An anthropomorphic phantom for quantitative evaluation of breast MRI
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Purpose: In this study, the authors aim to develop a physical, tissue-mimicking phantom for
quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the
need for improved standardization in breast MRI and provide a platform for evaluating the influ-
ence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons
between patient and phantom image properties are presented.

Methods: The phantom is constructed using a mixture of lard and egg whites, resulting in a random
structure with separate adipose- and glandular-mimicking components. 7'y and T, relaxation times
of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and
spin-echo scans, respectively, using maximum-likelihood methods. The image structure was exam-
ined quantitatively by calculating and comparing spatial covariance matrices of phantom and pa-
tient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithog-
raphy and filling it with a gadolinium-doped water solution.

Results: Measured phantom relaxation values fall within 2 standard errors of human values from
the literature and are reasonably stable over 9 months of testing. Comparison of the covariance
matrices of phantom and patient data demonstrates that the phantom and patient data have similar
image structure. Their covariance matrices are the same to within error bars in the anterior-posterior
direction and to within about two error bars in the right-left direction. The signal from the phan-
tom’s adipose-mimicking material can be suppressed using active fat-suppression protocols. A
static, enhancing lesion can also be included with the ability to change morphology and contrast
agent concentration.
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Conclusions: The authors have constructed a phantom and demonstrated its ability to mimic human
breast images in terms of key physical properties that are relevant to breast MRI. This phantom
provides a platform for the optimization and standardization of breast MRI imaging protocols for
lesion detection and characterization. [DOI: 10.1118/1.3533899]
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I. INTRODUCTION

Dynamic contrast-enhanced (DCE) MRI with Gd-DTPA has
been shown to be useful in screening women at high risk of
breast cancer as well as in evaluating the extent of disease.'”
In 2007, the American Cancer Society released guidelines
recommending screening MRI as an adjunct to x-ray mam-
mography for women with a 20%-25% lifetime risk of de-
veloping breast cancer’ and DCE-MRI has been used in-
creasingly in the clinic.*’ Despite recent advances, many
issues remain to be fully addressed in DCE-MRI. Although
DCE-MRI demonstrates high sensitivity, it has a well-
documented low and variable specificity (26%-97%).°"* In
addition, there has been debate over a possible link between
increased MR use in breast cancer imaging and an increase
in the number of more extensive surgeries and mastectomies
being performed at some institutions.”™'®

In response to these issues, recent standardization efforts
in the breast MR community have resulted in a breast MR
lexicon'”?” and a set of standardized quantities and symbols
for kinetic analysis of Gd-DTPA tracer washout.”! Review
papers have discussed the variety of protocols used and
given general recommendations regarding which protocol to
use for a given clinical scenario.”>* However, standards for
specific breast MRI acquisition protocols are still needed. In
particular, quantitative assessment of MR protocols and their
efficacy for different clinical situations has not yet been ad-
equately addressed.

To perform quantitative comparisons of imaging protocols
in terms of lesion detection and characterization, a phantom
that mimics anatomical tissue structure in addition to con-
trast properties is required. Breast anatomy is composed of
interlacing fat- and water-containing tissues that produce im-
aging artifacts (e.g., chemical shift artifact) and can hinder
lesion detectability. The importance of realistic phantom
structure in the evaluation of imaging systems for the pur-
pose of abnormality detection was demonstrated in a study
by He et al..** in which both phantom and patient data were
used to perform reader studies evaluating compensation
methods for myocardial SPECT image reconstruction algo-
rithms. They found that phantoms with more complicated,
realistic image structures resulted in performance measures
for defect detection that more closely matched results de-
rived from patient data than studies with more simplistic
phantoms. The optimal reconstruction parameters derived
from the more realistic phantoms were significantly different
from those derived from more simplistic phantoms.

In the context of breast imaging, the importance of real-
istic phantoms was demonstrated in a study investigating the
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utility of different imaging modalities to evaluate silicone
breast implants.25 The authors reported how only a more re-
alistic and complex phantom revealed important differences
between the evaluated imaging modalities.

A small number of breast MR phantoms have already
been described in literature.’®*” Mazzara et al.”® and Liney et
al.*" both described phantoms where a homogeneous layer of
adipose-mimicking material (Crisco or lard) surrounds an in-
terior homogeneous region of glandular-mimicking material
(polysaccharide material TX-151 or a “commercial jelly
product”) in a cylindrical container. In the phantom of Maz-
zara et al.,26 a version with an implant was also created. A
lesion was included in the phantom of Liney et al’ as a
capsule filled with Gd-DTPA-doped water. In both cases, the
T, and T, relaxation times of the materials were measured
and found to be in good agreement with breast tissue values.
In addition, the American College of Radiology (ACR) phan-
tom for accreditation (http://www.acr.org/accreditation/
mri.aspx) is available for the quantitative evaluation of im-
age quality parameters such as resolution, signal to noise
ratio, and the presence of artifacts.

