 /	2 for second-order neighbors. Note that without
parameter cjm, Eq. �2� is exactly a quadratic penalty with
equal weights for neighbors of the same distance used widely
for iterative image reconstruction.20,21,25 The idea behind Eq.
�3� is that regularization is only applied to neighbors which
have gradient smaller than the threshold �, while the regu-
larization between neighbors will be suppressed if magnitude
of gradient between them is larger the threshold �. The dif-
ference of linear attenuation coefficients between metal and
normal structures is usually larger than that between different
structures. By setting a proper �, the regularization term of
the smoothness constraint will be applied only within the
metal objects or the patient structures. In practice, the param-

eter � is empirically determined. We set �̂=1	1010 and

�=0.06 in the digital phantom simulations and �̂=1	1010

and �=0.06 in the experimental studies.
The Gaussian–Seidel updating strategy is used for the

minimization of Eq. �1�.16,17 Once the image is reconstructed,
a thresholding operation is applied to binarize the image. By
projecting the binary image into the projection domain, the
metal-contaminated entries can be identified from projection
data and a constrained optimization model is then applied to
the remaining projections.

II.B. Constrained optimization model

A constrained minimization that yields a discrete image
vector �� is formulated as

�� � = arg min�f��� �� ,
subject to the inequality constraints
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A�� − p�nonmetal
 
 � , �4�

�� � 0, �5�

where system matrix A is a discrete model of the CT imaging
system, �� is the vector of attenuation coefficients to be re-
constructed, p�nonmetal is the vector of log-transformed projec-
tion measurements with metal-contaminated data entries ex-
cluded, and � is the tolerance we specify to enforce the data
fidelity constraint. The data fidelity is formulated as an in-
equality constraint here to take consideration that there are,
in general, multiple sources of data inconsistency in the sys-
tem, including noise, x-ray scatter, and a simplified data
model. It is impractical to expect to always find an image
perfectly consistent with the measurement data. Thus, we
only require the image to be within a given Euclidean dis-
tance from the actual projection data. In our optimization
model, � accommodates all sources of data inconsistency,
such as system imperfections and various sources of noise.
Selection of the values of � depends on the quality measure-
ment data. Generally, there is a minimum error �min for the
estimated projection data and the feasible set of images can
be more logically written as �min
 
A�� − p�nonmetal

�. The
constrained optimization problem is nonlinear because of the
ellipsoidal constraint on the solution. However, the Euclid-
ean norm is a convex function, leading to a convex problem
if the objective function we choose is also convex.

II.C. PS objective function

The choice of objective function f��� depends on the type
of prior knowledge we use to characterize the image to be
reconstructed. One is based on the Gaussian Markov random
field in quadratic form,20,24–26 which is commonly used as a
regularity term in the traditional iterative image reconstruc-
tion algorithms. It characterizes the neighborhood variations
and is a general smoothness measure of the image to be
reconstructed. To develop a CT metal artifact reduction
method that is robust in the presence of noise and system
imperfections, it is logical to utilize some smoothness mea-
sure function for the selection of optimal solution�s� under
the assumption that the optimal solution is piecewise smooth.
In Sec. II A, we mentioned the quadratic penalty with equal
weights for neighbors of the same distance. In that type of
penalty, the neighbors of the same distance play an equiva-
lent role in regularizing the solution. A major shortcoming of
this formulation is that it is not edge tolerant, which may
lead to oversmoothed solution for reconstructed images. To
overcome this limitation, we incorporate an edge-preserving
prior and propose a modified smoothness measure function.
In this formulation, the weight is smaller if the difference
between a neighbor and the concerned pixel is larger, since
the coupling between such two neighbors is smaller. There
are many ways to determine such kind of weights. In this
work, the quadratic smoothness �PS� measure function is

used in our approach
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f��� =
1

2�
j

�
m�Nj

w�jm�� j − �m�2, �6�

where w�jm is an edge-preserving prior or penalty in the
same form as the conduction coefficient in the well-known
diffusion filter27

w�jm = wjm exp�− �� j − �m

�
2� . �7�

Same as in Sec. II A, the parameter wjm was set to 1 for
first-order neighbors and 1 /	2 for second-order neighbors.
The parameter � is set either manually or to the value at 90%
histogram of the gradient magnitude of the image to be pro-
cessed. With this prior, the objective function is no longer
convex and it thereby becomes edge-preserving since it be-
comes more and more tolerant for differences in intensity
beyond a certain threshold. By specifying the values of �, we
can actually control the level of smoothness of the recon-
structed images.

