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Abstract
Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including
upper and lower obstructive disease, airway inflammation, and acute respiratory distress
syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus
it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants.
Studies in animals and in cell culture models have identified key mechanistic pathways mediating
their toxicity, which may be relevant targets for the development of countermeasures. For
example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the
lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical
markers of these activities. This is associated with inflammatory cell accumulation in the
respiratory tract and increased expression of tumor necrosis factor-α and other pro-inflammatory
cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also
upregulated in the lung after SM exposure, which are thought to contribute to the detachment of
epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier.
Findings that production of inflammatory mediators correlates directly with altered lung function
suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions
currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g.,
tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors
(e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective
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treatments may depend on the extent of lung injury and require a multi-faceted pharmacological
approach.
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The possibility that human populations will be exposed to sulfur mustard (SM) in warfare or
as a consequence of a terrorist act is considered significant, in large part because of the ease
and low cost of production, stockpiling, and delivery of this vesicant [1–3]. The pulmonary
symptoms resulting from exposure often predominate, and are major determinants of
mortality and long-term morbidity. Recent reports on the sequelae of disease pathogenesis in
human survivors, as well as new insights into the mechanisms of injury in animal models
and in lung cell cultures, have led to novel paradigms for treating pulmonary complications
resulting from SM intoxication and these are discussed in this review.

1. Acute and Chronic Pulmonary Effects of SM in Humans
The pulmonary effects of exposure of humans to SM are often lethal in the short term, and a
source of ongoing symptoms and disability in long term survivors. Exposure to SM is
associated with inflammatory and oxidative injury, resulting in both upper and lower
respiratory tract damage and pulmonary symptoms [4,5]. Upper airway involvement
presents as acute pharyngitis and laryngitis, and edema and hyperemia of the mucosa. Lower
airway pathology is characterized by shortness of breath and productive cough. Spirometric
studies reveal patterns of obstructive injury (53%), restrictive injury (2%), or both (19%)
[6]. Severe lower respiratory disease manifests as acute respiratory distress syndrome
(ARDS), with high mortality. Although the acute symptoms of SM intoxication are often
non-specific and transient, exposure frequently leads to the development of a characteristic
pattern of chronic disease of both the upper and lower respiratory tract. At 1–3 weeks post
exposure, bronchoscopy reveals inflammation of the trachea with signs of necrosis that is
sometimes severe. At this time, chest X-rays are normal, indicating that the onset of chronic
disease is delayed, possibly allowing a window for the initiation of therapeutic interventions
[2]. At 10 year follow-up, exposed individuals have been diagnosed with asthma (11%),
bronchitis (59%), bronchiectasis (9%), airway narrowing due to scarring (10%), and
pulmonary fibrosis (12%), including chronic obstructive pulmonary disease (COPD), at
rates greatly exceeding background incidence [7]. At 15 years, 24% of those referred for
severe respiratory disorders have been reported to have tracheobronchial stenosis, ranging
from diffuse involvement to isolated glottic or subglottic stenosis [8]. After 17–19 years,
decreased FEV1 and hyper-responsiveness to methacholine challenge is observed, consistent
with the development of reactive airway disease [9]. At 20 years after exposure, progressive
lung deterioration is apparent, with bronchiolitis obliterans appearing as the main pathologic
feature of significant SM exposure [10].