While existing phantoms do address some needs of the
imaging community, there are currently no phantoms avail-
able that reproduce the appearance of and variability in the
anatomical structure seen in human images. Similarly, no
phantoms are available with well-characterized lesions and
variable tissue structure. Such a phantom would allow re-
searchers to investigate how imaging technique parameters
interact with anatomically relevant structure to affect the cli-
nician’s end goal, which, in the case of breast cancer imag-
ing, is lesion detection and characterization. Therefore, for
the quantitative comparison of diagnostic efficacy and for
protocol selection, the appearance and variability of struc-
tures in the phantom and its similarity with patient data be-
come critical aspects of the phantom.

In this study, we describe a physical, tissue-mimicking
phantom for the quantitative assessment of breast MRI pro-
tocols in terms of lesion detection and characterization in the
presence of complex, human-like, anatomical structures. Im-
portant requirements for such a phantom include 7, and T,
relaxation parameters similar to those in adipose and glandu-
lar human breast tissues, a random phantom structure that
mimics anatomical structures in patients, the ability to ac-
tively suppress the signal from the adipose-simulating com-
ponent in the phantom, and a realistic enhancing lesion. In
this study, we present a phantom that addresses all of the
above properties.
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Il. MATERIALS AND METHODS
II.LA. Phantom construction

The phantom was constructed using refined lard to simu-
late adipose tissue and coagulated, fresh egg whites to simu-
late fibroglandular tissue. The lard (Goya Foods, Secaucus,
NJ or Marquez Brothers International, Inc., San Jose, CA)
and fresh eggs (Davidson’s Safest Choice Pasteurized Shell
Eggs, National Pasteurized Eggs, Inc., Lansing, IL) were
both purchased from local supermarkets.

Lard was chosen to simulate adipose tissue since it has a
similar composition, is very stable, and is readily available.
Human white adipose tissue consists mostly of lipids in the
form of triglycerides.28 Myristic, palmitic, palmitoleic,
stearic, oleic, and linoleic fatty acids make up more than
90% of the triglyceride component.28 Lard is composed en-
tirely of lipids, 97.9% of which are in the form of
triglycerides,29 where the same six fatty acids make up over
90% of the total lipid content.”® The shelf-life for lard is
indicated by the manufacturer to be at least a year and a half
with no refrigeration necessary.

Egg whites were chosen to simulate glandular tissue since
they have a similar composition, unique functional properties
that aid in structure formation, and are also readily available.
In addition to adipose tissue, the human female breast is also
made up of ducts, lobules, and the associated fibrous stromal
compartment31’32 that make up the so-called “glandular” por-
tion of the breast. Both ducts and lobules consist of epithelial
and myoepithelial cells surrounded by a basement membrane
that is made up of primarily laminin and type IV collagen
pr0t<eins.33’34 The main extracellular matrix component of the
interstitial stromal compartment is type 1 collagen
protein.34’35 Therefore, a large part of the glandular tissue is
made up of proteins.

In addition, we know that a significant fraction of glandu-
lar breast tissue is made up of water. One study showed that
normal patient glandular breast tissue has a water content of
41%-76% by Weight.36 Therefore, a glandular-mimicking
phantom material should be high in both water and protein
content. The inclusion of cells would be not only expensive
but also unrealistically unstable. Egg whites provide a good
first order match to human glandular tissue makeup. Egg
whites are made up of mostly water (87.6%) and proteins
(10.9%).30 The major proteins are ovalbumin, ovotransferrin,
ovomucoid, ovoglobulin G2, ovoglobulin G3, and lysozyme,
which make up about 91.9% of the total protein content of
egg whites.”” While the types of protein in egg whites and
human breast tissue differ, the elemental composition of dif-
ferent proteins is almost indistinguishable.38 In addition, all
proteins are made up of amino acids, which all bind H in
similar ways. Therefore, we expect that the MRI signal of the
proteins in egg whites would be similar to those in human
breast tissue. In addition to being readily available, egg
whites also have several functional properties that make
them ideal for forming structures with no intervening sep-
tum. They coagulate irreversibly after heating39 and do not
dissolve into the surrounding material. While the shelf-life of
egg whites is markedly less than that of refined lard, we will
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heat the egg whites, store them in an air-tight container, and
mix them with a preservative to improve the shelf-life as
much as possible. The true shelf-life of both phantom com-
ponents will be measured as described in Sec. II B.