An alternative choice of f��� can be the TV objective28,29

when a sparse gradient image �GMI� is assumed. For such
images, minimizing the image TV can yield sensible solu-
tions with incomplete projection data. Higher-order smooth-
ness functions may also be utilized as objectives to yield
appropriate image solutions.

II.D. Optimizer searching strategy

If the objective function we choose is convex, the prob-
lem can be reformulated into a second-order cone program
�SOCP� for which there are efficient interior point algorithms
that can achieve accurate solutions in “polynomial time.”30

Unfortunately, the SOCP requires simultaneous row process-
ing of the system matrix and so is impractical for CT because
of the enormous size of the optimization problem. In our
case, the SOCP is impractical both because of the problem
size and because that the PS measure objective function is
not convex. A possible way to solve this constrained optimi-
zation problem is to use gradient descent to minimize the
objective function combined with some operators to enforce
the constraints. Iterative update algorithms, such as the alge-
braic reconstruction technique �ART� and the Gauss–Seidel
algorithm,4,16,21 have shown to be efficient techniques to
solve an ellipsoidal data fidelity constraint problem. In fact,
ART and non-negativity enforcement together form an itera-
tive projection operator called projection-onto-convex-sets
�POCS� that can iteratively find an image within the feasible
region starting from an arbitrary image. Sidky and Pan19 pro-
posed an algorithm composed of adaptive steepest descent
and POCS suitable for dealing with large size constrained
optimization problems. A similar strategy is applied here. We
chose POCS to be the iterative operator, which is efficient in
finding images that respect the given convex constraints �4�
and �5� via “row action.” POCS combines the ART updating
procedure and the image non-negativity enforcement,
whereas the PS objective function is minimized via the
steepest gradient descent step. The main idea is that if the

current image is outside the feasible region and POCS step
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update 
�new−�old
 is smaller than the gradient step update,
we push more on POCS and reduce the gradient step length
to move the image to the feasible set. When the image
reaches the feasible pool, we enhance PS gradient descent to
move the image along the edge of the feasible pool to a
lower PS value. The image is sequentially updated through
the alternation of POCS and gradient descent until the pre-
defined optimality criterion is satisfied.

The alternation of POCS and gradient descent step can
effectively converge to the feasible set of images that obey
the constraint Eqs. �4� and �5�. However, one cannot guaran-
tee that it will find the image that minimizes the PS objec-
tive. To assess the optimality of the solutions, we instead
develop an optimality criterion based on the Karush Kuhn–
Tucker �KKT� conditions,30 which are the necessary condi-
tions for optimality in nonlinear programming and can be
derived through the Lagrangian

L��� � = f��� � + 0�
A�� − p�nonmetal
 − �� − �
i=1

n

i�i, �8�

which combines the objective function with each constraint
multiplied by a Lagrange multiplier i. The conditions im-
posed on the Lagrange multipliers �i.e., the solutions to the
dual optimization problem� include �i�

��� L = 0 ⇒ ��� f��� � + 0 ·
AT�A�� − p�nonmetal�


A�� − p�nonmetal

− � = 0, �9�

�ii� complimentary slackness

0�
A�� − p�nonmetal
 − �� = 0,

i�i = 0, �10�

and �iii� nonnegativity:

i � 0. �11�

In general, the Lagrange multipliers must be determined to
test the optimality conditions. However, the structure of the
problem here allows us to bypass solving the dual optimiza-
tion problem directly. The complimentarity condition �10�
allows the Lagrange multiplier to be positive only when its
corresponding inequality constraint is active, i.e., when
equality holds for Eq. �4� and �5�. This fact can be utilized to

simplify the Eq. �9� by only considering the zero entries in � .

