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Abstract
In medical research, it is common to have doubly censored survival data: origin time and event
time are both subject to censoring. In this paper, we review simple and probability-based methods
that are used to impute interval censored origin time and compare the performance of these
methods through extensive simulations in the one-sample problem, two-sample problem and Cox
regression model problem. The use of a bootstrap procedure for inference is demonstrated.
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1. Introduction
Most statistical methods developed for the analysis of event time data assume that the origin
time is known, but allow the event to be censored. Data that are censored both at the origin
and at the event time are referred to as doubly censored data. HIV studies have provided
many examples for doubly censored data. In this paper, we are interested in the distribution
of time from HIV infection to death. The exact time of HIV infection is usually interval
censored and death is subject to right censoring. This is the doubly censored situation
considered here. However, that the term ‘doubly censored data’ is also used for situations
where both the origin and the event time are interval-censored, for example, in De Gruttola
and Lagakos [1] and Sun [2].

Doubly censored data can, in principle, be analysed using a maximum likelihood approach,
but this approach can be challenging, both numerically and theoretically, particularly when
covariates are involved. Maximum likelihood has been applied to the regression analysis of
doubly censored data in Kim et al. [3], with both origin and event time being interval
censored, using the discrete proportional hazards model. For the continuous proportional
hazards model, Sun et al. [4] propose an estimating equation procedure to estimate the
regression parameters and show that the estimator is asymptotically unbiased and normally
distributed. The procedure is difficult to implement and can be intractable when the sample
size is large. In addition, the method is challenging to implement when the covariates are
interval censored, as is the case in our motivating example of Xiang et al. [5]. In contrast, if
the origin time (HIV infection time) can be imputed reasonably, the missing value of the
covariate for this study (age at the time of HIV infection) will be imputed simultaneously,
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then the analysis of doubly censored data with imputation is a straightforward analysis of the
right-censored data.

Imputation is a general method for missing-data problems. One simple approach is to impute
infection time using the right limit of the interval in which the infection time is censored.
This typically corresponds to the date of diagnosis or to the date of study entry, and is
expedient when no negative diagnostic test precedes the first positive test, as in Xiang et al.
[5] and Tillmann et al. [6]. Another common approach is to impute infection time using the
midpoint of the interval [7–9]. Law and Brookmeyer [10], however, have shown that, under
certain distributional assumptions consistent with the data from the studies of HIV disease,
Kaplan–Meier estimates of survival based on this method are considerably biased when
censoring intervals are longer than two years. Yet another method of imputation is by the
left limit of the interval. In many HIV studies, however, including our motivating example,
the left limit may correspond to either date of birth or a date before the HIV epidemic
emerged, and in this case the left-point imputation is likely to be unreasonable. For this
reason, the left-limit imputation is not included in the following sections.

Other imputation methods impute the infection time of a subject based on Ĝ, an estimate of
the marginal distribution G of HIV infection time. For example, Gauvreau et al. [11] adopt
the self-consistency algorithm of Turnbull [12] to estimate G, and then impute the expected
infection time based on Ĝ conditional on the subject’s interval. Goggins et al. [13] suggest a
Monte Carlo EM algorithm to estimate G, and then repeatedly impute infection times based
on random draws from Ĝ conditional on the subjects’ intervals. The estimated distribution of
HIV infection time, Ĝ, is treated as if known when imputing infection times.

Pan [14] uses the approximate Bayesian bootstrap scheme [15,16] to take B bootstrap
samples Db from the original data D, b = 1, …, B, then obtain Ĝb using the self-consistency
algorithm, and then repeatedly impute B infection times based on random draws from Ĝb, b
= 1, …, B. Finally, the results are combined using Rubin’s multiple imputation (MI) formula
[17]. Geskus [18] compares the midpoint imputation, the conditional mean imputation, and
MI methods for the bias and mean-squared error (MSE) of the estimator of Kaplan–Meier
curves. In his simulation study, under some distributional assumptions for one-sample data,
the conditional mean imputation stands out as the preferred method.