Associated long-term markers and sequelae of SM poisoning have recently been described
in the Sardasht-Iran Study, and in other large cohorts of individuals exposed during the Iran-
Iraq conflict of the late 1980's [11,12]. Even 20 years after SM exposure, there is evidence
of systemic and pulmonary inflammatory effects in survivors including alterations in serum
levels of cell adhesion molecules (e.g., selectins), as well as interleukin (IL)-8 and IL-6
[11,12]. Moreover, serum levels of inflammatory markers are directly related to pulmonary
symptoms. For example, elevations in serum IL-8 levels in SM-exposed survivors are
correlated with incidence and severity of wheezing [11]. C-reactive protein, a non-specific
marker of systemic inflammation, is also increased in patients with COPD due to SM
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poisoning, at levels comparable to the severity of disease [13]. Similarly, serum levels of the
pro-apoptotic protein, soluble Fas ligand, are elevated in long-term survivors of SM
exposure with persistent abnormalities in pulmonary function [14]. Pulmonary fibrosis
following SM exposure is also correlated with increases in inflammatory cytokines and
chemokines in bronchoalveolar lavage fluid (BAL), including IL-1α, IL-1β, IL-5, IL-6, IL-8,
IL-12, IL-13, tumor necrosis factor (TNF)-α, CCL5, and CCL11 [15,16]. Markers of
pulmonary inflammation in individuals exposed to SM are accompanied by evidence of
oxidative stress, characterized by an accumulation of lipid peroxidation products such as
malondialdehyde (MDA) in the lung and/or BAL, and decreases in antioxidants like
superoxide dismutase (SOD) [17,18]. Lung glutathione levels are reduced in survivors 20
years post-exposure, and this is directly linked with altered pulmonary functioning. Recent
data also indicate that SM exposure leads to an increased incidence of early-onset lung
cancer, which is associated with mutations in the tumor suppressor gene, p53 [19].

2. Mechanisms of Toxicity
2.1 In Vitro Studies

Primary lung cells and cell culture models have been used to assess mechanisms of vesicant-
induced toxicity. While cytotoxicity is thought to be initiated by DNA alkylation and
consequent DNA damage, glutathione depletion and oxidative stress have been shown to be
key events contributing to cell death. In co-culture models of bronchial epithelial cells and
fibroblasts, vesicant-induced cytotoxicity is characterized by morphologic changes that are
similar to in vivo pulmonary effects of SM, including decreased cell matrix adhesion,
increased mucus production, and loss of ciliary function [20,21]. Loss of cell-cell contact
and cellular disorganization and swelling are also observed in cultured lung cells following
SM exposure, as well as increases in expression of caspases and Bax, and TUNEL staining
[21–26]. These data indicate that SM induces necrosis, as well as apoptosis. This is
supported by findings that expression of intact and cleaved poly (ADP-ribose) polymerase
(PARP), a DNA repair enzyme important in both of these processes, is upregulated in lung
cells following vesicant exposure [27–30]. Recent mechanistic studies in lung cells have
suggested that vesicants may also exert cytotoxicity by selectively targeting enzymes
involved in regulating cellular homeostasis including thioredoxin reductase [31].
Thioredoxin reductase contains a unique selenocysteine in its active site, and vesicants
inhibit enzyme activity by binding to this amino acid. NADPH cytochrome P450 reductase
has also been reported to be a target for vesicants in lung epithelial cells [32]. Inhibition of
NADPH cytochrome P450 reductase, which can block cellular metabolism, results in
enhanced production of reactive oxygen species, a process that can cause oxidative stress
and toxicity.

Treatment of isolated lung epithelial cells or macrophages with SM and related vesicants
results in production of inflammatory mediators, which are thought to contribute to
oxidative stress and cytotoxicity. For example, in airway epithelial cells, SM up regulates
inducible nitric oxide synthase (iNOS) and stimulates the production of reactive nitrogen
species [33]. SM also stimulates the production of the proinflammatory cytokines, IL-6 and
IL-8, as well as matrix metalloproteinases by these cells [21,34]. Similarly, in human
monocytes, the half mustard analog, 2-chloroethylethylsulfide (CEES) induces the release of
TNFα [35], and in bronchial and small airway epithelial cells, production of reactive oxygen
species [36]. Related bifunctional vesicants, mechlorethamine or its phenylalanine
derivative, melphalon, generically referred to as nitrogen mustards, also induce the secretion
of proinflammatory cytokines, chemokines and growth factors including TNFα, IL-1, IL-6,
IL-8, IL-15, RANTES, macrophage chemotactic protein (MCP)-1, IP-10, and granulocyte
monocyte-colony stimulating factor from differentiated human respiratory epithelial cells
[23,37].