Define I� as the indicator function

I� = �1 i = 0

0 i � 0
� . �12�

Ideally, diag�I����� L� should be a zero vector when a set of
Lagrange multipliers can be found to satisfy the KKT condi-
tions, but in practice this value is difficult to reach because a
large number of iterations are required. However, how close
diag�I����� L� is to zero is an indication of how well Eq. �9� is
satisfied and thus can be used as a test of optimality. To
obtain this distance, we need to solve the following optimi-

zation problem:
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0
� = arg min��diag�I������ f��� �

+ 0 ·
AT�A�� − p�nonmetal�


A�� − p�nonmetal

�s.t. 0 � 0. �13�

The positivity constraint on 0 is imposed because the opti-
mality condition is tested after the image estimate reaches
the feasible pool, which means Eq. �4� is active, i.e., equality
holds. Due to complimentarity, 0 must be positive. The
minimized objective function value kd is an indicator of how
well the KKT conditions are satisfied and thus provides an
assessment to the optimality of the solutions. Our numerical
studies showed that for each individual case, there are hardly
perceptible changes in the image after kd falls under a certain
value, for example, 0.25 for the noiseless digital QA phan-
tom. As previously mentioned, the convergence to the image
with minimized objective function value for a certain toler-
ance � is not guaranteed in the proposed algorithm. kd, in this
case, provides a good measure of optimality for the solu-
tions.

The implementation of the proposed algorithm involves
selection of a set of parameters shown in Fig. 1. The optimi-
zation problem is specified by the metal excluded projection
p�nonmetal and the data-inconsistency parameter �. The param-
eters that control the algorithm include the ART relaxation
factor , initial step-length factor �, step lengths decreasing
factors � and �, and the smoothing parameter � in the PS
function. The values shown in Fig. 1 are typical values used
in generating the results in Sec. III. The initial image was set
to zero in this paper, but other choices are possible. The
outermost loop in Fig. 1 contains two main components: Ap-
proaching data consistency through the POCS step and the
PS steepest descent toward low PS images. The decreasing
factors � and � is the key to control the respective step
lengths for POCS and PS steepest descent. In the POCS step,
the ART operator depends on the relaxation parameter ,
which starts at 1 and slowly decreases to 0 as the iteration
progresses. The changes in the current image are computed
after the POCS step and the PS descent step. The current
image is stored in �� c after each POCS step; once the opti-
mality criterion is reached, it is the image stored in �� c that is
considered the “final” solution. The feasibility of the current
image is checked after each POCS step by calculating the
data residual 
A�� − p�nonmetal
. The initial PS descent step
length is a fraction of a step length to an absolute image
distance on the first iteration. In practice, it is effective when
multiple small descent steps are taken for each large loop.19

The step-length adjustment is performed to have the image
slide along the boundary of the feasible set by stopping re-
ducing the PS descent step size once the data-tolerance con-
dition is satisfied, while the ART relaxation factor is always
decreasing. Thus the PS objective can have more power in
moving the image toward a low PS one when the image is in
the feasible pool. The optimization is terminated once the
stopping criteria are met, i.e., the image estimate is feasible
and kd is below a certain value. The tolerance � accommo-

dates all sources of data inconsistency. For ideal simulations
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with no additive noise, zero data fidelity is approachable.
However, lower data fidelity is at the cost of large number of
iterations. The ideal � should have a good trade-off between
the size of the feasible set and the computation cost. To
choose an appropriate �, we simply run a number of itera-
tions with POCS step alone and monitor the change of data
fidelity. In the noiseless digital QA phantom case, for ex-
ample, the data fidelity changes slowly after it falls below
2.5. Thus, the data tolerance for this reconstruction is set to
�=2.5, which is reached at iteration i=150. As the various
parameters in the proposed algorithm are adjusted, the data
fidelity converges to 2.5 and we choose the setting that yields
the smallest kd value. In the case of simulated noisy projec-
tion data or experimental data, zero data fidelity is generally
not possible. When the value of � is near �min, there is likely
not much room in the set of feasible images. As a result, a
larger data distance, which suggests an expanded feasible set
of images, enables the PS objective to have a greater effect.
Therefore, the data constraint is loosened by setting � to a
value that has a distance to �min. For example, the data tol-
erance � is set to 41.8 for the digital QA phantom simulation

FIG. 1. Flowchart of the proposed constrained optimization approach �the
parameters shown are used for the digital QA phantom�.
with Poisson noise, although data fidelity is still slowly de-
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creasing after it falls under this value. But how much we
loosen from �min is heuristic rather than optimal. In general,
we try to define a reasonably sized feasible set at a fair com-
putational cost.