In Section 2, both simple imputations and probability-based imputations are outlined, and
the MI inference procedure and bootstrap inference procedure are introduced. In Sections 3
and 4, simulations are described and the numerical performance of the different imputation
methods is compared. Section 5 presents conclusions and further discussion.

2. Imputation methods
For simplicity, let HIV infection be the origin event and death the endpoint event. Let Xi and
Yi denote HIV infection time and death time for subject i, i = 1, …, n. Assume Xi is interval
censored Xi ∈ [Li, Ri]. We assume Yi is possibly right censored as in Sun et al. [4], Goggins
et al. [13], and Pan [14]. Imputation methods can be classified into simple imputation
methods and probability-based imputation methods.

2.1. Simple imputation methods
Right-point imputation refers to imputing the infection time by the right limit Ri of the
interval and is denoted by RIGHT; midpoint imputation refers to imputing the infection time
by the midpoint of the interval [Li, Ri] as (Li + Ri)/2 and is denoted by MID. When HIV
infection and death both occur between two successive screening tests, that is Li < Xi < Yi <
Ri, the MID uses midpoint of the interval [Li, Yi] as the infection time.
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2.2. Probability-based imputation methods
Probability-based imputation requires estimating the distribution G for HIV infection time Xi
based on observed intervals. The non-parametric maximum likelihood estimator (NPMLE)
of G with interval censored data is fully developed in the statistical literatures. Groeneboom
and Wellner [19] characterize the NPMLE and propose an iterative convex minorant
algorithm for computing the estimate. Turnbull [12] proposes a self-consistency algorithm
which can be realized as an application of the EM algorithm introduced by Dempster et al.
[20]. The details of these algorithms can be found in Sun [21]. Turnbull’s self-consistency
algorithm is used throughout this paper due to its simplicity of implementation.

Assume that the infection time X is a discrete random variable with a set of possible values x
= {x1, x2, …, xm} associated with a set of probabilities g = (g1, g2, …, gm), respectively,
where x1 < x2 < … < xm. Suppose for subject i, there are ri possible values of infection time
yi = (yi1, …, y) ∈ [Li, Ri] associated with probabilities pi = (pi1, …, piri), i = 1, …, n. Note
that both yi and pi are subsets of x and g, respectively. Let hi = (hi1, …, hiri), the conditional

probability for subject i taking the value is yik is , k = 1, …, ri, conditioning
on the interval [Li, Ri] and g.

Conditional mean imputation has been previously used [11,18] but conditional median and
conditional mode appear to be new methods for imputation.

2.2.1. Conditional mean imputation (MEAN)—For subject i, the expected time of
infection is . Therefore, infection time Xi can be imputed by .

2.2.2. Conditional median imputation (MEDIAN)—Infection time Xi is imputed by
the median of yi weighted by the probability vector hi. In case the median is not unique, X̂i is
taken as the average of medians.

2.2.3. Conditional mode imputation (MODE)—Infection time Xi is imputed by the
mode of yi: the value corresponding to the maximum probability among hi. That is X̂i = yik,
where k =max1≤k≤ri {ĥik}. In case the mode is not unique, X̂i is taken as the average of
modes.

2.2.4. Multiple imputation—MI is a commonly used method. For m = 1, …, M,
randomly sample  from yi with replacement using the conditional probability vector hi as
weight. Let D denote the original data set with interval-censored origin event, D ̂m denote the
data set that replaces the interval censored origin event by the mth imputation. Then D ̂m is
analysed using the regular right censored data method. Let θ ̂m be the estimate of the
parameter of interest obtained from the mth imputed data set D ̂m, m = 1, …, M. The MI

estimate of θ is .

2.2.5. Random imputation (RAND)—Randomly sample one value of yik from the vector
yi using the conditional probability vector hi as weight. Then the infection time Xi is
imputed by yik. This is a special case of MI, where M = 1.