A custom, air-tight plastic jar was developed to contain
the phantom materials and simulate the shape of the human
breast. The jar shape was defined by a half-sphere combined
with a cylindrical portion, where the total internal volume
was fixed to a typical breast volume of 425 ml.* The lid
attaches to the jar body via a ring of 24 screws through a
gasketed connection and has two fill ports that are sealed
with Teflon tape-coated screw plugs. The half-sphere jar
shape was chosen to approximate the shape of the majority
of breast patients based on visual inspection of clinical breast
MRI images and ease of fabrication. Although this approxi-
mation roughly simulates the shape of many patients, there is
certainly a large variation in patient breast shape including
conical shapes and shapes distorted due to the contact of the
breast with the coil. Such differences can have important
implications on effective breast shimming.41 It would be pos-
sible to modify the jar shape of the phantom to mimic some
of these other shapes or even to use segmented patient im-
ages to produce irregular jar shapes, but this would not affect
the 7| and T, of the phantom material and is outside of the
scope of the current study.

To fill the phantom jar, a preservative (0.2% w/v Dowicil
75, The Dow Chemical Co., Midland, MI) was added to raw
egg whites prior to pouring into melted lard and heating for
30 s while stirring at a constant rotational velocity. The lard
was heated until it reached either 100 or 110 °C and stirred
at a constant velocity of either 125 or 350 rpm. These differ-
ent lard temperatures and stirring velocities were used to
create a set of phantoms with different tissue structures in an
attempt to mimic the type of variation seen in patient data.
Air bubbles were removed by placing the phantom in a
vacuum for 20 min. The mixture was then cooled at room
temperature in the sealed jar and rotated once during cooling
to help redistribute the egg whites in the lard. This rotation
helps create a layer of lard around the edges of the jar. The
phantoms were constructed with a density of approximately
24% glandular-mimicking material by volume. This breast
density is similar to densities measured on patient popula-
tions using MRI. A study that estimated breast density using
MRI in a high-risk cohort of 35 patients found breast densi-
ties ranging from 2% to 71.4% with a mean of 28%.** In the
future, the density of the phantom could be varied to match
the full range of densities seen in patient data by simply
increasing or decreasing the amount of egg whites.

IIl.B. T, and T, relaxation parameter measurements

For estimation of 7| and T, values, inversion recovery
(IR) and spin-echo (SE) sequences were used, respectively.
All scans were performed in a Siemens Magnetom 1.5 T
clinical scanner using an extremity coil. The scan
parameters were TR=25 s, resolution=2.5 mmX2.5 mm
X 2.5 mm, five slices separated by 7.5 mm each, TI=[22,
35, 45, 75, 100, 150, 200, 250, 400, 500, 600, 900, 1000,
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1500, 2500, 4500] ms for the IR sequence, and TE=[15, 20,
25, 30, 35, 40, 50, 70, 75, 95, 100, 120, 150, 200, 300] ms
for the SE sequence.

The T, and T, relaxation times of the lard and egg com-
partments were estimated from reconstructed magnitude im-
ages using maximum-likelihood estimation (MLE) with a Ri-
cian data model. The maximization of the likelihood was
implemented using a limited-memory Broyden—Fletcher—
Goldfarb—Shanno method with bounds™ in the R program-
ming language. The Gaussian noise variance, o2, was esti-
mated using the MLE equation for estimation from a
background region in a magnitude data set.* For our data,
two rectangular bands of 11X 47 pixels on either side of the
imaged sample, located at the edge of the image, were des-
ignated as background voxels and used in the above calcula-
tion. The large dimension of the background regions covered
the full image field of view and the small dimension was
chosen to select enough pixels to reasonably sample the
noise probability distribution while staying as far away from
the object as possible.

For lard, relaxation values were estimated using a lard-
filled tube, assuming monoexponential signal behavior. The
formulas for MLE of monoexponential 7; and 7, relaxation
times have been presented in literature.”** We used the T,
equations as previously presented and expanded the monoex-
ponential 7' signal equation to include an additional param-
eter to correct for imperfect inversion pulses since this is
known to significantly affect 7) measurements even on 1.5 T
systems.47’48 All coefficients for fits to lard data were forced
to be positive. The mean and standard deviation of the esti-
mated relaxation values for all voxels within a hand-selected
circular region of interest (ROI) were taken as the estimated
relaxation value and its error. The number of voxels included
in the ROI was typically 145, which represents the number
of voxels included in the user-selected circular ROI across
each of the five imaged slices. The circular ROIs were se-
lected to include as much of the object as possible, while
avoiding pixels on the edge of the object that had partial
volume mixing with the surrounding air.

The relaxation values of the egg component were calcu-
lated on the phantom itself since the relaxation values of egg
are known to vary with the preparation technique.49 A
double-exponential signal equation was used to fit the data
with the 7| and T, values of lard fixed to those estimated
above; the amounts of egg and lard, the inversion pulse cor-
rection, and the 7' and T, values of egg were free parameters
for each voxel. All free parameters were forced to be positive
during the fitting except for the 7 value of egg, which was
restricted to values between 500 and 5000 ms. The reported
relaxation values and their errors were calculated as the
mean and standard deviation weighted by the egg fraction for
all voxels, within a hand-selected, circular ROI, with an egg
fraction of at least 50% and a proton density of at least 50%
of the maximum value in the sample (on average, about
480). The circular ROIs were selected to include as much of
the object as possible, while avoiding pixels on the edge of
the object that had partial volume mixing with the surround-
ing air.
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The above process was repeated for three different phan-
toms manufactured using different construction parameters
(lard heating temperatures and constant rotational velocities)
to ensure that variations in the production method did not
cause variations in the relaxation values outside of the hu-
man range.