Weinberger et al. Page 3

Pulm Pharmacol Ther. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While it is important to avoid drawing definitive conclusions regarding in vivo mechanisms
of vesicant-induced pulmonary toxicity, in vitro studies have suggested potential therapeutic
approaches to investigate for use in mitigating human toxicity. In this regard, glutathione
derivatives, N-acetylcysteine (NAC), macrolide antibiotics, antioxidant metalloporphyrins,
melatonin and protease inhibitors, which have been shown to protect lung epithelial cells in
culture from vesicant-induced cytotoxicity, as well as inhibitors of apoptosis and
inflammation [28,33,38–40], are currently being assessed as countermeasures in various in
vivo experimental models.

2.2 Animal Models
In order to develop efficacious therapeutics for SM-induced pulmonary toxicity, it is
essential to elucidate its disease pathogenesis in vivo. Most data on mechanisms of injury are
based on animal models using SM or bifunctional vesicants such as nitrogen mustard, or the
half mustard, CEES. In these studies, vesicants are typically administered to the animals by
inhalation or intratracheal (IT) instillation. However, it appears that the lung is also a remote
target of toxicity following SM exposure by the percutaneous (PC), subcutaneous (SC),
intraperitoneal (IP), and oral routes of administration. Greater pulmonary toxicity is
observed after PC or IP exposure relative to SC or oral dosing, and is characterized by
bronchiolar occlusion, along with lung inflammation, edema, congestion, and hemorrhage
[41]. Biochemical evidence of oxidative stress, including increased levels of oxidized
glutathione and lipid peroxidation products, as well as glutathione S-transferases, are also
observed in the lung within 1–24 hr after SC or IP administration of half mustard [42–44].
Mechanisms mediating the distal toxicity of vesicants have not been established. SM has a
half-life of only 30–60 min in blood; thus, its extrapulmonary actions are unlikely to be
direct [45]. Mishra et al. [46] have shown that SM induces a rapid (30 min – 12 hr) immune
response in the skin, characterized by infiltration of both CD4+ and CD8+ T-cells. This
results in the generation of inflammatory cytokines, which may mediate the peripheral
effects of SM and related vesicants.

Direct actions of SM and its analogs on the respiratory tract have been characterized in
various animal models following inhalation or IT exposure. Histopathological changes are
noted in the upper airways, including detachment of tracheal and bronchial epithelial cells
from the basement membrane, deposits of fibrin containing cellular debris in the airway
lumen, and edema of the submucosal lining within 6 hr of exposure of rodents to SM [47–
53]. This is followed by tracheal epithelium blistering, columnar cell shedding, vacuolar
degeneration and detachment of ciliated and epithelial cells from basement membranes,
along with inflammatory cell accumulation in the submucosa [48,51]. By 14 days post SM
exposure, tracheal epithelium is disorganized, with decreased cell density [49]. Similar
results have been described in the respiratory tract following exposure of animals to CEES
or nitrogen mustard [54,55]. Occlusive fibrin-rich bronchial casts are seen within 18 hr after
inhalation of CEES, preceded by extravasation of fibrin, IgM, and other proteins into the
bronchial and alveolar spaces [56]. These findings demonstrate that bronchial vascular
injury plays a key role in the acute pathologic response to vesicants in the lung. Subsequent
lower airway effects of mustards include thickening of alveolar septal walls and perivascular
edema, suggesting alterations in the integrity of the alveolar epithelial lining [47,51,52,57];
these changes are evident within 24 hr and persist up to 6 weeks. With time following
vesicant exposure, fibrin and collagen deposition increase in the lung leading to a collapse of
alveolar structures, and the appearance of honeycombing [54,57]. Additionally, lung
parenchymal congestion and hemorrhage are evident, as well as injury to the spleen, liver,
and kidneys. Increases in urinary uric acid, a product of DNA degradation, are also detected
following exposure of mice to inhaled SM [58].
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DNA damage leads to activation of repair enzymes, such as PARP-1, which are key in
maintaining survival and genomic integrity under conditions of genotoxic and oxidative
stress [29]. PARP-1 is known to be a target for proteolytic degradation by the pro-apoptotic
enzyme, caspase-3. Following SM inhalation by rodents, expression of both intact and
cleaved PARP-1 increases in the lung [52], confirming that SM induces DNA damage, and
that this is linked to apoptosis [30]. Apoptosis of lung epithelial cells after exposure to SM is
associated with activation of caspase-3, caspase-8, and caspase-9, suggesting the importance
of the death receptor pathway in mediating this effect [59]. Reports of increased expression
of activated cleaved caspases in the lung of vesicant-treated animals, and morphologic
changes in bronchial epithelial cells that are characteristic of apoptosis, including cell
shrinkage and chromatin condensation [52,55,60] are consistent with this idea. The
observation that these effects are prominent in epithelium that is detached from the basement
membrane suggests cell detachment-dependent apoptosis or anoikis, a process also noted in
the skin following SM exposure [22,52]. Recent studies suggest that SM-induced toxicity is
associated with autophagy [52]. This is a tightly regulated catabolic process involving
intracellular self-degradation; it is considered an alternative form of non-apoptotic cell death
and has been implicated in the pathogenesis of chronic lung diseases [61,62]. Markers of
autophagy have been noted in the lungs of patients in the early stages of the development of
COPD [61]. The fact that there is evidence of autophagy in lungs of animals shortly after
exposure to SM suggests that this cytotoxic mechanism may be important in the
pathogenesis of chronic lung diseases in exposed individuals. This is supported by findings
that exposure to cigarette smoke, which is also a causative agent for COPD, induces
autophagy in lung epithelial cells [61].