2.3. Bootstrap inference procedure
The imputation methods in the previous section provide ways to estimate population
parameters of interest for doubly censored data. To derive standard errors, Rubin’s variance
estimation formula [17] has been used in MI inference [14,22,23]. The formula adds an
expression for between-imputation variance to an expression for average within-imputation
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variance, to incorporate imputation uncertainty. An alternative bootstrap inference procedure
for doubly censored data is introduced here.

Suppose B bootstrap samples Db, b = 1, …, B, are generated from the doubly censored data
D. An estimate θ ̂ of parameter θ is computed based on the imputed data D ̂ by imputing
infection times using a method described in Sections 2.1 and 2.2. A 100(1 − α)% empirical
bootstrap confidence internal (EBCI) of θ for the chosen imputation procedure is given by
[θ ̂l, θ ̂u], where θ ̂l and θ ̂u are the empirical 100(α/2) and 100(1 − α/2) percentiles of the
bootstrap distribution of θ ̂ [24].

Since estimation with right-censored data consumes very little in computing time, the
bootstrap procedure for doubly censored data described above will not be computationally
intensive, making it potentially attractive in practice.

2.4. Motivating example
Xiang et al. [5] examined the effect of co-infection with GBV-C virus on the survival of
HIV-infected patients. The data set is doubly censored in that the origin time (HIV infection)
is interval censored and the endpoint event (death) is right censored. The date of subjects’
first known positive HIV test is used as the right limit of the interval: the right limit ranges
from 1988 to 1999. 1 January 1978 (or date of birth for subjects born after 1 January 1978)
is treated as the left limit of the interval, because it is reasonable to assume that no HIV
infections occurred prior to 1 January 1978 in this population [25]. The data set has 362
subjects with mean interval width of 11.4 years.

We applied all seven imputation methods described in Section 2. Results are summarized in
Figure 1. The estimate of β1, log(hazard ratio) of GBV-C co-infection, varies from − 1.0 to
− 1.3 based on different imputation methods. For all but MI the 95% asymptotic standard
error (ASE) CI of β1 is the confidence interval based on the ASE of β1 from the Cox model,
treating imputed date as if it were known. The 95% ASE CI underestimates the variability of
β1 by ignoring the imputation uncertainty and the 95% EBCI is wider than the 95% ASE CI
for every imputation method except for MI. In MI, an ASE is computed based on Rubin’s
variance formula [17] to attempt to account for imputation uncertainty and only in this case
is the 95% ASE CI wider than the 95% CI.

To assess the performance of point estimates based on these seven imputation methods and
the validity of using bootstrap inference for doubly censored data, simulation studies are
implemented. Section 3 describes the design of the simulations, and Section 4 presents the
results.

3. Simulation design
Simulation studies are designed: (1) to evaluate the Kaplan–Meier estimator in the one-
sample problem, (2) to evaluate the size and power of the logrank test in the two-sample
problem and also a new bootstrap-based test which is introduced in Section 4.2, and (3) to
evaluate the regression coefficient estimate from the Cox proportional hazards model [26]
adjusting for an interval-censored covariate (to be consistent with the motivating example),
based on seven imputation methods. We also assess the validity of the bootstrap inference
procedure through simulation studies.

