
Geometry and topology of parameter space: investigating
measures of robustness in regulatory networks

Madalena Chaves,
Projet COMORE, INRIA Sophia Antipolis, 2004 Route des Lucioles, BP 93, 06902 Sophia
Antipolis, France mchaves@sophia.inria.fr

Anirvan Sengupta, and
BioMaPS Institute for Quantitative Biology and Department of Physics, Rutgers University,
Piscataway, NJ 08854, USA anirvans@physics.rutgers.edu

Eduardo D. Sontag
BioMaPS Institute for Quantitative Biology and Department of Mathematics, Rutgers University,
Piscataway, NJ 08854, USA sontag@math.rutgers.edu

Abstract
The concept of robustness of regulatory networks has been closely related to the nature of the
interactions among genes, and the capability of pattern maintenance or reproducibility. Defining
this robustness property is a challenging task, but mathematical models have often associated it to
the volume of the space of admissible parameters. Not only the volume of the space but also its
topology and geometry contain information on essential aspects of the network, including feasible
pathways, switching between two parallel pathways or distinct/disconnected active regions of
parameters. A method is presented here to characterize the space of admissible parameters, by
writing it as a semi-algebraic set, and then theoretically analyzing its topology and geometry, as
well as volume. This method provides a more objective and complete measure of the robustness of
a developmental module. As a detailed case study, the segment polarity gene network is analyzed.

1 Introduction
For biological networks, the concept of robustness often expresses the idea that the system's
regulatory functions should operate correctly under a variety of situations. The network
should respond appropriately to various stimulii and recognize meaningful ones (either
harmful or favorable), but it should also ignore small (not meaningful) variations in the
environment as well as inescapable fluctuations in the abundances of biomolecules involved
in the network [1–3].

While it is difficult to define this robustness property in a precise form, it has been
associated to the space of admissible kinetic parameters, its volume [3], and the effect of
paramater perturbations on the qualitative behavior of the system [1,2,4]. Some methods for
parameter sensitivity have been developed [5,6], based essentially on derivatives of
variables or fluxes with respect to the system's parameters. The volume of the parameter
space can be used as an indication of “how many” parameter combinations are possible, and
these are related to the ability of the network to work under a variety of situations. For
instance, parameters may range through different orders of magnitude, representing very
different environments. A small parameter space volume is a clear indication of low
robustness, as the model will require precise tuning to reproduce any features. Hence
robustness is associated to larger volumes. However, size may not always be a reliable
measure for robustness; other quantities, such as shape, also play a very significant role, as
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illustrated in Fig. 1. In the context of systems with uncertain parameters, for instance, it is
quite useful to have an idea of the distribution, or shape, of the sets of good or bad
parameters. In [4] statistical analysis of a chemotaxis network indicates that there are two
regions of the uncertain parameter space with a high concentration of bad parameters (thus
suggesting a feasible parameter space of the form Fig. 1d). Analysis of the shape or
geometry of the admissible parameter set gives an indication not only of its size, but also
how far perturbations around each parameter disrupt the network. A robust biological
network will admit small fluctuations in its parameters without changing its qualitative
behavior. So, a robust network will be associated to a system whose parameter set has few
“narrow pieces” and “sharp corners”. In such sets, reasonable parameter fluctuations may
occur without leaving the set, hence maintaining the network's qualitative behavior
(compare Fig. 1a, b). The topology, and in particular the simple-connectedness or not of the
feasible parameter set is also important (compare Fig. 1c, d). However, even if the set is
connected, it may exhibit low robustness if it is composed of several pieces with lower
dimension connecting faces, as in Fig. 1e. In fact, as will be seen later, this is one of the
situations that happen in our example.

To illustrate the importance of parameter space geometry, and the insight it brings to
understanding the network, the model of the segment polarity network developed by von
Dassow and collaborators [3] will be analyzed as a “case study” of our approach. The
segment polarity network is part of a cascade of gene families responsible for generating the
segmentation of the fruit fly embryo [7]. Genes in earlier stages are transiently expressed,
but the segment polarity genes maintain a stable pattern for about three hours. It has been
suggested that the segment polarity genes constitute a robust developmental module, capable
of autonomously reproducing the same behavior or generating the same gene expression
pattern, in response to transient inputs [3,8,9]. This robustness would be due to the nature of
interactions among genes, rather than the kinetic parameters of the reactions. The model [3]
describes the interactions among the principal segment polarity genes, is continuous, and
involves cell-to-cell communications and around 50 parameters which are essentially
unknown. The authors of [3] explored the model by randomly choosing 240,000 parameter
sets out of which about 1,192 (or 0.5%) sets were consistent with the generation (at steady
state) of the wild type pattern. To explore the robustness of the network as a property of its
interactions, Albert and Othmer [9,10] developed a Boolean model of the segment polarity
network, a discrete logical model where each species has only two states (0 or 1; “OFF” or
“ON”), but no kinetic parameters need to be defined. This Boolean model is amenable to
various methods for systematic robustness analysis [11–13]. Ingolia [8] focused on the
properties of the (slightly changed) model [3] in individual cells, such as bistability, and
extrapolated necessary conditions on parameters to the full intercellular model.

We propose a different approach, that retains the information contained on the kinetic
parameters, but partially approximates the model by a logical form with various possible ON
levels and species-dependent activation parameters. The admissible set of parameters of the
model [3] is analyzed by constructing a cylindrical algebraic decomposition. Among other
conclusions, our analysis completely explains the two “missing links” in von Dassow et al.
original model, namely: why the segment polarity pattern can not be recovered without the
negative regulation of engrailed by Cubitus repressor protein, and why the autocatalytic
wingless activation pathway vastly increases the network robustness.

The present approach shows that, in contrast to volume only estimates, the topology and
geometry of parameter sets provide reliable quantitative measures of robustness of a system.
Some of our work may be seen as a “global” counterpart to the local analysis done in [14] in
which eigenvector analysis was used to study the “stiff/sloppy” character of good parameter
sets. In separate work [15], we study evolutionary implications of the geometric structure,
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with a focus on a measure of robustness that is related to having low rate of exit from the
region under random walk [16].

2 The segment polarity network model
The principal segment polarity genes [7] are engrailed (en), wingless, patched, cubitus
interruptus and hedgehog. The wild type expression pattern for these five segment polarity
genes is experimentally well characterized, and is stably maintained for a period of about
three hours (approximately during stages 8–11 of embryonic development) [17]. The pattern
is periodically repeated (every four cells, in the early stages 6–8 of embryonic development),
and defines the positions of the parasegments in the embryo of the fly. In wild type, both
engrailed and hedgehog are expressed in every third cell [18], while wingless is expressed in
every cell anterior to an en-expressing cell [18]. Further experimental observations show
that cubitus is expressed in all but the cell expressing en [19], and patched is strongly
expressed in every cell surrounding en-expressing cells [18], but not expressed in en-
expressing cells. The boundaries of the parasegments are formed between the two cells
expressing wingless and engrailed.