Functional changes in the lung have also been described following exposure of animals to
vesicants. Within 5 hr of administration of SM to rodents, respiratory system resistance and
microvascular permeability are markedly increased, and by 24 hr, alterations in tidal
volume, respiratory frequency, peak inspiratory and expiratory pressure, and airway
hyperreactivity are observed [47,63]. After 14 days, airway hyperreactivity to substance P
and histamine are noted, consistent with asthma-like symptoms [49,64]. Similar alterations
in pulmonary mechanics have been described in rodent models of CEES- or nitrogen
mustard-induced pulmonary intoxication [55,65–67]. CEES induces desensitization of
beta-2 adrenergic receptors in the lung, possibly contributing to bronchospasm [68]. In
guinea pigs, SM administration results in increased BAL surface tension, indicating altered
lung surfactant [47]. Treatment of animals with CEES has also been reported to result in
suppression of cholinephosphotransferase, an enzyme that is essential in the generation of
phosphatidylcholine in the lung [69]. Increased accumulation of ceramides in the lung
following exposure to vesicants may also contribute to impaired phosphatidylcholine
synthesis. This can lead to decreased generation of pulmonary surfactant, resulting in
atelectasis and lung injury.

Structural and functional alterations in the respiratory tract following exposure of animals to
SM or related vesicants are accompanied by inflammatory cell accumulation in the airways
and lung [50,52,55,65,66,70,71]. The majority of these cells are neutrophils and
macrophages, supporting the idea that phagocytic leukocytes and inflammatory mediators
they release are important in the pathogenic response to inhaled vesicants [54,72]. One
notable macrophage-derived mediator is the proinflammatory cytokine TNFα, which is
rapidly generated in pulmonary tissues in response to oxidative stress and injury [73].
Although it has been suggested that initiation of the TNFα cascade is a major pathway in
vesicant-induced lung injury [55,60,74,75], the precise role of this cytokine in mustard gas-
induced toxicity is unknown. TNFα is unique among proinflammatory cytokines in that it
has the capacity to directly induce necrosis and apoptosis, which may be important in its
cytotoxic actions [73]. TNFα also promotes oxidative metabolism in phagocytic leukocytes
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resulting in increased production of cytotoxic reactive oxygen and nitrogen species, and it
stimulates the synthesis of proteases such as matrix metalloproteinase-9 (MMP-9), which
are important in epithelial cell detachment from the basement membrane [50,76]. TNFα
generation by alveolar macrophages is also associated with an accumulation of ceramides in
the lung, which are thought to contribute to apoptosis and, as indicated above, impaired
surfactant production [74].