With the current version of the proposed algorithm, there
is no theoretical proof on the convergence properties and the
image does not rigorously reach the solution of the optimi-
zation problem defined in Sec. II B, but the reconstructed
images showed that they are practically close to optimal.

II.E. Data acquisition

Two phantoms were used to evaluate the performance of
the proposed constrained optimization algorithm. The first is
a digital 2D QA phantom consisting of 350	350 �in pixels�,
1	1 mm2 per pixel. The outer circular background is com-
posed of water, with tissue equivalent material in the inner
circle. The two circles are with diameters 210 and 90 mm,
respectively. The four objects within the inner circle are iron
�left�, brass �right�, aluminum �upper�, and bone �lower�, of
which the circles are with a diameter of 12 mm. Iron object
has a slightly more complicated structure. The projection
data are generated according to the fan-beam CT geometry.
The distance of source-to-axis is 100 cm and source-to-
detector distance of 150 cm. The projection data of each
projection view consist of 500	1 pixels and the size of
detector element is 1	1 mm2. A total of 680 views projec-
tion data are simulated over 2� rotation. A monochromatic
spectrum is assumed and the photon energy is set to 80 keV.
Each projection value along a ray through the phantom is
computed based on the known densities at 80 keV and inter-
section lengths of the ray with the pixels in the phantom.
After the ideal or noise-free projection data p� is calculated,
the noisy measurement Ii is generated according the follow-
ing noise model:21

Ii = Poisson�I0 exp�− pi�� + Normal�0,�e
2� , �14�

where I0 is the incident x-ray intensity and �e
2 is the back-

ground electronic noise variance. In the simulation, I0 is cho-
sen as 2	104 and �e

2 is chosen as 10. The noisy projection
data can then be calculated as

pi = �ln� I0

Ii
 Ii � T

ln� I0

T
 Ii � T� , �15�

where T is a threshold to enforce that the logarithm trans-
form is applied on positive numbers and it is chosen as 1 in
this study.

The experimental study is done on a commercial calibra-
tion phantom �CatPhan® 600 from the Phantom Laboratory,
Inc., Salem, NY�. In our experimental studies, the cone-beam
CT projection data are acquired by using an Acuity simulator
�Varian Medical Systems, Palo Alto, CA�. The tube voltage
is set to 125 kVp. The x-ray tube current was set at 10 mA
and the duration of x-ray pulse at each projection view was

10 ms during the acquisition. The projection data were ac-
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quired in full-fan mode with the use of a full-fan bowtie
filter. The source-to-axis distance is 100 cm and the source-
to-detector distance of 150 cm. The number of projections
for a full 360° rotation is 680. The dimension of each ac-
quired projection image is 397 mm	298 mm, containing
1024	768 pixels. To save computational time during itera-
tive reconstruction, the data at each projection view was
down-sampled by a factor of 2 and only the central slice out
of 768 projection data along the axial direction was chosen
for reconstruction. The reconstructed image is 2D with size
350	350 pixels and the pixel size is 0.776	0.776 mm2.

III. RESULTS

III.A. Digital QA phantom

A 350	350 �in pixels� digital QA phantom is created to
evaluate the proposed metal artifact reduction method. Fig-
Medical Physics, Vol. 38, No. 2, February 2011
ure 2 shows the reconstruction results using different ap-
proaches with noiseless projection data. FDK is applied to
the original metal-contaminated projection data. Linear inter-
polation is applied to the original projection with the metal
parts substituted by the linear interpolated data. ART, EM,
and constrained optimization with penalized smoothness
�CO-PS� are applied to the projection with the metal shad-
ows removed. The ART and EM iteration procedures are
terminated once the predefined data tolerance � in the CO-PS
method is attained. All the reconstructed images from the
constrained optimization are fused with the binary metal im-
age obtained from the procedure described in Sec. II A by
substituting the metal areas. Prominent artifacts are present
in the FDK reconstruction. The linear interpolation method
refers to that the missing projection data are first linearly
interpolated based on neighboring values and then back-

FIG. 3. Reconstructed images of the digital QA phan-
tom with simulated Poisson noise on the projection
data. The simulated incident photon number is
N0=2	104. �a� Ideal phantom, �b� analytical FDK re-
construction, �c� reconstruction from linear interpolated
projection data, �d� ART reconstruction, �e� EM recon-
struction, and �f� CO-PS reconstruction with
�=41.8, kd=2.54. All reconstructions are shown with
metal objects combined.