The model proposed by von Dassow et al. [3] (Appendix B) describes the concentrations of
these five mRNAs and corresponding proteins in a four cell parasegment of the fly embryo,
subject to periodic boundary conditions (see also Fig. 6). From now on, each cell is assumed
to have a square shape, with four faces (see Appendix E). Nine of these mRNAs and
proteins are considered to have a homogeneous concentration throughout each cell:
engrailed mRNA and protein (en and EN), wingless mRNA and (internal) protein (wg and
IWG), patched mRNA (ptc), cubitus mRNA, active and repressor proteins (ci, CI, and CN),
and hedgehog mRNA (hh). Each of these variables has a distinct concentration in each cell
(Xi , i = 1, . . ., 4). In addition, there are three other proteins whose concentration varies in
each of the four cell faces: external wingless protein (EWG), patched protein (PTC) and
hedgehog protein (HH). For each of these variables, the concentration in cell i at face j is
denoted Xi, j, i = 1, . . ., 4, j = 1, . . ., 4. Thus, overall there are: n 9 × 4 + 3 × 4 × 4 = 84
variables. Throughout the paper, the following notation will be used (prime denotes
transpose):

and

The full vector of concentrations is:

To formulate the mathematical model, define a vector of species concentrations 

and a parameter vector , together with a set of outputs ( , the measured gene
expression levels). Introduce functions  and , where

, and consider the system with outputs
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(1)

(2)

where the function h(x) could be, for instance, a vector listing the concentration of wingless,
engrailed, and other of the segment polarity mRNAs which have been experimentally
measured. Or, in other words, y is “the phenotype corresponding to the genotype x”. The
function f is, for instance, as shown in Appendix B for von Dassow et al.'s model. The wild
type expression pattern for the segment polarity genes can be viewed as (one of) the steady
state solution of system (1).

2.1 The wild type pattern set
An output function is typically composed of variables (or combinations of variables) that are
known or available from measurements. Following [3,9] (and references therein), as well as
the discussion above, the wild type expression pattern, in each group of four cells, is
characterized mainly by the expression of engrailed, hedgehog, and wingless. Here we will
further add expression of cubitus and patched to incorporate further experimental evidence
[18,19]. These five mRNAs are among the most well documented, so we will consider the

output function  to be the state of these five variables. In addition, experimental
data is typically of the form “expressed”/“not expressed”, which may be best translated as
“0” if concentration is below a certain threshold ε, or “1” if concentration is above the
threshold. Then we have:

(3)

where signε(r) = 0 if r < ε and signε(r) = 1 if r ≥ ε. From experimental measurements, the
wild type phenotype is characterized as follows. It is well known [17] that both en and hh
are expressed in every third cell, so the desired steady state outputs for these variables are

(4)

Wingless mRNA is only expressed in every second cell, to the left of en, so that its desired
steady state output is

(5)

Cubitus and patched mRNAs are typically expressed in all but those cells expressing en
[18,19], so the desired steady state output for ci and ptc is of the form:

(6)
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The boundaries of the parasegments are expected to form between every second and third
cells. The set that contains all states which yield an output satisfying (4)–(6) will be the set
representing the wild type pattern for the segment polarity model (Appendix B). From the
definition of h (and taking into account the assumptions below for simplicity of analysis),
the set of wild type states is of the form:

(7)

The value ε is a threshold for mRNA (or protein) concentration above which the gene (or
protein) is considered expressed. In [3] it was assumed that a gene/protein is expressed when
it reaches 10% of its maximal concentration. As discussed below, in the model discussed in
this paper the maximal concentration will be 1, hence we will set ε = 0.1.

Remark For simplicity, we have imposed some additional conditions when writing down the
set , compared to merely asking that (4)–(6) hold. These conditions are:

These are mild assumptions which however allow many analytic calculations to be carried
out explicitly (further discussion can be found in Appendix H), and provide intuition into the
dynamics of the segment polarity model. Furthermore, as will become clear in our analysis,
these assumptions are verified for many sets of feasible parameters—more precisely, for all
sets of parameters except in subsets of lower dimension.

3 Steady states define the feasible parameter space
Previous studies [3,8] have tested the parameter space by randomly choosing sets of
parameters and simulating the continuous model. If the corresponding trajectory reaches a
steady state, and if this steady state is compatible with the experimentally observed wild
type gene pattern, then the given set of parameters is said to be a “solution” to the modeling
problem.

A more efficient and complete study of the parameter space can be devised, by first solving
the algebraic equations of the model at steady state, and writing the steady state solutions as
a function of the parameters. On the other hand, the steady state solutions are known—the
set of elements representing the wild type pattern is denoted by , one can then look
for parameters that yield this pattern. Since many sets of parameters may be expected to
yield the wild type pattern, this procedure provides a family of conditions defining regions
of “good” or feasible parameters “p” for wild type steady states .

The problem of characterizing the sets of feasible parameters is then reduced to finding all
possible parameter vectors p which correspond to a system having a steady state in .

This will be the set of “good” parameters:
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(8)

3.1 Large Hill coefficients: approximating the continuous model
To find the set G, a straightforward approach would be to solve the steady-state equations
for the original system, thus obtaining expressions for x in terms of p:

and compare these expressions to the desired form (in ):

A possible drawback of this method is that explicit solutions x = F(p) for the original system
and then explicit formulas for G may not be easy to compute. On the other hand, many of
the equations in the model [3] involve terms of the form (see also Appendix B):

meaning that, if species X is above a certain threshold κ, the function ϕ is active (ON), but
the function ψ is inactive (OFF). The exponent ν, also known as the Hill coefficient,
characterizes the steepness of an OFF/ON transition.

As found in [20], the model is more robust when the coefficients ν are large. Indeed, for ν in
the interval [5.0, 10.0], together with some constraints on other parameters (as detailed in
Table 1 in [20]), the proportion of “good parameters” sets increased to 4 out of 5. For large
enough exponents, this saturation function becomes very steep, and ϕ becomes practically
insensitive to the actual value of ν. Let ν be very large and approximate ϕ by a step function:
it is not unreasonable to expect this approximation to capture a large part of the feasible
parameter space. This is also the basis of the typical on/off logical interpretation of gene
expression. Any such term ϕ(X, κ, ν), for large ν, may thus be replaced by a multivalued step
function of the form:

(9)

Define also the symmetric step function . The approximation of ϕ(X, κ,
ν) by a step function inevitably has a discontinuity at X = κ. Defining θ+ to be multivalued at
κ is one way to represent all the states that the function ϕ may take as X is in smaller and
smaller neighborhoods of κ, as ν becomes larger and larger. Thus:

(10)
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where, for X = κ, we interpret (10) as saying that the corresponding limit belongs to the
interval [0, 1]. A composite function of ϕ and ψ also frequently appears in the continuous
equations (Appendix B):

This function can be simplified in terms of step functions to:

(11)

since

As an example, consider the equation governing engrailed from the original model which
can be found in [3,20] (or in Appendix B). In this model the concentration of engrailed in
cell i (eni), is positively regulated by external Wingless protein (EWGi) and negatively
regulated by Cubitus repressor protein (CNi) concentrations (further notation is found in
Appendix A):

For large exponents ν, this simplifies to the equation:

To analyticaly study the space of feasible parameters for the segment polarity network
model [3], we will thus consider that all exponents ν are large, and apply method (10) to
simplify the original system of equations. In addition, as discussed, the system is assumed to
be at steady state, in which case the gene expression pattern must satisfy:

Chaves et al. Page 7

J Math Biol. Author manuscript; available in PMC 2011 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Applying (10) and then solving the system at steady state yields the set of algebraic
equations (52)–(63), which characterize the gene expression pattern of the segment polarity
network according to our approximation of the von Dassow et al. model. In particular, note
that the cubitus mRNA equation becomes

where the choice of the parameters  is explained in Appendix C. Furthermore, in
characterizing the set of feasible parameters, it will become clear that allowing distinct Ui
enlarges the space of possible parameters. Asymmetry in cubitus expression (i.e., distinct
values Ui for each i = 1, . . ., 4) could be due, for instance, to some of the pair rule genes.
Sloppy paired, or a combination of Runt and Factor X, regulate the transition from pair rule
to segment polarity genes expression, and induce asymmetric anterior/posterior parasegment
expression [21].