As observed in humans, a number of other inflammatory cytokines and chemokines, besides
TNFα, are upregulated in the lungs of animals following exposure to vesicants. These
include IL-1, IL-6, IL-8, IL-13, MCP-1 (CCL-2) and interferon (IFN)-γ, as well as
connective tissue growth factor [46,55,63,65,66,77], and evidence from other models of lung
injury and disease pathology suggest that they are important in the acute and long term
pulmonary effects of SM poisoning. Reactive oxygen and nitrogen species and
proinflammatory prostaglandins released by phagocytic leukocytes may also contribute to
vesicant-induced toxicity. This is supported by findings that iNOS, the enzyme mediating
the production of nitric oxide by macrophages and epithelial cells, and the eicosanoid
generating enzyme, cyclooxygenase (COX)-2, are rapidly up regulated in these cells
following vesicant exposure [28,52,55,66,78]. Moreover, animals lacking iNOS, or treated
with an iNOS inhibitor or peroxynitrite scavenger, are protected from vesicant-induced lung
injury [67,79].

3. Therapeutics
3.1 General Symptomatic Approaches

Treatment of pulmonary SM intoxication in humans has primarily been supportive,
including interventions such as humidification of inhaled air to provide symptomatic relief
from upper respiratory symptoms. Early tracheostomy and continuous positive airway
pressure have been used with some success, as well as bronchoscopy to help remove
pseudomembranes and necrotic debris from the airways [5]. Bronchoconstriction is a
prominent component in both the acute and chronic sequelae following SM poisoning. SM
induces early asthma-like symptoms in animals; symptoms and mortality are reduced by
intratracheal administration of salbutamol, a β2 agonist [47]. Similarly, human subjects with
chronic bronchiolitis and reactive airway disease as a consequence of SM exposure are
responsive, or even hyperresponsive, to inhaled bronchodilators [80,81]. A recent report has
suggested that the use of helium-oxygen mixtures with non-invasive ventilation decreases
airway resistance and work of breathing in subjects with chronic dyspnea following sulfur
mustard exposure [82]. As mechanistic data accumulate on SM-induced pulmonary injury,
more specific pharmacologic approaches are being tested in animal models which may, in
the future, prove efficacious in humans. These include anti-inflammatory agents,
antioxidants, protease inhibitors and surfactants (Table 1).

3.2 Anti-inflammatory Agents
As described above, inflammatory cell accumulation in the respiratory tract is a prominent
histologic feature of mustard gas-induced pulmonary injury. The well documented role of
inflammatory cells in the pathogenesis of lung diseases such as bronchitis, asthma and
COPD, which are all long term consequences of SM poisoning, has prompted investigations
on the use of anti-inflammatory agents to mitigate pulmonary injury induced by vesicants. In
vitro, macrolide antibiotics (e.g., erythromycin, azithromycin, roxithromycin) suppress
vesicant-induced expression of pro-inflammatory cytokines and nitric oxide synthase in
human airway epithelial cells and monocytes [33,78,83]. These agents also restored
chemotactic and phagocytic activity of monocytes after SM exposure, which may contribute
to improved clearance of apoptotic material in the injured airway [78]. In rodents,
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administration of betamethasone, a moderately potent anti-inflammatory glucocorticoid,
from day 7 to day 14 following SM exposure, decreases airway injury, as assessed by
increases in epithelial cell density, and proliferation [48]. Treatment of animals with
betamethasone for 7 days after SM also abolishes hyperresponsiveness to substance P,
presumably by increasing the activity of neutral endopeptidase in airway smooth muscle
[64]. Similarly, dexamethasone, a more potent glucocorticoid analog, administered 1 hr after
exposure of mice to nitrogen mustard, reduces airway inflammation, lymphocyte activity,
and collagen deposition [65]. Inhaled corticosteroids also improve pulmonary function in
patients with chronic bronchiolitis as a result of SM inhalation, and this effect is synergistic
with inhaled β-2 agonist bronchodilators [80]. The specific inflammatory cell type and
mediator involved in the pathogenic response to vesicants has not been established.
Neutrophil depletion has been reported to markedly attenuate lung injury, edema, and
hemorrhage after exposure of rats to CEES [54]. These data, together with findings that
dexamethasone blocks SM-induced activation and proliferation of alveolar macrophages
[72], provide support for an involvement of phagocytic leukocytes in the pathogenic
response to vesicants.

