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Abstract
Proteins that contain a motif called a bromodomain are implicated in both transcriptional
activation and repression. The bromodomain of p/CAF, the only solution structure of a
bromodomain that has been solved to date, reveals that the motif binds N-acetyl-lysine groups,
presumably to anchor enzymatic functions to histones and by extension to chromatin. The
enzymatic activities can either be encoded within the same polypeptide as the bromodomain motif,
or associated with a multiprotein complex. Thus, a wide variety of chromatin-directed functions,
including but not limited to phosphorylation, acetylation, methylation, transcriptional co-
activation or recruitment, characterize the complexes that contain bromodomain motifs. Their
versatility and ubiquity ensures diverse, rapid and flexible transcriptional responses.
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2. TRANSCRIPTIONAL ACTIVATION AND REPRESSION
The field of chromatin structure has experienced an explosion of interest recently, with
almost 2000 Medline citations on the subject in the last two years. Many contemporary
reports have focused attention on the causal links between specific modifications of
histones, such as N-lysyl-acetylation or deacetylation, and the resultant loosening or
tightening of nucleosome structure and consequent transcriptional activation or repression of
genes. These local shifts are connected to global changes in cell physiology, such as growth
and mitosis. The field has been extensively reviewed of late (1–7). Moreover, the
relationship between different types of histone modification has garnered notice, particularly
the observation that phosphorylation of serine-10 and acetylation of lysine-14 on histone H3
are coupled processes with important biological consequences (8,9). In mammalian cells,
histone H3 phosphorylation has been identified as a key step both in rapid responses to
growth factor stimulation (10,11), resulting in transactivation of “immediate-early” type
genes such as c-fos and c-myc (12), as well as much later in chromatin condensation during
mitosis (13). An expansive view of the chromatin landscape has come from investigation of
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the genetics and biochemistry of chromatin remodeling complexes: large, multisubunit
catalytic entities perform the work of histone modification that leads either to transcriptional
activation or repression of target genes. Here, promoter selectivity for sequence-specific
DNA binding proteins must guide the assembly of these big chromatin-modifying machines,
yet the genetic regulatory elements must also be able to respond rapidly to changing
transcriptional requirements. Active investigation of chromatin remodeling continues in
many laboratories, from the level of sequence-specific modification of specific histones to
the level of multiprotein complex assembly.

A particular protein motif called a “bromodomain” has been noticed in many of the proteins
that compose the chromatin modifying machinery. It was first identified in 1992 as a 61 – 63
amino acid signature (14). Although it lacked a known function at the time, it has
subsequently been identified in transcription factors, co-activators and other proteins that are
important in transcription or chromatin remodeling and its boundaries have been expanded
to about 110 amino acids. The number of such proteins was about forty at last report (15,16)
and several important additions to the family have been made since then. The first described
bromodomain protein, yeast Gcn5 (17), was shown to be necessary for amino acid
metabolism and was characterized as a transcriptional co-activator (18). It provides a histone
acetylation (19) component of the ADA (Adapter) and SAGA (Spt-Ada-Gcn5
acetyltransferase) transcription complexes (20), which is fundamental and essential for
viability (21). Gcn5 is also structurally related to the mammalian proteins CBP, p300 and
Hat1 (22). In mammals, CBP and p300 also have intrinsic HAT activity (23,24) and interact
with many important transcription factors as co-activators of transcription. Virtually all of
the nuclear histone acetyltransferases (HATs) contain bromodomains (16), but not all
bromodomain proteins are HATs. For example, other classes of bromodomain proteins
include MLL, a putative transcription factor (25,26) that interacts with the SWI/SNF
chromatin remodeling complex (27); Spt7, an acidic transcriptional activator and component
of the SAGA complex (28); and a helicase superfamily that includes Snf2, Rsc1/Rsc2 and
Sth1, components of the SWI/SNF (29) and RSC complexes (30); Brg1, which binds RB
(31,32); and brahma, which also contacts RB, is related to Swi2/Snf2 (33,34) and has
homeotic functions in Drosophila (35–37). The role of bromodomains in transcription
complexes has been controversial because their deletion has widely different consequences:
in yeast, bromodomain deletion of Spt7 has no phenotype, of Snf2 causes slow growth, but
deletion of Sth1, Rsc1 and Rsc2 causes lethality (16). Much of the apparent significance of
bromodomain proteins lies in their either having intrinsic HAT activity, or being associated
with promoter-bound complexes that contain HAT or histone deacetylase (HDAC) activity.
Bromodomain proteins are thereby potentially important players in the transcriptional
control of a wide variety of eukaryotic genes, including those that control growth.