Distributions for the infection time X and the subsequent survival time T are the key parts of
simulation studies for doubly censored data. Law and Brookmeyer [10] assume a log-
logistic distribution for HIV infection time X with restriction X ∈ [1978, 1986] (subjects
involved in their study were exposed to HIV from early 1978 to mid-1985) and a Weibull
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distribution W (2.51, 11.66) for survival time T, to evaluate the effect of midpoint
imputation on the Kaplan–Meier estimator and logrank test. In a study to assess the effect of
a binary covariate using the Cox model, Goggins et al. [13] adopt a log-normal distribution
LN(3.8, 0.3) for X, and simulate survival time T1 for one group from W (2.5, 70.1) and
survival time T2 for another group from W (2.5, 60) so that the logarithm of hazard ratio β1
is 0.389. This mimics the haemophilia data described by Kim et al. [2]. To investigate
RIGHT, MID, and MEAN imputation methods for Kaplan–Meier estimator, Geskus [18]
specifies a shifted log-logistic distribution for the infection time X, X ∈ [1980, 1997] and W
(2, 11) for survival time T. Pan [14] uses a similar simulation design to that in Goggins et al.
[13].

3.1. Distribution for X and interval censoring
The variable X is simulated from a log-normal distribution as in Goggins et al. [13] and Pan
[14], and is truncated with an upper limit of 65 and with parameters chosen so that the
simulated data are similar to the real data in Xiang et al. [5]. Specifically, X is distributed as
log-normal LN(3.55, 0.24) and truncated to [0, 65]. To mimic screening studies, we simulate
a subject’s first visit as a random number from a uniform distribution U (0, 5). After the first
visit, each subject is scheduled to have annual follow-ups. Whether or not a subject
completes each annual follow-up is modelled as an independent Bernoulli variable. The
probability of making an annual visit P can be tuned to result in intervals with specified
average censoring width of w years for X. A subject’s HIV infection time Xi is accordingly
censored between two consecutive visits, Xi ∈ [Li, Ri], i = 1, …, n. These intervals are then
used to obtain an NPMLE Ĝ of G using Turnbull’s self-consistency algorithm. For
convenience, we refer to the simulation setting described here as the GA setting.

Suppose HIV-positive subjects entered the HIV study before the year 1995. Given HIV
infections before 1978 are extremely rare [25] it is reasonable to assume the HIV infection
time X is between 1978 and 1995. The HIV infection time X is simulated from a truncated
normal distribution N(1995, 5) with upper limit 1995. Assume that for half of the subjects,
we are able to establish intervals for HIV infection time based on their annual seronegative
tests. For these subjects, censoring intervals are generated using the algorithm described in
the above paragraph. The NPMLE Ĝ for the distribution of X is estimated using only these
subjects. For the other half of the subjects, it is known that they were HIV-positive only at
the time of entry. If an individual was born before 1978, we use 1978 as the left limit,
otherwise we use his/her birth year as this person’s left limit. For convenience, we refer the
simulation setting described here as the GB setting. Table 1 summarizes both GA and GB
settings, and Figure 2 portrays the distribution of X in these two settings.

3.2. Distribution for T and right censoring
For the one-sample problem, the survival time T is simulated from a Weibull distribution W
(2, 10). For the two-sample problem, a binary covariate is used to indicate group
membership. T is simulated from two different distributions for two groups with equal
sample size n/2. Distributions considered for the two groups include Weibull W (2, 10) vs. W
(2, 12.84), and log-normal LN(2.2, 0.4) vs. LN(2.4, 0.4). To compare the size of a test
resulting from different imputation methods, T is simulated from the same distribution for
the two groups with equal sample size n/2, either W (2, 10) or LN(2.2,0.4).

For the Cox regression problem, survival time T is simulated from the distribution W (γ, λ)
where λ = λ0 · exp(−zβ/γ), resulting in a proportional hazards model with log (H R) = β. To
mimic the study by Xiang et al., we let z = (z1, z2) denote the GBV-C co-infection (yes/no)
and age at HIV infection, respectively, with corresponding coefficients β = (β1, β2) = (−0.5,
0.1). We set γ = 2 and λ0 = 10.
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In all scenarios, a censoring random variable C is simulated from W (γ, a · λ), where a is a
positive coefficient. As in Goggins et al. [13], Sun et al. [4] and Pan [14], the survival time
T is subject to right censoring. The coefficient a can be tuned so that Pr(T ≤ C) = 0.9, that is
T is subject to 10% random right-censoring.