Finally, note that the maximal expression levels of wg are written in terms of the parameters
αCIwg and αWGwg. From Eq. (54), there are several possible combinations of the step
functions, each leading to a different value for wg2. These possibilities are given by:

(12)

where  reflect the possible values of the step functions. Two different
pathways for wingless activation can be identified. Indeed, wingless can be activated by
Cubitus only (in which case RCI > 0, RWG = 0), or by Wingless only (RCI = 0, RWG > 0), or
by both Cubitus and Wingless (RCI, RWG > 0).

4 Missing link: engrailed regulation by Cubitus repressor
A first result from our model formulation is the explanation of a “missing link” in a first
version of the model proposed by von Dassow et al. [3]. In this first version, engrailed was
regulated only by EWG, and no feasible parameter sets were found. Indeed, below
(Theorem 1) we prove that, for any set of parameters, the mechanism for wingless
regulation generates a strong symmetry in the steady state expression of external Wingless.
This mechanism effectively prevents any asymmetry arising in en due to EWG only.

Theorem 1 Assume wgWT = (w1, w2, w3, w4)′, with 0 ≤ w4 ≤ min{w1, w3} ≤ max{w1, w3} <
w2. Then, at steady state:

(13)

The proof is based on the following Lemma which is shown in Appendix E.

Lemma 4.1 Let wg = (wg1, wg2, wg3, wg4). There exist constants βmax > βmed > βmin > 0
and γmax > γmed > γmin > 0 such that:
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and

Now, consider the steady state equation that would result if no dependence of engrailed on
CN is assumed in Eq. (52):

Compare to states in :

Then, from the definition of θ+, for consistency in our model it is necessary that:

However, by (13), the inequalities for i = 2 (and possibly i = 1) and i = 3 are incompatible.
This means that, due to the symmetry in Wingless=distribution, such a simple regulation of
en can never lead to the segment polarity pattern. Thus engrailed requires regulation by
some other factor, in this case repression by the Cubitus protein (CN), as in (52). In order to
obtain repression of en in the second cell, recalling (11) one can now ask:

that is, CN is responsible for repression in the second, and possibly in the first, cells. This
means that, at steady state, CN must be expressed in both the first and second cells. This in
turn requires the presence of Patched protein in both the first and second cells. On the other
hand, from Appendix F, we know that a steady state , implies  and

. While patched expression is typically weaker in the first than in second
and fourth cells (see [3]), this shows that it is nevertheless necessary, that is, the segment
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polarity gene pattern obtains only when T1 is above the expression threshold. The discussion
on CN leads to the following conclusion:

Lemma 4.2 Consider system (1) and assume that, at steady state, the system is in , that is
ciWT = (U1, U2, 0, U4)′ and ptcWT = (T1, T2, T3, T2)′, with U1,2,4 ≥ ε and T3 < ε. Then

 and  and . Also  and

(14)

with

5 A cylindrical algebraic decomposition of the parameter space
The algebraic equations f(x, p) = 0 together with  impose constraints on the set of
good parameters (G), though not providing as yet explicit conditions on p. An explicit
characterization of the parameters p may be obtained by calculating a cylindrical algebraic
decomposition (CAD) of G: this is a special type of representation of G through a hierarchy
of inequalities on the parameters. Suppose that a first family of parameters, say {p1, . . .,
pr1} (with 1 ≤ r1 < r) may take values in a product of intervals L1 × · · · × Lr1 (where each
interval may be open, closed or mixed). Then a CAD is defined as follows:

(15)

for j = r1 + 1, . . ., r, where  are continuous functions such that fj(p̂) ≤ gj (p̂)
for all , the symbol ≺ denotes either < or ≤, and Sr = G.

Computing the cylindrical algebraic decomposition of a set is a complex problem, but
various standard algorithms are available [22,23]. Several software packages have been
developed, for instance QEPAD [24], (based in [25]) and in Mathematica [26]. See also [27]
for an overview of available software, current applications, and many other related
references. Common applications of CADs include computation of the controllable or
reachabable sets in hybrid systems, see for instance [28,29], where the latter includes an
application to a genetic network in the fly wing. Constructing a CAD involves the use of
symbolic computation and, while various improvements have been achieved, it still is a time
consuming problem. For instance, the estimated maximum time for the algorithm [22] is
dominated by “22kN”, where N is the length of the input formula and 0 < k ≤ 8. Fortunately,
in view of these computational complexity difficulties, in the present example it is relatively
easy to directly compute a CAD without using general methods, and we will do so.

The computation of the feasible parameter set G for the segment polarity network is detailed
in Appendix H. The CAD of G can be used to answer several questions regarding geometry
and topology of the feasible parameter space. First, the volume of G can be estimated,
relative to the unitary hypercube [0, 1]r (r = 31), as described in Sect. 6. Second, the
topology of G can be analyzed, to find out its connectedness (e.g., simple-connectedness; or
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composed of various disconnected components). To summarize, we show that G can be
written as a union of several regions:

These 13 regions are all connected and, in particular, GVa to GVIIIb are connecting faces and
have a lower dimension (see Fig. 1e and Theorem 2, below).

Each of these regions has a CAD with nine levels, as listed next. The levels S1, . . ., S6 are
the same for all the regions Gk, . The form of the last three levels

depends on each region: , , . At the base of the CADs, S1 is a product of intervals for
r1 = 23 parameters (while r = 31) defined as follows:

(16)

Levels S2 to S4 are characterized as follows:

(17)

(18)

(19)

where FPTC1,T, FPTC2,T are the solutions of the algebraic equations (58) for the set of

parameters p̂. Let . Then levels S5 and S6 are
characterized as:

(20)

(21)

Finally, the last three levels have different expressions depending on the region of the
parameter space:
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(22)

(23)

(24)

where  and the functions  and  are listed in
Tables 4 and 5. These CADs have a biological interpretation (see discussion in Sect. 5.1):
from Eqs. (52)–(63) subject to (4) and (5), several parameters are free to take any values,
within physiological restrictions only—these form S1. The parameters defined at the levels
S2 to S6 have constraints which depend only on the family of parameters defined in S1. The

last levels,  to  define different regions of G, with the property that each region is
associated to the activation of a particular biological pathway: GAuto corresponds to
activation of wingless on the second cell by the autocatalytic pathway only. In regions GI to
GVIIIb the Cubitus pathway also promotes activation of wingless.

In the next lemma it is shown that each region Gk is topologically equivalent to a unitary
closed hypercube, hence topologically trivial. However, some regions (GVa to GVIIIb) have a
lower dimension. This is clear by observing Table 5: in each of these eight regions, either of
the parameters κCNwg or κCIwg is a single point (as opposed to a non-trivial interval).