The bromodomain proteins that interact with RB highlight an important duality in
transcriptional control: the need also to turn promoters off. In particular, the transcriptional
control of E2F-regulated mammalian cell cycle genes is essential for proper progression
through each stage of the cell cycle. Whereas transcriptional activation of one set of genes is
necessary to enter a stage of the cell cycle, repression of certain other genes associated with
the previous stage is necessary to exit from that stage. RB (and its family members p107 and
p130) bind to E2F proteins and block their transcription activation function (38,39).

Recent evidence has revealed that in addition to this direct repression, RB also recruits a
histone deacetylase (40,41), as do p107 and p130 (42), through cooperation with mammalian
brahma and other proteins in the SWI/SNF complex (31,32). Coordinated transcriptional
activation and repression of the key E2F-regulated mammalian cell cycle genes cyclin E,
cyclin A and cdc2 permit proper transitions between G1 and S phases, and S and G2 phases
(43). This dual nature of chromatin remodeling complexes was first suspected in yeast,
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where SWI/SNF complexes, initially associated with transcriptional activation (44), were
later linked to repression as well: more genes are activated than repressed by SWI/SNF
mutations (45). It now appears that SWI/SNF function may establish a widely applicable
paradigm in chromatin remodeling complexes, whereby transcriptionally active euchromatin
can be converted to inactive heterochromatin and vice versa in part through the exchange of
HAT and HDAC enzymes in the complex (46). This model has been refined lately with the
observation in yeast that several inducible genes active during interphase can recruit HAT
activity independently of SWI/SNF, whereas mitotic genes require SWI/SNF to recruit HAT
activity (47). This observation emphasizes the importance of coordinated complex formation
for proper transit of the cell cycle.

A central development in the field of bromodomain-containing proteins came with a report
of Zhou and colleagues (48), who used nuclear Overhauser enhancements to solve the
solution structure of the bromodomain of p/CAF in association with N-acetylated lysine.
The highly conserved structure of bromodomain proteins suggests a hypothesis that many of
them will bind N-acetyl-lysine in histones, however by no means will this necessarily be
true for all. The presence of bromodomains in many proteins that are known independently
to possess HAT activity strongly supports the Zhou hypothesis. A looser notion that this
motif is present in proteins that are involved in chromatin modification and transcription
regulation is the best guide to their classification at the moment. The future discovery of
bromodomains in proteins that are uninvolved in chromatin restructuring will be a test of the
utility of such a classification.

In this special issue, several authors have been invited to contribute their perspectives on the
developing field of bromodomain proteins and associated chromatin-modifying activities.
Major questions that they address continue to provoke the development of the field, and
include:

A. What are the number and type of histone modifications, including phosphorylation,
acetylation, methylation, ADP-ribosylation and ubiquitylation, that could regulate
the recruitment of different classes of chromatin-modifying enzymes and might
these represent a kind of combinatorial “histone code”? How do modifications of
bromodomain-containing proteins reciprocally affect histone modification
activities?

B. Should bromodomain-containing proteins be thought of as a kind of bridge or
platform that recruits diverse enzymatic activities, such as HATs, HDACs, kinases
or helicases, to chromatin? Why are these activities present in some bromodomain-
containing proteins as independently-folding domains of a single polypeptide chain
and in other cases as separate proteins? Does the weak affinity constant for a single
bromodomain binding to N-acetyl-lysine (~0.1 mM) imply that bromodomains can
function only in multiprotein complexes with multiple interaction sites?

C. Do different bromodomains have different functions, including those that are
present more than once in a single protein? For example, double bromodomains,
such as those in TAFII250 might provide mutual cooperativity for protein binding
to chromatin or might interfere with binding instead; or they might confer
differential promoter specificity.

D. Why are some bromodomains essential for enzymatic function or cell viability
whereas deletion of others has no apparent phenotype? Does this behavior reflect
redundancy within bromodomain-containing complexes, so that for example SWI/
SNF activities on some promoters can partially substitute for HAT-containing
complexes such as SAGA?
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E. What is the significance of the time order of recruitment of SWI/SNF activities and
HAT activities to certain promoters? Why does SWI/SNF recruitment of HAT
activity impact yeast transcriptional activation during late mitosis (47), whereas
many inducible promoters recruit HATs independently of SWI/SNF earlier in the
cell cycle, and how widespread is this behavior in eukaryotes?
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