The estimated phantom relaxation values were compared
to the published human data. All published studies found
where both T, and 7, values were calculated separately for
both adipose and glandular breast tissues on a 1.5 T magnet
were included in our analysis.so_53 Error bars were taken di-
rectly from the respective values reported in the publications.

The stability of the relaxation values over time was mea-
sured by repeating the above process approximately every
other week over a period of 9 months. During this time, the
phantom was stored at room temperature.

Il.C. Comparison of image structure

The phantom’s structure was quantitatively compared to
the patient data using covariance matrices. The covariance
matrix measures how each pixel in the image co-varies, on
average, with every other pixel, given a population of such
images (from either phantoms or patients).54 The full cova-
riance matrix of a vector (or image) g with M elements
(equal to N? for an image or ROI with N X N pixels) will be
an M X M matrix with elements given by

K= ((gi- g_i)(gj - gj)*>7
where the overbar indicates an average and the * indicates
complex conjugation. If g; and g; are statistically indepen-
dent and i# j, then K;;=0. If i=j, then K;; is equal to the
variance of g;. Since g is a random vector, we must average
over many instances of g in order to get a good estimate of
K.

Since we have a limited number of images available rela-
tive to the number of elements that must be computed for a
full covariance matrix, we have averaged the covariance ma-
trix over all positions within an image ROI, therefore, as-
suming wide-sense stationarity within that ROI (Ref. 54) and
reducing the variance of the estimate of K at the expense of
position-dependent information. We will refer to this matrix
as the stationary covariance matrix. It represents the average
direction-dependent correlation strength over all positions in
the ROI and is an estimate of the texture in the images to
second order. The stationary covariance matrix has a size of
2N—-1X2N-1 and is given by

K;t;tlonary = <Ki(i+p+qN)>i e[(m+nN)eS]»

where p and g are “offset” indices (both e[-(N-1),...,(N
—1)]) in the x and y directions, respectively. The physical
meaning of p and ¢ is that they are relative offset values. So,
K;t;“"""ary is the element of K¥°"Y that holds the average
covariance over all pixel pairs in the ROI that are separated
by p pixels in the x direction and g pixels in the y direction.
Another way to state this is that the covariance element
K;tzti""“y describes the correlation between any pixel in the
ROI and its neighbor p pixels to the right and ¢ pixels up.
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The element Ko™ is at the center of the matrix. The
two-dimensional indices m and n both run from 0 to N—1
over the two-dimensional ROI in the x and y directions, re-
spectively. The one-dimensional index i is simply a one-
dimensional version of the indices m and n that runs over
every pixel in the ROI (€[0,...,N*>~1]) and is equal to
m+nN. The average over the elements of the full covariance
matrix only includes elements for which a (p,q) offset ROI
pixel exists, denoted by the set S. Therefore, the number of
samples that contribute to the calculation of the element
K;f;ﬁ"“ary of the stationary covariance matrix varies with the
exact p,q indices and is given by (N-|p|)(N—|q|). We can
see from this equation that stationary covariance elements
describing correlations with more distant pixels pairs (large p
and ¢ values) have fewer samples. Also note that both the
full and the stationary covariance matrices are symmetric, so
Kij= Kji and I(?;allonary= I(;;atlonary.

For each phantom or patient data set, the largest square
ROI was selected by-hand which still contained only breast
tissue. The ROI size varied with the breast size for patient
data (between 35X 35 and 150X 150 voxels), but stayed
constant for phantom data (70X 70 voxels). This ROI was
applied to a set of slices (between 26 and 92 slices/patient
depending on the breast size and 61 slices/phantom) of the
left breast where enough breast tissue was present to fill the
chosen ROI.

Multiple slices were included in the stationary covariance
matrix calculation by concatenating all ROIs from all slices
into a single g vector. This provided a single, in-plane, sta-
tionary covariance matrix for each patient or phantom, which
we will refer to as a patient- or phantom-specific stationary
covariance matrix. This matrix was also normalized by the
average voxel variance (the central pixel of the stationary
covariance matrix) to highlight the relative correlation fall-
off with spatial position.

An overall stationary covariance matrix for the entire pa-
tient or phantom population was then calculated by first con-
verting all patient-specific stationary covariance matrices to
the same spatial scale (0.625 mm/voxel) using a cubic con-
volution interpolation with an interpolation parameter of
—0.5 (Ref. 55) if necessary. The difference between the
original and the interpolated covariance matrices was in-
spected to ensure differences were negligible. Finally, all of
the resultant matrices were averaged. Error bars on the over-
all stationary covariance matrix were estimated by calculat-
ing the standard deviation of the patient-specific stationary
covariance matrices values at each offset position.