Newer therapeutic approaches for treating pulmonary diseases have focused on specific pro-
and anti-inflammatory mediators to ameliorate vesicant-induced lung injury. For example,
IFNγ, in combination with low dose prednisolone, results in improvement in lung function
in patients with chronic bronchitis due to mustard gas poisoning [84]. Recent observations
that TNF receptor-1 knockout mice are protected from CEES-induced injury and altered
lung functioning suggest that targeting TNFα may also prove effective in treating patients
exposed to SM [55]. Upstream signaling pathways are also promising targets for future drug
development. Mechanistic studies have demonstrated activation of NF-κB and AP-1 in the
lung within 1–2 hr of exposure to CEES [59,74,75,77]. These ubiquitous transcription
factors regulate the activity of a number of inflammatory genes implicated in pulmonary
toxicity, including iNOS, COX-2, and TNFα. Mitogen activated protein kinase signaling is
also up regulated in the lung following mustard exposure [75]. Pharmacologic antagonists
against one or more of these signaling molecules may prove useful in mitigating vesicant-
induced pulmonary toxicity.

3.3 Antioxidants
SM intoxication is associated with oxidative stress, caused by an imbalance between
production of oxidants and antioxidants in the lung and respiratory tract, and this is thought
to be a primary event triggering the inflammatory cascade and tissue injury [27]. Markers of
oxidative stress, including malondialdehyde, 8-hydroxydeoxyguanosine, 4-hydroxynonenal,
and heme oxygenase-1, are increased in the respiratory system after exposure of animals to
SM or related vesicants [52,85–87]. This occurs concomitantly with decreases in lung
glutathione and SOD activity [70,88]. Consequently, antioxidant therapies have been
investigated as a means of ameliorating lung injury due to vesicants with some success.
Antioxidants such as Trolox, a water-soluble analog of α-tocopherol (vitamin E), as well as
quercetin, have been reported to reduce markers of oxidative damage induced by SM [87].
Tocopherols, delivered via liposomes, also block nitrogen mustard-induced inflammatory
cell and cytokine accumulation in the lung and suppress the generation of collagen, a key
component of oxidative-inflammatory injury leading to chronic lung disease [65].
Liposomes containing tocopherols, alone or in combination with NAC, which stimulates
glutathione synthesis and scavenges free radicals, also suppress CEES-induced lung injury
[85,89,90]. A similar decrease in CEES-induced lung injury, as well as inflammatory cell
accumulation is observed after IT administration of liposomes containing catalase and/or
SOD [54,57,77]. Recent studies have also shown that a catalytic antioxidant that possesses
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both SOD and catalase activity reduces inflammatory and oxidative stress following
inhalation of CEES by rats [86].

NAC is also being evaluated as a potential countermeasure against SM-induced pulmonary
toxicity. Oral administration of NAC has been reported to exert protective effects when
administered 3–30 days prior to exposure to CEES [60]. Intravenous NAC, simultaneously
or as late as 60–90 min after CEES administration, also significantly reduces acute lung
injury [54]. Analogous protection by NAC has been described against SM-induced injury
[71]. NAC-containing liposomes, administered IT immediately after CEES, reduce both the
lung permeability index and pro-inflammatory mediators in BAL to control levels [57,89].
Several studies have addressed mechanisms mediating the protective effects of NAC in the
lung. NAC does not appear to alter SM-induced activation of protein kinases, but rather to
down regulate the activity of the AP-1 transcription factor, contributing to reduced
infiltration of inflammatory cells into alveolar spaces [90]. The idea that CEES-induced
pulmonary toxicity and NAC cytoprotection are mediated by inflammatory mechanisms is
supported by the observation that the salutary effects of NAC are synergistic with neutrophil
or complement depletion, resulting in an 80% reduction in CEES-induced lung injury
[54,57]. NAC has also been shown to ameliorate the symptoms of chronic lung injury,
including cough and dyspnea, in human survivors many years after SM exposure, an effect
likely related to its combined anti-inflammatory and antioxidant activities [91].