To simplify notation, for i = 1, . . ., 4 define

and observe that CNi = Ũi and CIi = Ui — Ũi.

Let ≺ denote either of the symbols < or ≤ and define

Let  denote the unitary interval (open, closed or mixed):

Theorem 2 Consider the sets , obtained from (24). Then (with r =
31):

i. , k = Auto, I, II, III, IV are homeomorphic to ;

ii. , k = Va, Vb, VIa, VIb, VIIa, VIIb, VIIIa, VIIIb are homeomorphic to .
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Proof Consider first case (i). To argue by induction, note that each Lj is clearly
homeomorphic to the interval  (with the same open, closed or mixed boundaries as Lj), for
j = 1, . . ., 23. Since aj < bj for all j = 1, . . ., 23, simply consider the bijective function

 given by ϕj(p) = (bj − p)/(bj − aj). Then the set S1 = L1 × · · · × L23 is
homeomorphic to the product , by considering the bijective function  given
by φ1(p1, . . ., p23) = (ϕ1, . . ., ϕ23(p23))′.

For i ≥ 2, assume that Si−1 is homeomorphic to . Note that fi(p) < gi(p) for all i = 2, . . .,

9, for  with k = Auto, I, II, III, IV. Next, define the following continuous function:

For each fixed p, fi(p) < gi(p) + t (gi(p) − fi(p)) < gi(p) for all . Therefore, φi maps into
Si. On the other hand, since gi(p) − fi(p) > 0 for all , φi has an inverse function
defined on Si and continuous, given by:

So Si is homeomorphic to , and therefore, by inductive hypothesis, to .

Next, consider case (ii). From Table 5 it is clear that, in regions GVa to GVIIIb, exactly one of
the parameters κCNwg or κCIwg has a single point as an interval. So, the previous argument is
valid up to Sr−1 and then the last parameter is a point. This finishes the proof. □

5.1 Two wingless mRNA activation pathways
Following the model of von Dassow et al., there are two possible parallel pathways for
wingless activation: either by the Cubitus interruptus protein (CI), or through auto-
activation; both pathways could be simultaneously activating wingless production. Since the
activation constants αCIwg and αWGwg, are free parameters, in each of the three cases 
will have a different ON level as calculated from (12). Computation of EWG and IWG
depends on , so each of these three cases must be separately analyzed for feasibility.
For both pathways, exact analytic computation of PTCi, j and HHi, j (i, j = 1, . . ., 4) is also
carried out (see Appendix F). When CI and CN contribute to regulate wingless expression, it
is easy to see from (5), (14) and (54) that:

(25)

for i = 1, 3, 4, and

(26)

From observation of (25) and (26) it is clear that the situations Ũ2 = Ũ1 or Ũ2 = Ũ4 define
some critical regions. To see this, for simplicity consider Qi = 1 (which is true for many
parameter sets, i.e., κPTCCI < min{FPTC1,T, FPTC2,T}). Then Ũ2 = Ũ1 is compatible with the
wild type pattern only when κCIwg = U1 − Ũ1 = U2 − Ũ2 or κCNwg = Ũ1 = Ũ2. Moreover,
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recalling the definition of step function, it follows that in this case θ+ (CI2θ− (CN2, κCNwg),
κCIwg) = [0, 1] and wg may in fact be either activated or not in cell 2. The set G can thus be
partitioned into four “strictly feasible” components, divided by the critical hyperplanes Ũ2 =
Ũ1 or Ũ2 = Ũ4 (Fig. 2). Note that, for parameters belonging to these hyperplanes:

 where RCI is any number in the interval [0, 1]. Thus there are
multiple possible steady states, and some of these may not provide the right phenotype.
These hyperplanes correspond, in fact, to regions GV to GVIII.

When only the wingless auto-activation pathway contributes to wingless activation, the
necessary conditions are (when Qi = 1):

(27)

Comparing (26) and (27) it is not surprising that, for each triple (Ũ1, Ũ2, Ũ4), κCIwg and
κCNwg belong to complementary intervals, since they define whether or not the CI/CN
pathway is active. The projection on the (κCIwg, κCNwg, κWGwg)-dimensions, shown

6 Geometry, volume and the second missing link
From the CAD (16)–(24) it is very easy to compute the (relative) volume of G. Following a
Monte Carlo approach, the free parameters (16) and also (17)–(19) are chosen first, from a
uniform distribution in their respective intervals. Then the quintuple of parameters κWGen,
κCNen, κCIwg, κCNwg, and κWGwg are randomly chosen (from a uniform distribution) in the
interval [0, 1]. It is then checked whether the whole parameter set falls inside or outside G.
If the parameter set falls inside G, we also check which wingless activation pathways are
compatible, as well as the region (U1, U2, U4). This Monte Carlo approach provides an
estimate of the volume of G, when projected into the (κCNen, κWGen, κCIwg, κCNwg, κWGwg)
dimensions. In addition, we also obtain an estimate of the fraction of the feasible parameter
sets that correspond to either of the wingless activation pathways (Table 1).

The volume of this five-dimensional cube occupied by feasible parameter sets is only about
0.3%. Interestingly, we also found that the vast majority of the feasible parameter space
corresponds to auto-regulation of wingless. As illustrated by the polyhedrons in Fig. 3,
region GAuto is much larger than the others. Here, regions GI to GVIIIb are re-grouped
according to the biological pathway, following the indications in Tables 3 and 4. Region GCI
corresponds to wingless mRNA regulation by cubitus only, and region GCI, WG corresponds
to regulation by both cubitus and wingless proteins. We have: GCI υ GCI,WG = GI υ · · · υ
GVIIIb, where each Gi intersects GCI and GCI, WG.

The large difference observed between GCI, GCI, WG and GAuto explains the second
“missing link” in the first version of von Dassow et al. model, namely the wingless
autocatalytic activation. Note that the presence of this link greatly increases the total volume
of the feasible parameter space: in fact the region GAuto is 96% of the total feasible volume.

6.1 Geometry: parameter distributions
To further analyze the geometry of the feasible parameter space, one may ask how the
parameters are distributed in their intervals. For instance, is each parameter pi more likely to
attain high or low values more frequently, and can a specific “tendency” for each parameter
pi be identified. An answer to this question is obtained by computing the marginal
distribution of each parameter from a family of randomly generated parameters in the full
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parameter space G. Taking all the parameter sets generated proviously to compute the
relative volume of G, and computing a histogram for each parameter, the result shown on
Fig. 4 is obtained. As expected, many parameters have a uniform distribution, as their values
do not influence the final outcome of the network in any particular way (for instance, most
half-lives and diffusion-related parameters). Other parameters exhibit a marked tendency for
higher (e.g., κCNptc), medium (e.g., κWGwg) or lower (e.g., κCIptc) values. All the parameters
that exhibit a marked tendency are listed in Table 2, and classified according to their
function in the network: for instance, κCNptc represents the repression of ptc by CN, and
therefore, high values of κCNptc correspond to a weak repression.