To understand whether the difference among patient-
specific stationary covariance matrices was due to instrumen-
tation error or anatomical variations, simulated ROIs were
created with only Rician noise. In all cases, the noise vari-
ance was set to 1 since the final covariance is normalized by
its maximum value, which is equivalent to the average pixel
variance. Simulated ROIs were chosen to have a conserva-
tive size of 35X 35 voxels, which is equal to the smallest
ROI used for the covariance calculations on the patient data.
Sets of between 5 and 95 simulated ROIs were created to
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Fic. 1. Example patient and phantom images. All MRI images were ac-
quired with a dedicated breast coil using either a 1.5 T Philips or a 1.5 T
General Electric (GE) scanner: (a) Photograph of a phantom; (b) patient,
T,-weighted, fat-suppressed, Philips scanner; (c) patient, 7, SPAIR (spectral
adiabatic inversion recovery), fat-suppressed, Philips scanner; (d) phantom,
T,-weighted, fat-suppressed, Philips scanner; (e) phantom, 7' ;-weighted, fat-
suppressed, GE scanner; and (f) phantom, 7,-weighted, fat-suppressed, GE
scanner. All scale bars are 10 mm. The bright signal near the top of images
(e) and (f) is from glandular-mimicking phantom material in the fill ports of
the phantom jar.

bracket the range of the number of slices selected in the
patient data. The root mean squared (RMS) variation in the
simulated, Rician-noise only, patient-specific stationary co-
variance estimate was then calculated for five different off-
sets (4-20 mm) by averaging over all offsets whose absolute
values (\p2+¢?) were within 4 mm of the specified offset.
The RMS variation was calculated as a function of the num-
ber of ROIs used in the covariance estimation (correspond-
ing to the number of patient slices). This process was re-

Adipose Ref. [51 o
s Glondulor Ref. [52 3
Re:. 53

1000 E — Egrgdwhlles

op

Ref. [54.
Phantom (This Study,

T2 [ms]

100:-

10 L L
100 1000
T1 [ms]

FiG. 2. Comparison of phantom 7', and 7, values with human data from the
literature. Error bars are one standard error. The lines plotted for the study of
Graham et al. (Ref. 52) indicate contours that include the calculated 12.5%
and 87.5% probability of their measured tissues. The 7', and 7, values of the
phantom materials fall within 2 standard errors of the human data for both
the adipose- and the fibroglandular-mimicking compartments. Data points
for the phantom materials were measured on three different phantoms con-
structed using different lard temperatures and stirring velocities. The phan-
tom 7 values are a better match to human data than the 7, values and are
the primary determinants of image contrast for DCE-MRI studies.
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peated on 11 independent realizations to improve the RMS
estimates and compare to the variation in the patient-specific
stationary covariance matrices.

Coded patient data were taken from the National Cancer
Institute’s (NCI) Clinical Genetics Branch’s Breast Imaging
Study data archive. The use of the data was authorized under
appropriate IRB approval from both the NCI and the FDA.
In the study, a total of 194 high-risk patients was imaged
using various MR imaging protocols and scanner types. Pa-
tients were enrolled between June 2002 and February 2007
and included in the study if they were between 25 and 56 yr
of age and considered at high genetic risk of developing
breast cancer. See Ref. 56 for additional study details.

Seventy-seven patients with MRI data collected on a 1.5
T Philips machine with a seven-channel, dedicated breast
coil and with the same pre-contrast imaging sequence were
selected for additional analysis. Thirteen were excluded be-
cause of the presence of an implant or diagnosis of breast
cancer before or during the course of the NCI breast imaging
study. Sixty-four patients remained for the final analysis. Pre-
contrast, T,-weighted, gradient-echo, fat-suppressed images
were available for each patient with an in-plane resolution
ranging from 0.586 to 0.664 mm and a slice thickness rang-
ing from 1.9 to 2.3 mm. Twenty phantoms were fabricated
and imaged using the same scanner type, breast coil, and
imaging sequence for comparison with the patient data.

1.D. Enhancing lesion

An enhancing, mass-like lesion was designed to be in-
cluded in the phantom. We have designed and manufactured
two simulated lesions using stereolithography to simulate
round and lobular morphologies. The simulated lesions con-
sist of hollow plastic molds with 0.6 mm thick walls and can
be filled with a gadolinium-doped water solution. Neither of
the plastic molds have any internal structure. The lesion with
the round morphology is a 1 cm internal diameter sphere
with an internal volume of 523.6 mm?®. The lobular lesion is
a 1 cm internal diameter sphere with three additional lobula-
tions and has an internal volume of 563.2 mm?. The stere-
olithography printer resolution was 0.0508 X 0.0508
X 0.1016 mm? for these parts. An inner diameter of 1 cm
was chosen for the lesions in this study, but this size could be
easily varied in future implementations.