For each problem, 1000 independent doubly censored data sets are repeatedly simulated. For
each simulated data set, 1000 bootstrap data sets are generated to obtain the 95% EBCI for
the parameter of interest. Specifically, in the one-sample problem, the pointwise 95% EBCI
for the survival function is calculated; in the Cox regression model, the 95% EBCI for β1 is
constructed. To facilitate comparison, the results based on the data with exact HIV infection
time X and the right-censored survival time T are also included (these data are refered to as
exact data). With MI for the missing data problems, Rubin [17, p. 114] shows that in most
situations there is little advantage in producing and analysing more than a few imputed data
sets, and claims that only 3–10 imputations may be needed. For the doubly censored data,
Pan [23] suggests that M = 5 or M = 10 would suffice. We use M = 10 for the MI method.
The RAND method corresponds to M = 1.

4. Simulation results
4.1. One-sample problem

The survival probability S(t) at 2.5, 5, 7.5, and 10 years after HIV infection is estimated by
the Kaplan–Meier estimator, using different imputation methods to impute the infection time
X. The probability of making an annual visit is chosen to be P = 0.3, which results in an
average interval width about 5.3 years. Seven imputation methods are compared with
respect to bias, mean squared error (MSE) and coverage probability of 95% EBCI.

Table 2 summarizes results for the Kaplan–Meier estimator of survival function for n = 200
in the GA and GB settings, with the results for the GB setting displayed in parentheses. The
true values for the S(t) at (2.5, 5, 7.5, 10) years after HIV infection are (0.94, 0.78, 0.57,
0.37), respectively. In the GA setting, all imputation methods give similar bias and MSE
except RIGHT for which the bias and MSE is much larger. All imputation methods except
the methods RIGHT and MI give acceptable coverage probability of 95% EBCI. Methods
MID and MEAN have the smallest biases, followed by MEDIAN. MEAN has smaller bias
than MID in the early years, but MID has smaller bias at, and after 7.5 years. MID, MEAN,
and MEDIAN have comparable MSEs to that of the exact data. In the GB setting, the
probability-based imputation methods perform better than the simple imputation methods
for the Kaplan–Meier estimator in terms of bias, MSE, and coverage probability of 95%
EBCI. Indeed, both RIGHT and MID work badly for the GB setting.

4.2. Two-sample problem
Let F1 and F2 be the distribution functions for groups 1 and 2, respectively. For the right-
censored data, under the null hypothesis H0: F1 = F2, the logrank test statistic S is
asymptotically a standard normal N(0, 1) random variable. There are two tests for which the
power and size can be estimated. One is for the regular logrank test by ignoring the fact that
the origin time is imputed. The second is a new test that incorporates the double censoring,
where the asymptotic distribution of the logrank statistic S is not known. The latter test is
based on the bootstrap empirical distribution of the logrank statistic. For convenience, we
call the latter the empirical logrank (ELR) test. The power for the ELR test is defined as the
probability that the 100(1 − α)% EBCI of S exclude 0, based on the data simulated under an
alternative hypothesis H1: F1 ≠ F2. The size for the ELR test is defined as the probability
that the 100(1 − α)% EBCI of S exclude 0, based on the data simulated under the null
hypothesis H0.
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The results for power and size comparison in the GA and GB settings are shown in Table 3.
In the GA setting, the probability of making an annual visit P is set as 0.3 for both groups
resulting in a mean interval width w = 5 years for each group. For each imputation method,
the power of the ELR test and of the regular logrank test is similar. The power based on
MODE and RAND tends to be smaller than that from the other imputation methods. Overall,
the loss in power using MEAN imputation is negligible compared to the EXACT approach
where the original time is known. The size of the logrank test is close to the 5% nominal
level. The size of the ELR test is also close to the 5% nominal level, except that the size
based on MODE or RAND tends to be lower than nominal. Overall, the size of both tests
based on MEDIAN is closer to the 5% nominal level than that of other imputation methods.