The specific cytotoxic oxidants involved in SM-induced lung injury are unknown.
Accumulating evidence suggests that reactive nitrogen species are important in the
pathogenic process. Nitric oxide is generated in the lung by macrophages and epithelial cells
via an inducible form of the enzyme, nitric oxide synthase [92]. Once generated, nitric oxide
readily reacts with superoxide anion forming peroxynitrite, a relatively long-lived cytotoxic
oxidant. Nitric oxide and peroxynitrite oxidize and covalently modify membrane lipids,
thiols, proteins and DNA, inducing cytotoxicity and perpetuating inflammation. Expression
of iNOS is upregulated in lung macrophages and epithelial cells following exposure of
rodents to vesicants including SM, nitrogen mustard and CEES [52,55,66,67,79,93]. Ebselen
(a peroxynitrite scavenger) and melatonin (a potent antioxidant that scavenges both reactive
oxygen and nitrogen species) ameliorate lung injury and oxidative stress induced by
nitrogen mustard in rodents, suggesting a potential therapeutic target for treating mustard
gas poisoning [79,93]. This is supported by recent studies demonstrating that transgenic
mice with a targeted disruption of the gene for iNOS are protected from CEES-induced
pulmonary toxicity and altered lung functioning [67].

3.4 Protease Inhibitors
MMPs are zinc-dependent endopeptidases that degrade extracellular matrix proteins,
contributing to inflammatory cell recruitment, tissue injury, and fibrosis [76,94,95]. MMPs,
including MMP-9, increase in the respiratory tract within 6–24 hr of exposure to SM
[50,52]. Particularly high expression levels are noted in bronchiolar epithelium and alveolar
macrophages. A similar expression pattern of MMP-9 has been described in the respiratory
tract after exposure of rodents to CEES or nitrogen mustard [55,66,67]. The effects of SM
on MMP-9 expression are dose-dependent and persist for at least 24 hr. At this time, 92 kDa
gelatinase activity is detectable at sites of intraepithelial cleavages, associated with
disruption of alveolar epithelial integrity and increased BAL albumin content [52]. These
findings suggest a role for inflammatory and epithelial cell-derived MMPs in epithelial
barrier disruption. Interestingly, MMP-9 protein and 92 kDa gelatinase activity are also
detectable in BAL within 6 hr of SM exposure and persist for at least 7 days [50–52],
suggesting that biologically active MMPs are secreted during the pathogenic response to
vesicants. In contrast to the stimulatory effects of SM on MMP-9/92 kDa gelatinase,
expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), is unaffected by

Weinberger et al. Page 8

Pulm Pharmacol Ther. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



exposure to SM, indicating that vesicant-induced lung injury is due to an imbalance between
proteases and antiproteases [51]. These findings have led to investigations of anti-protease
therapy for the treatment of SM-induced pulmonary toxicity, with promising results. When
administered immediately prior to SM, the serine protease inhibitor, aprotinin, or the broad
spectrum MMP inhibitor, ilomastat, ameliorate vesicant-induced decreases in pulmonary
function parameters [63]. Aprotinin also prevents SM-induced increases in total BAL
protein and lung histopathology, as well as IL-1α and IL-13 production, suggesting that anti-
inflammatory activity may also contribute to its protective effects.