FIG. 2. Reconstructed images of the digital QA phan-
tom with noiseless projection data: �a� Ideal phantom,
�b� analytical FDK reconstruction, �c� reconstruction
from linear interpolated projection data, �d� ART recon-
struction, �e� EM reconstruction, and �f� CO-PS recon-
struction with �=2.5, kd=0.250. All reconstructions
are shown with metal objects combined.
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projected to the image domain. It partially suppressed the
artifacts but has significant residuals remaining in the recon-
struction. Two conventional iterative reconstruction algo-
rithms, ART and EM, generally performed better in reducing
the artifacts, but the residuals are still visible. The CO-PS
removed the artifacts completely and produced the original
phantom without blurring at the edge of the metal structures.
Figure 3 shows the reconstruction results when Poisson noise
is present in the projection data. It can be observed that FDK
and ART have very noisy reconstructions with severe streak-
ing artifacts present. EM suppressed artifacts and noise at the
same time but at the cost of an oversmoothed image. Linear
interpolation method can partially reduce the artifacts but

FIG. 4. Transversal profile through row 203 of the reconstructed
does not seem to suppress noise effectively. CO-PS not only

Medical Physics, Vol. 38, No. 2, February 2011
removed metal artifacts completely, but also had a signifi-
cantly reduced noise level of the reconstructed image. Com-
pared to other methods, CO-PS had a superior performance
in suppressing metal artifacts and noise at the same time. The
transverse image profiles through row 203 shown in Fig. 4
also agree with the reconstructions in Fig. 2 and 3. In the
noiseless case, the CO-PS profile �black line� almost super-
imposes the ground truth �blue line�. In the noisy case, the
CO-PS profile is still very close to the noise-free ground
truth, with only small variations that indicate the presence of
noise.

The modulation transfer function �MTF� that character-
izes the spatial resolution of images is calculated to show

s shown in Figs. 2 and 3. �a� Noiseless case and �b� noisy case.
image
further comparisons of different approaches. The dashed line
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segment indicated in Fig. 2�a� provides a step function and
the MTF can be obtained by calculating one-dimensional
Fourier transform. The MTF curves of CO-PS are shown in
Fig. 5 with comparison to the MTF curves of EM and linear
interpolation, which have relatively better reconstructions in
Figs. 2 and 3. It can be observed that CO-PS produces better
image resolution.

Figure 6 shows the CO-PS reconstructions with the same
data tolerance � and different kd values when Poisson noise
is present. As kd decreases, the reconstructed image is visibly
improved in terms of both artifacts suppression and noise

FIG. 5. MTF curves of different image reconstruc
tion algorithms. �a� Noiseless case and �b� noisy case.
performance.
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FIG. 6. CO-PS reconstructions with the same data tolerance and different kd

values. Images are reconstructed from Poisson noise corrupted projection
data with incident photons N0=2	104. All reconstructions are shown with

metal objects combined.
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III.B. CatPhan® 600 Phantom

An experimental study was conducted using the CatPhan®

600 phantom with a hexagonally shaped metal object embed-
ded in the central region. The projection data were acquired
using low-dose protocol �10 mA/10 ms�. Figure 7 shows
CO-PS reconstructions together with FDK calculations for
three differently sized metal objects. All the images shown
are fused with the binary metal images. Extensive streak ar-
tifacts are present in the FDK results. The EM method, simi-
lar to the digital phantom case, partially suppressed the arti-
facts but the image contrast seemed to be compromised. In
comparison, CO-PS almost completely suppressed the metal
artifacts with the image contrast retained and edge structures
well preserved. In Fig. 7, the CO-PS reconstructions are
shown with two smoothing parameters �=0.001 and
�=0.002. As � increases, the CO-PS reconstruction slight
loses contrast but is visibly smoother.