In the GB setting, the probability of making an annual visit P is again 0.3 but for half of
subjects, the other half having the left limit of the interval being 1978. The power of the
ELR test is similar to that of the logrank test. Overall, the power based on the MEDIAN and
MEAN is greater than the one based on other imputation methods. The MID, MODE, and
RAND methods perform worst in terms of power. The size of the logrank test based on the
MID method is lower than nominal. The size of the ELR test based on MID, MODE, and
RAND methods is also low.

In the case where the mean interval width w is 2.1 years (P = 0.65) for both groups in the GA
setting (see Table 4 of the technical report by Zhang et al. [27]), the power of each
imputation method is closer to the test with exact data comparing to the scenario where
mean interval width is about 5 years. This is reasonable since more information is lost in the
case of heavy interval censoring for origin event. The sizes of the ELR test and the regular
logrank test are comparable and close to the 5% nominal level.

4.3. Cox regression problem
For doubly censored data with interval-censored HIV infection time X, once X is imputed
using the imputation methods described in Section 2, we can make inference based on the
methods for the right-censored data. If we regard the date of birth as time 0, then the HIV
infection time X can be treated as age at HIV infection. For subject i, let Xi, z2i, and Ti
denote the HIV infection time, age at HIV infection, and time from HIV infection to death,
respectively, for i = 1, … n. Let X̂i denote the imputed HIV infection time for subject i
regardless of the imputation methods. Since the HIV infection time X is interval-censored,
so is age at HIV infection z2. Once X is imputed as X̂, z2 is estimated by ẑ2 = X̂. The survival

time of interested Ti is then estimated by , where  is the time from study
entry to event. The performance of β ̂1, the estimator of Cox regression coefficient β1 after
adjusting for z2, is of interest.

The results for the GA and GB settings with β = (−0.5, 0.1) and heavy interval censoring
(mean interval width w = 5.3 years) for HIV infection time are summarized in Table 4. In
the GA setting, the estimator of β1 is a little biased (towards 0) for all seven imputation
methods with the bias percentage ranging from 1.2–4.3%. The method MID has the smallest
bias, followed by the RIGHT, MEAN, MODE, and MEDIAN. The estimator based on
RAND and MI has relatively larger bias. These results are based on the same 1000
simulated data sets for each of the seven imputation methods. Treating each simulated data
as a block, a two-way ANOVA can be carried out to test for differences among biases of the
seven imputation methods. Overall, biases of seven imputation methods differ significantly
(F6,6×999 = 37.69, p < 0.001). The bias using the MID method is significantly smaller than
the bias based on any other imputation method (p < 0.001). The mean ASE of β ̂1 based on
the MI is slightly larger than those based on other imputation methods, since it incorporates
the between-imputation variability using Rubin’s variance formula [17]. There are some
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differences (F6,6×999 = 2.61, p = 0.016) among the MSEs of the seven imputation methods
but the differences are small. Table 4 gives coverage probability, power, and size for testing
β1 = 0 based on two different estimation procedures. The first is based on the asymptotic
standard error using the normality assumption of β ̂1. The second is based on the 2.5 and
97.5% empirical bootstrap quantiles. All seven imputation methods work reasonably well.
For the method MI, the coverage probability of 95% ASE CI is slightly bigger than 0.95; the
ASE power is the smallest one; and the ASE size is below the 5% nominal level.