A very similar analysis was performed by von Dassow and Odell [20], who also plotted the
distribution of their family of feasible parameters to determine possible constraints for each
parameter. Overall, our results agree very well with those of von Dassow and Odell: most
tendencies found by these authors (see Fig. 6 and Table 1 of [20]) are confirmed by our
parameter analysis. There are only six exceptions, where our analysis showed no tendency
(compare columns 3 and 4 of Table 2), suggesting that these five parameters can, in fact,
take values in a larger set, implying that the parameter space is larger than estimated in [20].
From these exceptions, κENci, κENhh, κCNhh, and rendo WG all belong to the group of
parameters which can be freely chosen. The other parameters are κCNwg, κCIwg, which
depend on the Ui regions, and again our analysis shows that this pair has no preferred
tendency.

A more detailed examination of the conditions on κCIwg and κCNwg turns out to be very
illuminating. First, note that κCIwg and κCNwg actually define the pathway through which
wingless is activated. That is, in each of the regions GAuto, GCI or GCI, WG, κCIwg and κCNwg
belong to distinct intervals as a function of Ui. Thus, it may be expected that the distribution
of these parameters varies in each region. By plotting the histograms for κCIwg and κCNwg
for each region alone (Fig. 5), we note that these show a marked tendency only outside
region GAuto, for low κCIwg and high κCNwg. The tendency of κCIwg and κCNwg outside GAuto
is, however, the opposite of that observed by von Dassow and Odell, a fact that can be
explained once again by the “second missing link”. Since the volume of GAuto is about 96%
of G, it dominates the overall tendency. Indeed, since all feasible parameter sets in [3,20]
were found only after adding the autocatalytic wingless activation link, it can be inferred that
those parameters belong to region GAuto.

7 Discussion and conclusions
Analysis of the feasible parameter set, by estimating its volume, identifying connected
components, and studying its geometric properties, are valuable tools for establishing and
quantifying robustness in regulatory networks. The concept of robustness, in the sense that
the system's regulatory functions should operate correctly under a variety of situations, is
closely related to the parameter space and the effect of parameter perturbations. In this
context, our analysis of the model of the segment polarity network proposed in [3] shows
that its feasible parameter space is composed of a single connected component, indicating a
high robustness. However, we have found one topological and one geometric property
which may contribute to lower robustness. First, there are two distinct regions in the
parameter space (which correspond to two adjacent “cubes” , see Fig. 3) associated with two
different biological pathways: either auto-catalytic activation of wingless or activation by
cubitus proteins only. Second, we have identified two lower dimensional planes of critical
parameters (Ũ2 = Ũ1 and Ũ2 = Ũ4), where the model may fail to generate the wild type
pattern. Since they form a lower dimensional space, these critical parameters are not likely
to be an operating mode of the network. Nevertheless, the critical planes separate part of the
feasible parameter space into four regions. An implication of this topological
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characterization is a diminished capacity of the network to respond well to environmental
perturbations. Random fluctuations may drive the system through one of the critical planes,
and possibly lead to a break down of the network or a different phenotype.

The reason why the planes Ũ2 = Ũ1 and Ũ2 = Ũ4 are critical can be traced in large part to an
incompatibility of cubitus repression functions in the second cell: CN2 should be present to
repress engrailed expression, but should be absent to enhance CI2 activation of wingless. To
increase the network's robustness to environmental fluctuations, the segment polarity model
should account for engrailed regulation by other factor than cubitus. One possibility is to
include regulation by pair-rule gene products, such as sloppy paired, as explored both in
[8,9]. An external factor, again possibly from the pair-rule genes, will also play a major role
in establishing asymmetry in the cubitus levels (Ui). These contribute to a larger admissible
parameter space, and together with an improved engrailed regulation, will greatly enhance
robustness of the segment polarity network in maintaining its pattern. An extension of the
current analysis including the regulation by sloppy paired can be found in [15].

Comparing the volume estimates for the regions GAuto and GCI or GCI, WG shows that the
first accounts for about 96% of the total feasible volume. Thus it seems much more likely
that wild type expression in this model of the segment polarity network is achieved through
the wingless auto-activation pathway. In the absence of the auto-activation link, von Dassow
et al. failed to observe any feasible parameter set in their numerical experiments. However,
as soon as the auto-activation pathway was added (the second “missing link” in the model
[3]), immediately a significant percentage of feasible parameter sets were observed. This is
not surprising, as elucidated by our analysis: while wingless auto-activation is not strictly
necessary to establishing the segment polarity genes pattern, it does greatly increase the
probability that the pattern is achieved, by increasing the volume of the feasible parameter
space. At the same time, the parameter histogram for the activity threshold κWGwg is very
sharp, when compared with the other parameters (and our results are in clear agreement with
the original study by von Dassow et al. [20]). This indicates that fine tuning of κWGwg is
essential to maintenance of the asymmetric wg pattern. Note that (cf. Theorem 1) wingless
protein concentration is only sligthly higher in the wg-expressing cell (2nd cell) than in its
two immediate neighbours (1st and 3rd cells). Thus, fine tuning of κWGwg is necessary to
promote auto-activation in the 2nd cell but prevent auto-activation in the 1st and 3rd cells.

The analysis developed in this paper can be applied to other systems and regulatory
networks, to systematically characterize and explore the admissible space of parameters, its
topology and geometry. The method presented here assumes there is a (fixed) set of target
states or “pattern” (ω) to be reproduced (or avoided) by the system, typically a desired
steady state of the system. This pattern should also satisfy a family of algebraic equations (x
= f(x; p)), on the variables and parameters of system. These equations can be those
characterizing the system at steady state for instance, but can also include other constraints
as long as they are written in this form. To obtain a family of equations that is easier to deal
with, the functions f(x; p) may be simplified using reasonable approximations. For instance,
sigmoidal type functions may be approximated by piecewise constant step functions. These
equations are then symbolically solved with respect to the parameters. As a result, one
obtains a family of inequalities characterizing the set of parameters compatible with the
desired pattern and constraints. It is not guaranteed that an nonempty set of compatible
parameters exists, as this depends on the constraints. Computation of a cylindrical algebraic
decomposition is the main difficulty of this method. In general one may expect that it will
work best with smaller/medium systems (on the order of 10–20 variables).

Our results emphasize that robustness of a regulatory module should not be measured simply
as a function of the volume of its admissible parameter space. The geometry (for instance,
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convexity or existence of sharp points) and topology (connectedness) of the parameter space
play fundamental roles in measuring robustness. These provide reliable information on how
the network's interactions contribute to its robustness or fragility, and serve as measures to
classify robust regulatory modules.
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Appendix A: Notation
The original model can be found in [3,20]. In order to make our work more clear, we include
the notation as well as the original equations below. Without loss of generality (the
geometry remains unchanged), each cell is assumed to have four faces (Fig. 6), rather than
six as in the original model [3]. The model reproduces a parasegment of four cells and uses
repetition of this group of four cells to reproduce the embryo's anterior/posterior axis (A/P
axis in Fig. 6), and the circular ventral/dorsal axis (V/D axis in Fig. 6). Because intercellular
diffusion is only considered along the A/P axis (left/right), and because cells repeat in the
orthogonal V/D direction (up/down), it is indeed equivalent to consider symmetric four-
sided or six-sided hexagonal cells.