These lesions are suspended in the phantom via small
tubes that are attached to the lid of the phantom jar and are
added into the phantom itself when the jar is sealed and
allowed to cool. Once the phantom is completely cooled and
the lard and egg whites have solidified, the lesion is filled
with 4.5 mM GdCl; (anhydrous gadolinium chloride,
99.99%, Sigma-Aldrich, St. Louis, MO) in de-ionized water.
This concentration of gadolinium was chosen to be similar to
that of patients at the peak of a typical gadolinium contrast
agent washout curve. Note that the concentration of gado-
linium in the lesion is a fixed value in the current study. In
future studies, we plan to extend this lesion model to include
temporally dynamic behavior.
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We obtained chemically selective fat-suppressed, 3D
gradient-echo MRI images of phantoms with each of the two
lesion types using a Siemens Magnetom 1.5 T clinical scan-
ner with an extremity coil. The scan parameters were
resolution=0.75 mm X 0.75 mm X 0.75 mm, matrix size
=192X 192X 72, TR=3.86 ms, TE=1.36 ms, and flip
angle=10°.

lll. RESULTS

Figure 1 shows example patient and phantom images ac-
quired with clinical systems. T';- and 7,-weighted images of
the phantom were acquired using standard clinical breast
protocols from two different institutions with two different
clinical scanners (1.5 T Philips and 1.5 T General Electric
both with dedicated breast coils). Our phantom provides a
breast shape and internal tissue structure that are much im-
proved over currently available phantoms.

Figure 2 shows the comparison of phantom 7, and T,
relaxation parameters with the corresponding published hu-
man values. Values for three different phantoms with differ-
ent construction parameters are shown. Phantom relaxation
values fall within two times the standard error of the human
data. The match between the human and the phantom data is
particularly good for 7 values, which are more relevant
when evaluating DCE-MRI since the images are
T,-weighted. The results of the stability analysis are shown
in Fig. 3. Over a 9 month period, the 7| and T, values are
stable to within 8% and 15%, respectively, for both lard and
egg whites. The data indicate that the phantom materials may
be stable over an even longer time period since the values
have not yet strongly deviated from their values at produc-
tion time. We will continue to monitor the stability until the
values change significantly. In Mazarra et al.,”® when their
phantom was stored at room temperature for 6 months, they
stated that no noticeable degradation was seen and the 7', and
T, values had less than 10% random variations. For the
phantom presented in Ref. 27, data evaluating the shelf-life
were not presented and the shelf-life was stated as being
“several months” when refrigerated. Therefore, our phantom
performs at least as well as currently available breast phan-
toms in terms of stability.

Figure 4 shows example phantom and patient ROIs. A
visual comparison between these ROIs indicates that the
phantom has a random structure that resembles the compli-
cated patient data image structure. We observe that the pa-
tient data appear to have a directional preference in the
anterior-posterior direction, whereas the phantom is more
isotropic. Furthermore, the fat suppression in the phantom
images appears to be slightly improved as compared to that
of patient data. This may be due to the fact that there is no
torso attached to the phantoms, resulting in improved shim-
ming of the phantom, or that the spectral shape of the fat
signature in the phantom may be less complicated than that
of patients. There may also be more homogeneity of the
material types within a voxel in the phantom than in the
patient data, resulting in the appearance of better fat suppres-
sion.
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FiG. 3. Fractional change in T (left) and T, (right) relaxation times of lard and egg whites as a function of time since phantom production date. All data points
have been normalized by the relaxation value on the phantom production date. 7, and 7, relaxation values of both lard and egg are stable to within 8% and
15%, respectively, over a period of 9 months. Errors bars are the standard deviation over all voxels included in the computation for a single data set.

Figures 5 and 6 compare patient and phantom covariance
matrices. Figure 5 shows images of the patient and phantom
overall stationary covariance matrices, while Fig. 6 shows
horizontal and vertical cuts through those matrices. Our data
suggest that the covariance length of the patient and phantom
images is similar along the anterior-posterior direction. In the
right-left direction, they differ by about 2 standard error bars,
with the phantom images having a larger correlation length
than the patient data. In general, the phantom data are more
isotropic than that of the patient, which tends to have struc-
tures that elongate along the anterior-posterior direction. In-
terestingly, the error bars of the patient and phantom data are
similar, which indicates a similar range of variability among
the two populations.