In the GB setting, the estimator of β1 also shows some bias towards 0 for all seven
imputation methods. The estimate β ̂1 based on any imputation method is small with the bias
percentage ranging from 1.6–4.7%. The method MID has the largest bias; the methods
MEAN and MEDIAN have the smallest biases. Overall, there are significant differences
between the seven imputation methods in biases (F6,6×999 = 41.95, p < 0.001). The bias
using the MID method is significantly larger than the bias based on any other imputation
method (p < 0.001). Again, the mean ASE of β ̂1 based on MI is slightly bigger than the one
based on other imputation methods. There are significant differences (F6,6×999 = 4.92, p <
0.001) among the MSEs based on the seven imputation methods. All imputation methods
work reasonably well for the coverage probability of 95% CI, power, and size. For the
method MI, the coverage probability of 95%ASE CI is slightly bigger than 0.95; the ASE
power is the smallest one except MID; and the ASE size is below the 5% nominal level.

In the scenario GA with light interval censoring for HIV infection time (w = 2.1 years, see
Table 6 of the technical report by Zhang et al. [27]), the bias of β ̂1 shrinks for every
imputation method, resulting in bias percentage ranging from 1–2%. In the scenario GB with
light interval censoring for HIV infection time (w = 2.1 years, see Table 7 the technical
report), the bias of β ̂1 also shrinks for every imputation method, resulting in bias percentage
ranging from 0.5–4.3%.

5. Discussion
In the one-sample scenario, the method RIGHT does not perform well in terms of estimating
the Kaplan–Meier curve. The method MID works very well in the GA setting, but fails in the
GB setting, when half of the left limits of the interval correspond to the date 1978. Caution is
therefore suggested in using simple imputation methods to impute the actual HIV infection
time. The probability-based imputation methods perform well for estimating the Kaplan–
Meier curve in both simulation settings. Methods MEDIAN and MODE stand out as
preferred ones in estimating the Kaplan–Meier curve.

In the two-sample scenario, the regular logrank test and ELR test perform similarly in terms
of power and size regardless of imputation methods. Methods MEAN and MEDIAN are
recommended for their robust performance in both simulation settings.

In the Cox model scenario, all seven imputation methods yield acceptable bias in estimating
Cox regression coefficient. We also studied the performance of seven imputation methods
for different values of the Cox regression coefficient. As shown in Figure 3, all imputation
methods tend to yield a downward bias, and the bias’ percentage appears to decrease as the
magnitude of the Cox regression coefficient increases. The method MID works well in the
GA setting, but fails in the GB setting. Though the method RIGHT works well in both
simulation settings, it fails in a scenario when both groups have different interval censoring
widths (data not shown). Overall, probability-based imputation methods, especially MEAN
and MEDIAN, appear to perform robustly against different simulation settings.

To account for the imputation uncertainty, Pan [14] adopts the method MI and makes
inference by using the variance formula proposed by Rubin [17] under a Bayesian inference
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framework. The validity of using Rubin’s formula in a frequentist framework has been
discussed by Zhang [28] and Nielsen [29]. Our simulation results show that validity of this
procedure may be questionable in the scenarios examined in this paper. For the Cox
regression problem in the simulation studies, the comparison between mean ASE(β ̂1) and
SD(β ̂1) implies that using Rubin’s formula may overcorrect the standard error of β ̂1 and this
is also evident in Figure 2. Zhang [28] presents rules for making MI inferences with missing
data. Those rules are not directly applicable for doubly censored data.

In all the problems considered, as the interval width decreases, the performance of each
imputation method improves. In the simulation studies note also that, ignoring the
uncertainty in the imputed date of origin event, the usual inference based on the ASE
performs surprisingly well. The bootstrap inference procedure is recommended, however,
since the computational demand with imputation methods is not excessive. Zhang et al. [30]
propose a Bayesian approach to analyse doubly censored data by making a parametric
assumption for the interval-censored origin and treating it as an unknown quantity. This
approach could be used as an alternative to the bootstrap inference procedure.
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Figure 1.
Estimate of Cox regression coefficient for the Xiang study by seven imputation methods.
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Figure 2.
True distribution for HIV infection time X in two simulation settings.
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Figure 3.
Bias percentage for the estimator of β1 based on seven imputation methods for data with n =
200 and w = 5.3 years.
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Table 1

Two simulation settings: GA and GB.