A saturation function, and its horizontal reflexion, are introduced:

The subscripted variables are as follows:

Appendix B: Original equations
From [3,20], the model equations are:

(28)
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(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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(39)

Appendix C: Simplified model, for large ν
Using the approximations (10) and (11) the right-hand side of the von Dassow et al. is
simplified as follows:

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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(49)

(50)

(51)

To obtain Eq. (47) note that, in the original model of von Dassow et al., ci is written in terms
of a constant forcing Bi:

where Bi is itself a parameter. Our definition of step function allows to merge the two
parameters Bi and κBci into one single parameter Ui by letting

More generality is obtained by assuming that Bi = κBci, and always allowing Ui ∈ [0, 1].

Appendix D: Steady state equations
Solving equations (28)–(39) at steady state (dx/dt = f(x) = 0), and using the approximations
(10), (11), yields the algebraic expressions:

(52)

(53)

(54)

(55)
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(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

EWG is a vector in  with components:

 is also a vector in , given by the following Kronecker tensor product

Putting together the 16 equations (56), and substituting IWGi by its steady state expression
(55), it is not difficult to see that the matrix  is composed of various 4 × 4
blocks, as follows:

Chaves et al. Page 21

J Math Biol. Author manuscript; available in PMC 2011 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(64)

where

with

Note that the steady state equations for EN, IWG, EWG and PTC are algebraic, and in fact
exact solutions can be computed from the steady state values of wg and ptc. These are
discussed in more detail in the Appendices E and F.

Remark The parameters are as in [3], except Ui, which represent the maximal values of ci, in
each cell. These take values in the interval [0, 1] and generalize the possible ON values of ci
(see explanation in Appendix C).

Appendix E: Analytically solving Wingless levels
The steady states of Wingless proteins (55) and (56) are given directly by algebraic
equations, depending only on wingless mRNA (wg2) and diffusion parameters for
intracellular (membrane-to-membrane) and intercellular communication. Consider Eq. (56):
it is easy to see that M is in fact always invertible (if all parameters are positive). First note
that the matrix is diagonally dominant, by adding up the entries in any column:

which is always a negative quantity. By Geršgorin's Theorem, all eigenvalues of M are
contained in the disk centered at −d + h with radius 2rLM + rM + 3h, therefore all have
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negative real parts. Thus, the matrix M is symmetric and negative definite, and since the
right-hand side vector is also non-positive, all solutions are real and positive, whatever the

choice of parameters. As a fact, note that the vector  is an eigenvector

of M, corresponding to the eigenvalue .

The solution of Eqs. (56) and (55) can be written in terms of wg = (wg1, wg2, wg3, wg4) as
described next.

Lemma E.1 There exist constants βmax > βmed > βmin > 0 and γmax > γmed > γmin > 0 such
that:

and

Proof Observe that (56) can be written:

(65)

where , , , and . Defining

one obtains:
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Theorem 1 (proved below) is equivalent to saying that:

where: βmax > βmed > βmin > 0. In fact, X (EWG1, . . ., EWG4) corresponds to the solution of
(56) when wg = (0, 1, 0, 0), in which case EWG2 = βmax, EWG1 = EWG3 = βmed, and
EWG4 = βmin.

By symmetry of the system, it is easy to see that

and so on (by circulating the positions of the β*). Linear combination gives the general
solution for the EWGi.

Similarly, to compute the solution of (55), define

and recall that

Now consider the solution for the case wg = (0, 1, 0, 0):
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Using Facts E.1 and E.2, and then E.4 and E.6 (below), we define contains
:

Substituion into (55) yields:

where  and . Define:

The solutions for the cases wg = (1, 0, 0, 0), wg = (0, 0, 1, 0), wg = (0, 0, 0, 1) are analogous
(circulating the positions of the γ*). An appropriate linear combination yields the desired
result for IWG. □

Proof of Theorem 1 First, we state Facts E.1 and E.2, which hold for any wg.

Fact E.1 For all i = 1, 2, 3, 4 it holds that

Proof This is easy to see from the respective equations:

which can be rearranged to
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(66)

Subtracting these two equations yields the desired result. □

Fact E.2 It holds that

Proof Exchanging the indexes:

it is easy to see that the system remains unchanged (see also Fig. 6). □

Assume now that wg = (0, w, 0, 0), for any w > 0. The equality part in (13) is now clear:

Fact E.3 EWG1 = EWG3.

Proof We first show that EWG1,1 = EWG3,3. Writing Eq. (66) for i = 1 and i = 3:

Using Fact E.1 one has EWG1,1 = EWG1,3 and EWG3,1 = EWG3,3, and then using Fact E.2
obtains:

Subtracting these two equations shows that EWG1,1 = EWG3,3. Now recalling the notation
for Xi from Appendix A

Using EWG1,1 = EWG3,3, Facts E.1 and E.2 obtains:

as we wanted to prove. □

To show the other inequalities, note first that the 16 variables EWGi,j are thus reduced to
only seven:
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and satisfy the equations:

(67)

(68)

(69)

(70)

(71)

(72)

(73)

To simplify notation, set:

and note that A > B > 0.

Fact E.4 The following hold:

a. E4,1 < E4,2 < E1,4 < E1,2 < E2,2;

b. E4,1 < E1,1 < E1,2;

c. E1,2 + E1,4 < E2,2 + E4,2
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Proof To prove part (a), from Eqs. (72) and (73) it holds that

Because A > B > 0, it is clear that E4,1 < E4,2 < E1,4. From Eqs. (70) and (71) it holds that

Then Eqs. (68) and (69) can be written in the form

which implies that E1,4 < E1,2 (it is easy to see that the factor multiplying both E1,2 and E1,4
is positive, since d > rM).

We still need to prove the last inequality in (a), but we can now prove (b). From Eq. (67)

using (a) and because B < A. This proves the second inequality in (b). To prove (c),
substitute this E1,1 expression into the sum of Eqs. (68) and (69):

The last part of (a) now follows from (c) together with E4,2 < E1,4, which implies E1,2 <
E2,2.

Finally, the first part of (b) is easy to see from:

To prove the first inequality of Theorem 1 is now straighforward.

Fact E.5 EWG4 < EWG1

Proof Recall the notation for EWGi and use Fact E.4
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To prove the other inequality we need the next result.

Fact E.6 It holds that: E2,1 > E2,2.

Proof First notice that

Now consider

The last two terms can be combined into

and the two terms due to E1,2 can be simplified to:

and

Factoring out , one obtains

which can be further simplified to
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because the first two terms are clearly positive, and the last two terms add up to a positive
number. This shows that E2,1 > E2,2, as we wanted to prove. □

The proof of Theorem 1 can now be completed.

Fact E.7 EWG1 < EWG2.