Figure 7 shows the results of simulations run to estimate
the amount of instrumentation error included in the error bars
in Fig. 6. RMS variations in the stationary covariance matrix
estimations are plotted as a function of the number of ROIs
used in the estimate. The ROIs were simulated images cre-
ated with only Rician noise. The results for five different
offset distances are shown. For 26-92 ROls, the magnitude
of the RMS instrumentation error in the stationary covari-
ance ranges from 0.003 to 0.020, depending on the offset
distance and the number of ROIs. The corresponding error
bars in Fig. 6 range from 0.053 to 0.096 for the same set of

Anterior

offset distances. The fact that the RMS instrumentation er-
rors are less than the size of the error bars in Fig. 6 indicates
that these error bars represent mostly anatomical variation.

Images of the lesions before inclusion in the phantom as
well as fat-suppressed, 7;-weighted, gradient-echo MRI im-
ages of two phantoms with the two different simulated lesion
types are shown in Fig. 8. We are able to produce complex
lesion morphologies and to fill those with a gadolinium-
doped water solution whose concentration can be varied by
the user to investigate different contrast agent doses. With
the addition of the enhancing lesion, the phantom can be
used to study the effect of image protocol parameters on
lesion detection and characterization.

IV. DISCUSSION

We have described a breast MR phantom, developed for
quantitative evaluation of breast MRI techniques, which
mimics breast tissue properties including 7, and 7, relax-
ation values, fat suppression, image structure, and lesion
morphology and peak enhancement. We have also presented
a method for quantitatively comparing the image structure of
phantom data with that of patient data. This method permits
formulating approaches to further improve the phantom de-
sign and production methods.

FiG. 4. Example ROIs (cropped to 3.5 ¢cm X 3.5 cm) selected from the patient (top row) and phantom (bottom row) fat-suppressed, 7;-weighted data. Note
the resemblance in heterogeneity of the interlacing adipose and glandular tissues between phantom and patient images. Structures in the patient data appear
to be more anisotropic than those in the phantom data and tend to elongate along the anterior-posterior direction. The phantom data also appear to have slightly

better fat-suppression than the patient data.

Medical Physics, Vol. 38, No. 2, February 2011
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FIG. 5. Overall stationary covariance matrices for the patient and phantom data sets. The matrices are scaled to have the same intensity at their peak. The
phantom and patient overall stationary covariance matrices have a similar covariance length in the anterior-posterior direction. However, the phantom has a

larger covariance length than the patient in the right-left direction.

Our phantom design can be used to quantitatively com-
pare T-weighting methods and fat-suppression techniques of
different imaging protocols, coils, contrast agent dose, and
scanners at 1.5 T in terms of lesion detection. The phantom
could be validated and used to compare performance at other
field strengths as well. Since the lesion volumes are known,
the effect of imaging protocol parameters on the ability to
estimate lesion volume can also be investigated. Another im-
portant application of the phantom is performing direct le-
sion detectability comparisons across different institutions
since the exact same phantom set can be imaged at a variety
of locations. Such comparisons may help illuminate the
cause of variations in clinical performance among institu-
tions by determining the contribution of scanner and soft-
ware variability.

An extension of the phantom design allowing for the in-
vestigation of dynamic parameters is underway. This will be
achieved by modifying the current static lesion design to
include validated contrast agent washout kinetics. Once the
dynamic lesion is included, the phantom can be applied to
the optimization of additional breast MRI parameters such as
spatial vs temporal resolution trade-offs. We expect that the
phantom will also be useful for quantitative evaluation of
x-ray imaging since the phantom materials were selected to
be similar to human breast tissue components. We are there-
fore currently working toward characterizing the x-ray prop-

Right—Left Direction

erties of the phantom.60 Such a dual-modality phantom
would be useful not only for quantitative evaluation of sepa-
rate modalities but also direct comparisons between x-ray
and MRI modalities to help understand which modality is
optimal for a given imaging situation. A manuscript is also
currently in preparation that discusses a dynamic lesion.
One of the limitations of the phantom design is an im-
proved fat suppression compared to patient data. In addition,
tissue structures in the right-left direction are, on average,
larger in the current phantom design than those in patient
data. Further work is necessary to determine the cause of the
difference in fat suppression between patient and phantom
images. If the cause of this is improved field homogeneity in
the phantom, this could be addressed by purposely misad-
justing the shim settings of the MR scanner or by adding
distributed quantities of an MR-invisible material with a dif-
ferent susceptibility constant to the outside of the phantom.
Another probable explanation for the difference is that hu-
man adipose tissue contains more than only lipids. It also
contains vascular cells and is held in a matrix of collagen
fibers. The total lipid content of human adipose tissue is
60%—-85%, but adipose tissue also contains 5%—-30% water
and 2%-3% protein.28 In contrast, the adipose-mimicking
material used in our phantom is 100% lipid. A future version
of the phantom may address this discrepancy by mixing ad-
ditional proteins or other organic elements found in vascular
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FiG. 6. Cuts through the patient and phantom overall
stationary covariance matrices (shown in Fig. 6) in the
right-left and anterior-posterior directions. The patient
and phantom overall stationary covariance matrices are
the same to within their error bars along the anterior-
posterior direction, but differ in the right-left direction.
Error bars are the standard deviation of the individual
patient- (n=64) and phantom-specific (n=20) station-
ary covariance matrices at each distance.
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FiG. 7. RMS variation in the stationary covariance estimate due to Rician
instrumentation noise only as a function of the number of 35X 35 voxel
ROIs used in the estimation. Five different offset distances are shown. Com-
pared to the size of the error bars in Fig. 6, which describe both anatomical
and instrumentation errors, the instrumentation errors shown here are much
less than the size of the error bars in the actual data in Fig. 6. This indicates
that the error bars in Fig. 6 represent mostly anatomical variation.