Doxycycline is a semi-synthetic tetracycline that has been reported to exhibit non-specific
MMP inhibitory activity, and it appears to exert significant protective effects against SM-
induced lung toxicity [96]. Treatment of guinea pigs with doxycycline 3 hr prior to SM
results in reduced activity of gelatinases (MMP-2 and MMP-9) and decreased evidence of
lung inflammation and injury, including cellularity and protein levels in BAL [51]. In
addition to inhibiting MMPs, doxycycline and related tetracyclines have been reported to
attenuate iNOS expression and nitric oxide production, to reduce inflammatory cytokine
release, and to scavenge reactive oxygen species [97–99]. It is likely that these diverse anti-
inflammatory actions enhance its efficacy as a therapeutic against SM poisoning.

3.5 Surfactant Therapy
Defective secretion of pulmonary surfactant by alveolar type II cells and surfactant
dysfunction have been implicated as causative factors in ARDS, an inflammatory outcome
of SM exposure in the lower airway [49,100]. CEES administration to guinea pigs
significantly decreases expression of cholinephosphotransferase, a key enzyme involved in
surfactant biosynthesis, and resultant increases in ceramides, which are thought to contribute
to apoptosis and surfactant dysfunction [69,74]. Recent studies have also demonstrated that
expression of surfactant protein D, which possesses anti-inflammatory activity, is markedly
reduced in lung epithelium following SM treatment of rats [52,55]. Curosurf is a naturally-
derived surfactant used to treat neonatal respiratory distress syndrome. IT administration of
Curosurf one hour following SM exposure has been reported to reduce SM-induced
mortality in guinea pigs although not as effectively as the bronchodilator, salbutamol [47].
These data suggest that surfactants, in combination with bronchodilators or anti-
inflammatory agents, may be useful in mitigating vesicant-induced lung injury, but this
remains to be investigated.

4 Conclusions and Future Directions
Respiratory toxicity due to exposure to SM, including long-term effects like COPD and
fibrosis, is a significant health concern even decades after exposure. Thus, it is essential to
identify efficacious treatments for both acute and chronic diseases induced by this vesicant.
Studies on SM and its analogs in animals suggest that individual or combination therapies
using anti-inflammatory, anti-oxidant, and anti-protease agents may be effective in
ameliorating the toxicity of SM in humans. However, use of these countermeasures is
limited due to their relatively non-specific actions. Consequently, there remains a pressing
need to identify more specific therapeutics, and effective strategies for delivering these
agents to target organs. Of particular concern is the lung, since impaired functioning and
inflammation due to SM poisoning may hamper the delivery of therapeutics by standard
inhalation approaches. Since clinical trials on SM exposure cannot be performed, insights
into the optimal approaches for mitigating its toxicity will most likely be gained by
evaluating strategies currently utilized to treat human diseases with similar pathologies. For
example, lung injury in ARDS patients is reduced by conventional mechanical ventilation,
sedation, and decreased threshold for blood cell transfusion. Other promising therapeutic
approaches to ARDS in adults and/or children include endotracheal surfactant, high-
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frequency oscillatory ventilation, noninvasive ventilation, extracorporeal membrane
oxygenation, corticosteroids, and restrictive fluid management. Prone positioning,
bronchodilators, inhaled nitric oxide, and high-flow nasal cannula may also be useful [101].
For chronic injury associated with COPD, inhaled anticholinergic and β-agonist
bronchodilators are useful in ameliorating symptoms, and corticosteroids have some limited
utility in reducing inflammation associated with severe disease [102]. In order to devise a
uniform and rational approach to treating SM toxicity that minimizes untoward effects, it is
essential to integrate the knowledge gained from cell culture and animal studies, human
exposure, and current clinical management of acute and chronic lung injury.
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Table 1

Examples of Therapeutic Strategies for Mitigating SM-induced Lung Injury

Target Therapeutics References

Inflammation Anti-inflammatory agents (macrolide antibiotics, glucocorticoids) 33,48,64,65,72,78,80,83,84

Oxidative stress Antioxidants (tocopherols, NAC, catalase, SOD, catalytic
metalloporphyrins, melatonin)

28,40,54,57,60,65,71,77,85,86,87,89,90,91,93

Proteases Protease inhibitors (doxycyline, ilomastat, aprotinin) 40,51,63

Pulmonary surfactants Surfactants (Curosurf) 47
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