Proof Consider:

which is positive because E1,2 > E1,1 [Lemma E.4(b)], and E2,1 > E2,2 > E4,2 (Lemmas E.
4(a) and E.6). □

Appendix F: Analytically solving PTC and HH levels
In this section, we prove uniqueness of solutions for PTC and HH given any set of
parameters pPTC−HH (see (16)), and hh = (0, 1, 0, 0) and ptc = (T1, T2, 0, T4), with T2 = T4.
The steady state levels of Patched and Hedgehog proteins are given by a system of nonlinear
Eqs. (58) and (63). These equations can be solved explicitly and uniquely in the case ptc2 =
ptc4 = T2, which is true if the steady state is in . To simplify notation, we use

and define

We introduce further notation:

Lemma F.1 Let . Then, the solution for HH is:

where Root+ is the positive root of the quadratic equation:

And the solution for PTC is:
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Proof Let  and h(x) be a vector defined by (3). Because hedgehog is not expressed in
cells 1, 2 and 4, note that for i = 1, 2, 4

since hh = (0, 0, 1, 0), and the sum that multiplies rH cancels out. The terms in κP(· · ·) are
all nonnegative, and therefore they can only be zero. We conclude that:

A similar argument shows that ptc3 = 0 implies:

Therefore, the only nonlinear terms appear in the equations for PTC2,2 and PTC4,4:

Moreover, symmetry of the system shows that PTC2,1 = PTC2,3 and PTC4,1 = PTC4,3,
because each pair satisfies exactly the same equation:

(74)

(75)

We then have:
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Solving for PTC2,1 as a function of PTC2,2, and for PTC4,1 as a function of PTC4,4:

Thus we get equations depending only on PTC2,2 and HH3,4, and on PTC4,4 and HH3,2:

(76)

(77)

On the other hand, since PTC3,j = 0 for all j, it follows that:

and substituting into the HH3,4 and HH3,2 equations:

(78)

(79)

The last four equations may be solved for the four variables PTC2,2, PTC4,4, HH3,2 and
HH3,4, and the remaining PTC, HH will then follow. Recalling the notation introduced
above, one can write

(80)

This leads to

From the symmetry of these equations, it is easy to see that
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and thus have the following equation for HH3,4 = HH3,2 = X (after some simple algebra
steps):

(81)

We next show that only one of the two roots of this second order polynomial is positive and
hence the unique solution to HH3,2, HH3,4. Let the polynomial be of the form c2X2 + c1X +
c0 = 0. The term inside the square root will be  where:

The factor  is positive, by definition of dH. The factor

is also positive, again by definition of dP. This means that , so whatever the

sign of c1, , which leaves us with:

(the coefficients are as in (81)).

Appendix G: The regulation of cubitus proteins
The cubitus interruptus activator and repressor proteins may only be expressed whenever
engrailed is absent. In addition, they auto-regulate themselves through patched mRNA and
protein. Using EN = en note that CI can be written in terms of CN:

Note that, if Y = U − X:

Furthermore,
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Then ptc can be simplified as follows:

(82)

ptc is used to compute PTC explicitly (as in Sect. F), which feeds back into CN:

Throughout this paper, we will consider that θ−(en3, κENci) = 0 and θ−(eni, κENci) = 1 for i =
1, 2, 4. In addition, defining Qi = 1 if PTCCi,T > κPTCCI, and Qi = 0 if PTCi,T < κPTCCI, and
Qi ∈ [0, 1] if PTCi,T = κPTCCI, we have:

(83)

Appendix H: Computing the cylindrical algebraic decomposition
A CAD for the parameter space G can be computed from Eqs. (52)–(63), by imposing the
conditions , as given by (7). Following von Dassow et al.'s criteria, conditions on
wild type expression of en, hh, and wg at steady state, are obtained from a threshold
expression:

(84)

(85)

(86)

Throughout this paper, we will consider also that

(87)
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(88)

thus incorporating further experimental data [18,19] into the analysis.

We will make four assumptions, only slightly stronger then (85), (87)–(89), but which allow
to obtain clean analytical results for a large part of the problem of finding the feasible
parameter space. These analytical results include Theorem 1 (for establishing symmetry of
EWG) and explicit computation of PTC and HH. The modified assumptions are:

(89)

(90)

(91)

(92)

Then, from (82) and (91), it is clear that:

H.1 pCI, pPTC−HH, pWG, αCIwg

As already remarked, a CAD is not unique, and the choice of the “free” parameters, or those
that come at the top of the hierarchy have to be chosen. In this case, we choose the
parameters and intervals already listed in (16), which form S1. von Dassow et al. chose the
interval [5, 100] for half-lifes (HX) and (0, 1] for ON/OFF parameters (κXY) to denote the
range of physiological values. This is reasonable since, by model construction, all variables
are “normalized” to 1. Assuming ON/OFF constants κXY > 1 would amount to assume that Y
is permanently activated (or inhibited) by X.

Lemma H.1 Assume conditions (85), (89), and (91) hold. Then κENci, κENhh ∈ (0, σen3],
κCNhh ∈ (0, 1]. Also U3 ∈ [0, 1] U1, 2, 4 ∈ [ε, 1].

Proof Recalling (59) and EN = en, conditions (91) can be re-written:

These are equivalent to κENci ∈ [max{eni, i = 1, 2, 4}, en3). From (89), max{eni, i = 1, 2, 4}
= 0 and en3 = σen3 ∈ [ε, 1] denotes the possible values of θ−(EWG3, κWGwg) when EWG3 =
κWGwg. Next, since ci3 = 0 due to κ−EN3, κENci) = 0, U3 can take any value in [0, 1], and
U1, 2, 4 have to be larger than the thresdold ε.
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Conditions (85) translate to:

(93)

Since en1,2,4 = 0, no restrictions on κCNhh are needed, so κCNhh ∈ (0, 1]. Since CN3 = 0, all
conditions are verified iff κENhh ∈ (0, σen3].

H.2 κPTCCI, κCIptc, and κCNptc

For simplicity, here we will treat the case wg2 > 0, wgi = 0 (i = 1, 3, 4). As shown below
(Sect. H.3), this is true for almost all feasible sets of parameters. It also implies that EWG1 =
EWG3.

Lemma H.2 For system (1) with steady state set (7), the following hold:

a.
;

b.
;

c.
.

Proof By assumption (92) (and definition of ), , By Lemma F.1 in Appendix
F, we then have PTC2,T = PTC4,T. By Theorem 1 and (89) it follows that  is always
required for a nonemtpy parameter set. In the case EWG1EWG3, Theorem 1 also shows that

 is necessary. From Appendix G this can only be achieved iff κPTCCI ≤ {PTC1,T,
PTC2,T} where PTC1,T = T1. We can write, for i = 1, 2, 4:

and (from ) ptci ≥ ε, for i = 1, 2, 4. This implies CNi ≤ min{Ui − κCIptc, κCNptc} which
translates into intervals (b) and (c). □

H.3 κWGen, κCNen, κWGwg, κCNwg, and κCIwg

Recall the expression of wg at steady state, given in (12). For most sets of parameters, it will
happen that RCI, RWG ∈ {0, 1}, yielding four possible values for wgi:

For the cases when variables CI, CN or IWG fall on their threshold values, CIi = κCIwg, CNi
= κCNwg and/or IWGi = κWGwg, it will happen that RCI, RWG ∈ [0, 1]. Since these cases
imply a fine tuning of κCIwg, κCNwg, or κWGwg, they will happen for a much smaller family
of parameters. Therefore, in this Section, we analyze only the case RCI, RWG ∈ {0, 1}.
(However, note that the product “RCIαCI” can be treated as a new “αCI”, and hence the cases
RCI, WG ∈ (0, 1) may be analyzed in a similar way.)
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According to the choice of αCI and αWG in (16), we have:

In this case, either the cubitus pathway or the wingless pathway may maintain wingless in
the second cell, and both pathways need to be shutdown on the other cells:

Conditions (89) can then be written as inequalities on wg and CN:

(94a)

(94b)

(94c)

(94d)

Since βmax > βmed, it is clear that (94a–c) can only be satisfied if

Conditions (90) translate to:

(95)

From (91) it follows that CN3 = 0. So the inequalities that represent enWT and wgWT are
reduced to:
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There are now three possibilities according to the value of wg2, yielding the intervals listed
in Tables 3, 4, and 5.
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Fig. 1.
The role of geometry and topology in robustness. Regions a and b have the same volume,
but b is less robust: the same perturbation leads out of the space. Regions c and d also have
the same volume, but d is not a simply connected set, hence less robust. Region e, although
connected, is composed of two pieces that touch only along a small face
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Fig. 2.
Projection of set G into the (U1, U2, U4) space (case Qi = 1, i = 1, 2, 4). The critical
hyperplanes U2 = U4 (yellow/light grey) and U2 = U1 (blue/dark grey) define four strictly
feasible components in Fig. 3, compares the regions where CI/CN is active (GII) or only WG
is active (GAuto), both polyhedrons.
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Fig. 3.
Projection of G on the space (κCIwg, κCNwg, κWGwg), of the fibre over the point represented
by “*” in Fig. 2. This point corresponds to choosing values for (U1, U2, U4) in region GII.
Depending on the choice of parameters S1, the interval for κWGwg in GAuto may or may not
intersect the other two. The values w2;. are defined in Table 4
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Fig. 4.
Parameter histograms out of 33276 parameter sets (refer to model equations for explanation
of parameters). The notation and scales follow those of Fig. 6 in [20]. In the y-axis, the
histograms are all normalized to their maximal value. The half-lifes (denoted Hx) range
between 5 and 100 mins in a linear scale. The coefficients aCIwg and aWGwg range
between ε/(1 ε) = 1/9 and 10.0 also in a linear scale. All other parameters range between
10−3 and 1, and shown in log10 scale
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Fig. 5.
Comparison of histograms for the pair κCIwg, κCNwg, in the whole feasible parameter space
(G) and in the regions corresponding to the auto-catalytic pathway (GAuto), or the cubitus
pathway (GCI + GCI, WG). The x-axis is shown in log10 scale
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Fig. 6.
Four cells in a parasegment, with periodic boundary conditions in both dimensions. Each
cell has four membranes. The relative values of Wingless in each cell (EWGi) are shown

Chaves et al. Page 45

J Math Biol. Author manuscript; available in PMC 2011 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chaves et al. Page 46

Table 1

Relative volume of G

Region Volume

G Auto 322 × 10–5

G CI 8.5 × 10–5

G CI,WG 1.5 × 10–5

Fraction of G corresponding to each of the three wingless activation pathways: auto-regulation only (GAuto), cubitus regulation only (GCI), and

both cubitus and wingless regulation (GCI,WG). <mi></mi>. Total number of parameter sets generated: 1 × 107. Number of feasible parameter
sets: 33276
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Table 2

Comparison between the constraints identified by von Dassow and Odell [20], and the exact constraints given
by the regions defined above

Parameter Description Tendency [20, Table 1] Tendency (within G) Tendency (GCI + GCI,WG)

κ WGen WG activation of en Moderate Moderate

κ CNen CN repression of en Strong Strong

κ WGwg WG autoactivation Moderate Moderate

κ CIwg CI activation of wg Weak — Strong

κ CNwg CN repression of wg Strong — Weak

κ CIptc CI activation of ptc Strong Strong

κ CNptc CN repression of ptc Weak Weak

κ ENci EN repression of ci Moderate —

κ PTCCI PTC stimulation of CI cleavage Strong Strong

κ ENhh EN activation of hh Weak —

κ CNhh CN repression of hh Strong —

C CI Maximal cleavage rate of CI Rapid Rapid

H IWG Half-life of intracellular WG Short Short

r endo WG Rate of WG endocytosis Slow —

r exo WG Rate of WG exocytosis Moderately slow Moderately fast

r MxferWG Rate of WG cell-to-cell exchange Slow Slow

α WGwg Maximal WG autocatalytic rate — Moderately rapid

Total number of parameters generated in G: 33276
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Table 3

Parameters common to all regions: κPTCCI, κCIptc, κCNptc, κWGen, and κCNen

Parameters Intervals

κ PTCCI (0, min{FPTC1,T
, FPTC2,T}

κ CIptc (0, min{ Ui
1 + QiHCICCI

}
κ CNptc (max{ UiQiHCICCI

1 + QiHCICCI
}, 1

κ WGen (0, w2βmed]

κ CNen (0, mini=1,2{ UiQiHCICCI
1 + QiHCICCI

} if κWGen ∈ w2βmin, w2βmed

(0, mini=1,2,4{ UiQiHCICCI
1 + QiHCICCI

} if κWGen ∈ (0, w2βmin

Let 
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Table 4

Parameter κWGwg in each region

Region Intervals

Gk, k = I, . . . , VIIIb [w2;C γmax, 1] (cubitus pathway only)

[w2;C, W γmed, w2;C,W γmax] (both cubitus and wingless pathways)

G Auto [w2; W γmed, w2; W γmax]

In regions GI to GVIIIb the cubitus pathway contributes to wingless mRNA regulation. In region GAuto only the wingless pathway contributes to

wingless mRNA regulation. Define: , and 
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Table 5

Parameters κCNwg and κCIwg in each region

Region Intervals

κ CNwg κ CIwg

GI (maxi=1,4 Ũi < Ũ2) [Ũ2, 1] [maxi=1,4 (Ui – Ũi), U2 – Ũ2]

GII (Ũ4 < Ũ2 < Ũ1) [Ũ2, Ũ1] [U4 – Ũ4, U2 – Ũ2]

GIII (Ũ2 < mini=1,4 Ũi) [Ũ2, mini=1,4 Ũi] (0, U2 – Ũ2]

GIV (Ũ1 < Ũ2 < Ũ4) [Ũ2, Ũ4] [U1 – Ũ1, U2 – Ũ2]

GVa (Ũ4 = Ũ2 < Ũ1) {Ũ2} (0, U2 – Ũ2]

GVb (Ũ4 = Ũ2 < Ũ1) [Ũ2, Ũ1] {U2 – Ũ2}

GVIa (Ũ4 < Ũ2 = Ũ1) {Ũ2} [U4 – Ũ4, U2 – Ũ2]

GVIb (Ũ4 < Ũ2 = Ũ1) [Ũ2, 1] {U2 – Ũ2}

GVIIa (Ũ1 = Ũ2 < Ũ4) {Ũ2} (0, U2 – Ũ2]

GVIIb (Ũ1 = Ũ2 < Ũ4) [Ũ2, Ũ4] {U2 – Ũ2}

GVIIIa (Ũ1 < Ũ2 = Ũ4) {Ũ2} [U1 – Ũ1, U2 – Ũ2]

GVIIIb (Ũ1 < Ũ2 = Ũ4) [Ũ2, 1] {U2 – Ũ2}

G Auto (0, Ũi] or [Ũi – Ũi, 1] (each i = 1, 2, 4)

In regions GI to GVIII the cubitus pathway contributes to wingless mRNA regulation. In region GAuto only the wingless pathway contributes to

wingless mRNA regulation. Define , and note that 
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