Specifications GA setting GB setting

Sample size n n

Dist. of X LN(3.55, 0.24) N(1995, 5)

Range of X X ∈ [0, 65] X ∈ [1978, 1995]

NPMLE Ĝ based on n intervals based on n/2 intervals

Dist. of T

 One-sample W (2, 10) W (2, 10)

 Two-sample (1) W (2, 10) vs. W (2, 12.84) W (2, 10) vs. W (2, 12.84)

(2) LN(2.2, 04) vs. LN(2.4, 0.4) LN(2.2, 04) vs. LN(2.4, 0.4)

 Cox model W (2, 10 · exp(−zβ/2)) W (2, 10 · exp(−zβ/2))

Right censoring for T 10% 10%
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Table 2

Comparison of imputation methods for the Kaplan–Meier estimator with heavy interval censoring.

Imputation

Years after HIV infection

2.5 5 7.5 10

S(t) = 0.9394 0.7788 0.5698 0.3679

Bias ×102

EXACT 0.00 (0.05) −0.05 (0.05) 0.01 (−0.02) −0.16 (−0.07)

RIGHT 18.85 (13.92) 21.31 (16.85) 18.97 (15.63) 14.23 (11.98)

MID −0.22 (−3.30) 0.26 (−11.55) −0.65 (−21.11) −1.59 (−25.46)

MEAN −0.15 (−2.17) 0.02 (−4.71) −1.12 (−7.29) −1.99 (−7.61)

MEDIAN 0.43 (−0.95) 0.09 (−2.63) −1.26 (−4.62) −2.28 (−5.08)

MODE 2.29 (2.75) 0.89 (1.37) −1.35 (−1.24) −2.95 (−3.13)

RAND 2.42 (0.43) 1.16 (−2.73) −1.02 (−6.18) −2.91 (−7.91)

MI 2.44 (0.54) 1.12 (−2.77) −1.15 (−6.27) −2.87 (−8.01)

MSE ×102

EXACT 0.03 (0.03) 0.09 (0.09) 0.14 (0.13) 0.13 (0.12)

RIGHT 3.65 (2.02) 4.68 (2.97) 3.73 (2.57) 2.12 (1.54)

MID 0.03 (0.12) 0.08 (1.38) 0.14 (4.52) 0.16 (6.58)

MEAN 0.03 (0.07) 0.09 (0.30) 0.15 (0.67) 0.18 (0.72)

MEDIAN 0.03 (0.04) 0.09 (0.17) 0.15 (0.36) 0.19 (0.41)

MODE 0.10 (0.15) 0.12 (0.27) 0.19 (0.46) 0.25 (0.62)

RAND 0.10 (0.03) 0.10 (0.16) 0.15 (0.51) 0.22 (0.77)

MI 0.08 (0.02) 0.08 (0.14) 0.12 (0.50) 0.19 (0.75)

Coverage probability of 95% EBCI

RIGHT 0.0 (0.0) 0.0 (0.1) 0.1 (0.9) 1.2 (5.1)

MID 91.7 (22.8) 94.7 (0.1) 92.3 (0.0) 90.7 (0.0)

MEAN 97.8 (70.2) 96.3 (62.3) 93.6 (47.8) 90.2 (45.4)

MEDIAN 99.2 (94.6) 97.6 (86.2) 94.0 (76.1) 90.6 (72.0)

MODE 96.3 (99.7) 99.0 (99.8) 98.0 (99.2) 93.3 (98.5)

RAND 89.7 (98.9) 97.3 (85.2) 95.3 (56.5) 88.3 (38.6)

MI 74.3 (93.8) 94.6 (81.8) 92.2 (51.4) 84.4 (33.1)

Note: Numbers not in parenthesis are based on GA setting; numbers in parenthesis are based on GB setting. Sample size n = 200, 1000 simulated
data sets, and 1000 bootstraps per simulated dataset.
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