In the CatPhan® 600, there are several circles of different

intensities which can be used to quantify the contrast-to-
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noise �CNR� of the reconstructed images. The circle indi-
cated by the black arrow in Fig. 7 is selected as the region of
interest �ROI� for the calculation of the CNR in the image
reconstructed by different algorithms. The contrast was cal-
culated as the absolute difference between the mean value of
the region inside the ROI and the mean value of the uniform
background region. The noise level was characterized by the
standard deviation of a uniform area of size 10	10 pixels
indicated by the red square. The CNR was defined as the
contrast divided by the standard deviation. Table I lists the
CNRs of FDK, EM, and CO-PS with two different � values.

FIG. 7. Reconstructed images of CatPhan® 600 phan-
tom with different metal object sizes. Two different
smoothing parameters are applied to CO-PS reconstruc-
tions. All reconstructions are shown with metal objects
combined.

TABLE I. CNRs of the indicated ROI in Fig. 7.

FDK EM CO-PS, �=0.001 CO-PS, �=0.002

Metal size 1 1.484 6.010 6.097 6.266
Metal size 2 1.664 5.685 4.378 6.381
Metal size 3 1.991 4.440 3.459 4.574
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It can be observed that the CNR of CO-PS reconstruction is
comparable to that of EM and significantly higher than that
of the FDK reconstructed image. As � doubles, the CNR of
CO-PS reconstruction increases accordingly. It indicates that
although the contrast is slightly compromised with larger �
value, the noise is better suppressed. Also, the parameter �
gives us extra flexibility in selecting the reconstructed image
we need.

IV. DISCUSSION

A constrained optimization algorithm for metal artifacts
removal and noise suppression has been described. In the
proposed algorithm, the metal-shadow-corrupted projections
are treated as a system with missing data and a constrained
optimization model is then utilized to select an optimal so-
lution out of a feasible set. A novel penalized smoothness
function with an edge-preserving prior is introduced to en-
courage smooth and edge-preserved image solution. Simula-
tion and experimental results show that, in general, the pro-
posed algorithm can significantly improve the widely used
FBP-type methods as well as the basic iterative methods.

The PS objective is designed to select images that are
piecewise smooth and can faithfully reconstruct the image
when the assumption is valid. Similarly, TV objective can be
chosen when images are with sparse GMIs. However, the TV
objective is not expected to have a particular effect in sup-
pressing noise. PS objective seems to be a suitable choice if
both artifacts removal and noise suppression are pursued. A
careful control of the smoothing parameters is recommended
in this case to avoid oversmoothed solutions.

A possible limitation of the constrained optimization ap-
proach is that the iterative algorithms are usually very sensi-
tive to system configurations and the quality of projection
data. For computer simulations in which every condition is
accurately set, the constrained optimization works very well
and the quality of reconstructed images is a monotonic func-
tion of the number of iterations. However, our study using
experimental data shows that the performance of constrained
optimization degrades when system geometry mismatch ex-
ists, which sets a higher standard on experimental setup and
data acquisition. This also leaves a problem of parameter
setting in solving the constrained optimization. In this work,
the parameters, including the initial ART relaxation factor,
initial gradient descent step length, and decreasing factors,
are empirically determined, which may not guarantee the
best performance of the algorithms. For experimental stud-
ies, manual adjustment of the parameters may be needed to
accommodate different data qualities and ensure good perfor-
mance of the algorithm for different cases. Further work is
useful to automatically determine the optimal parameters for
a given set of experimental data by using some random sam-
pling procedures.

The computation efficiency is not yet a particular concern
in our work. To reconstruct a 350	350 �in pixels� image,
the constrained optimization algorithm took about 45 s to
finish one loop on a 2.4 GHz PC with 2G RAM. There are

several ways to improve computational efficiency. One way
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to optimize the problem solving procedure, for example, is to
void the gradient descent when POCS has not yet started to
drag the image close to the feasible set. Graphics processing
unit acceleration can also be used to save time on the vector
computations.

In conclusion, the constrained optimization algorithms
have been developed for metal artifacts removal. Superior
performance of the algorithms has been demonstrated using
both simulation and experimental data. Overall, images with
much reduced artifacts can be obtained using the proposed
approaches. Finally, these algorithms do not discriminate the
source of missing data in the raw projections. They can thus
be easily generalized to deal with other incomplete data
problems with various x-ray scanning geometries and trajec-
tories.
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