cells into the adipose-mimicking material; however, the most
appropriate materials to be used and their shelf-life must be
carefully considered. Variations in fat suppression due to
breast shape could be addressed by modifying the phantom
jar to reproduce different breast shapes, such as conical
shapes and those distorted by contact with the coil.

In terms of tissue structures, the phantom does have more
isotropic tissue structures than those in patient data; however,
the overall size of these structures is similar to that of patient
data and presents a significant improvement over what is
currently available. The fact that the overall size of structures
in the phantom is similar to patient data implies that optimi-
zations performed with the phantom should be appropriate
when evaluating detectability as a function of lesion size.
Since the phantom has a more isotropic structure than patient
data, we expect isotropic lesions to be more difficult to detect
in the phantom than in patient data. Similarly, anisotropic
lesions will be easier to detect in the phantom than in patient
data. The fact that these differences are quantitatively evalu-
ated in the phantom means that optimization trends derived
from the phantom can be intelligently interpreted in terms of
their translation to clinical imaging.

a)

b)

Medical Physics, Vol. 38, No. 2, February 2011

Although the phantom covariance is more isotropic than
the patient data, the phantom data do exhibit some amount of
anisotropy which is perpendicular in direction to the aniso-
tropy in the patient data. This suggests that it may be pos-
sible to adjust the phantom production to improve the phan-
tom tissue structure. Some possibilities include modifying
the stirring parameters while the egg is coagulating in the
heated lard, rotating the entire phantom while cooling to
room temperature, or perhaps pushing the raw egg whites
through a grid while they enter the heated lard in order to
create long, filamentary structures. This approach might also
provide fiber-like structures with some ability to control the
corresponding distribution of sizes.

V. CONCLUSION

The breast MRI community currently lacks a realistic,
anthropomorphic phantom that can be used to quantitatively
evaluate the effect of MRI protocol parameters on lesion
detectability. In this study, we propose a phantom that ad-
dresses this need. Other quantitative MRI phantoms, such as
the ACR accreditation phantom and the DCE-MRI phantom
under development by the Quantitative Imaging Biomarkers
Alliance at the Radiological Society of North America
(http://gibawiki.rsna.org), are important tools in MRI tech-
nique optimization because they allow for precise measure-
ment of parameters such as slice thickness, resolution, and
relaxation time estimation. However, these phantoms are in-
tended for optimization of specific image quality parameters
and have no anthropomorphic shape or structure. Therefore,
they are unable to probe exactly how MRI technique param-
eters influence lesion detectability. Anthropomorphic phan-
toms have been implemented in other imaging modalities
and have been used to demonstrate that simple, non-
anthropomorphic phantoms produce misleading results when
used to optimize imaging systems.24’57_59 The phantom de-
scribed in this work will provide a much-needed platform for
better understanding the interaction of breast MRI acquisi-
tion parameters with lesion detection and estimation.

Clinical applications of breast MRI have been rapidly
evolving and have demonstrated potential to improve the de-
tection and characterization of breast lesions, particularly for
high-risk patients with dense breast tissue, when compared to
the current standard-of-care methods. However, the advan-
tages of breast MRI have been overshadowed by issues of
performance variability and false positive findings. Our

Fig. 8. (a) Photograph of round-shaped, mass-like
simulating lesion (sphere internal diameter=10 mm).
The three tubes toward the right connect the lesion with
the phantom jar lid and allow for filling of the lesion
with contrast agent as well as future dynamic contrast
agent experiments. (b) Photograph of lobular-shaped,
masslike simulating lesion (3 lobulations plus 10 mm
internal diameter sphere diameter). (c) Fat-suppressed,
T,-weighted, gradient-echo image (0.75 mm isotropic
resolution, coronal slice) of a complete phantom with
the round-shaped simulating lesion inserted and filled
with gadolinium-doped water. (d) The same as (c) with
the lobular-shaped simulating lesion.
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phantom design helps address these issues by allowing quan-
titative comparisons across breast MRI systems and proto-
cols and by directly relating image acquisition parameters to
lesion detection and estimation. Such comparisons will con-
tribute to the standardization of breast MRI and address
some of the concerns associated with its widespread clinical
use.
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