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ABSTRACT

Objective: Niemann-Pick disease type C (NPC) is an inherited disorder characterized by intracellu-
lar accumulation of lipids such as cholesterol and glycosphingolipids in endosomes and lyso-
somes. This accumulation induces progressive degeneration of the nervous system. NPC shows
some intriguing similarities with Alzheimer disease (AD), including neurofibrillary tangles, but pa-
tients with NPC generally lack amyloid-� (A�) plaques. Lipids affect �-secretase-dependent amy-
loid precursor protein (APP) metabolism that generates A� in vitro, but this has been difficult to
prove in vivo. Our aim was to assess the effect of altered lipid constituents in neuronal mem-
branes on amyloidogenic APP processing in humans.

Methods: We examined A� in CSF from patients with NPC (n � 38) and controls (n � 14). CSF was
analyzed for A�38, A�40, A�42, �-cleaved soluble APP, �-cleaved soluble APP, total-tau, and
phospho-tau.

Results: A� release was markedly increased in NPC, with a shift toward the A�42 isoform. Levels
of �- and �-cleaved soluble APP were similar in patients and controls. Patients with NPC had
increased total-tau. Patients on treatment with miglustat (n � 18), a glucosylceramide synthase
blocker, had lower A�42 and total-tau than untreated patients.

Conclusion: Increased CSF levels of A�38, A�40, and A�42 and unaltered levels of �-cleaved
soluble APP are consistent with increased �-secretase-dependent A� release in the brains of
patients with NPC. These results provide the first in vivo evidence that neuronal lipid accumula-
tion facilitates �-secretase-dependent A� production in humans and may be of relevance to AD
pathogenesis. Neurology® 2011;76:366–372

GLOSSARY
AD � Alzheimer disease; APP � amyloid precursor protein; CV � coefficient of variation; NICHD � National Institute of Child
Health and Development; NPC � Niemann-Pick disease type C; P-tau � phosphorylated tau.

Abnormal amyloid-� (A�) metabolism is a core pathologic event in Alzheimer disease (AD).1 A� is
released from the transmembrane protein A� precursor protein (APP) through cleavages by the
enzymes �-secretase and �-secretase. A� metabolism has been linked to lipid homeostasis2,3 and
several studies suggest that �-secretase efficiency is affected by membrane lipid raft topography.4-7

Evidence from humans of the effects of cellular cholesterol homeostasis on amyloid metabolism is
lacking. To evaluate the effects of altered lipid constituents in neuronal membranes on APP process-
ing in vivo, we examined A� in CSF from patients with Niemann-Pick type C disease (NPC).

NPC is a lysosomal storage disorder resulting from mutations in the genes encoding for the
NPC1 and NPC2 proteins.8 The clinical spectrum is broad, but progressive neurologic impair-
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ment is the major clinical problem.9,10 NPC is
characterized by altered neuronal membrane
lipid topography and intracellular accumula-
tion of cholesterol and glycosphingolipids.11,12

We compared a group of well-characterized
patients with NPC against age- and sex-
matched controls in a cross-sectional design to
1) assess the effects of altered lipid topography of
neuronal membranes on A� metabolism in vivo
in humans and 2) examine CSF biomarkers for
A� metabolism and axonal degeneration in
NPC. We hypothesized that patients with NPC
would have increased �-secretase-dependent A�
production and signs of axonal degeneration.
The study was designed in accordance with the
STROBE statement.13

METHODS Standard protocol approvals and patient
consent. All subjects or guardians of subjects provided written
informed consent, and when appropriate assent. The study was
approved by the National Institute of Child Health and Devel-
opment (NICHD) Institutional Review Board.

Subjects. Patients with NPC1 were enrolled in an ongoing
longitudinal observational trial at the NIH between August
2006 and April 2009 (figure 1). The presence of the study was
made known to the NPC community and all patients or guard-
ians of patients who expressed interest in participating were in-
vited. The inclusion criterion was NPC diagnosis, established by
biochemical testing and mutation analysis. Forty patients were
eligible. One was excluded due to warfarin treatment, which was
a contraindication to lumbar puncture. The remaining 39 un-
derwent CSF sampling. One patient was under 1 year of age at
sampling and therefore excluded from this particular study, due

to strong postnatal effects on the CSF biomarkers for A� metab-
olism and axonal degeneration.14 The remaining 38 patients
were included. Disease severity was scored as described by Yanja-
nin et al.15 This phenotyping index ascertains neurologic signs
and symptoms in 9 major (ambulation, cognition, eye move-
ment, fine motor, hearing, memory, seizures, speech, and swal-
lowing) and 8 minor (auditory brainstem response, behavior,
gelastic cataplexy, hyperreflexia, incontinence, narcolepsy, and
psychiatric and respiratory problems) domains. The total possi-
ble score ranges from 0 to 61, with a higher score indicating
more severe clinical impairment. APOE genotyping was per-
formed in patients according to standard procedures. NPC may
be treated with substrate reduction therapy using miglustat
(N-butyldeoxynojirimycin, Zavesca®, Actelion Pharmaceuticals
Ltd, Allschwil, Switzerland), an inhibitor of glucosylceramide
synthase that produces glycosphingolipids. This treatment may
improve neurologic symptoms.16 Eighteen (47%) patients were
on off-label miglustat use (usage without indication approved by
the United States Food and Drug Administration). This is repre-
sentative of miglustat use in the United States during the study
period, and miglustat use was primarily determined by availabil-
ity of insurance coverage. This was not a clinical trial, and inves-
tigators with this study neither provided nor prescribed
miglustat; however, the NICHD Institutional Review Board
specifically approved following patients who were prescribed mi-
glustat by other physicians in this observational trial. Patients on
miglustat did not differ in age from patients without miglustat
(7.9 [2.9–17.2] years vs 9.1 [1.9–51.3] years, p � 0.76). Nine-
teen patients who were undergoing CSF collection on other clinical
indications were eligible as controls. One of these was excluded due
to sample error (all CSF parameters below detection level), and 4
were excluded due to age under 1 year. The remaining 14 were
included in the study as controls. The clinical indications for CSF
collection were acute lymphatic leukemia (n � 12), pseudotumor
(n � 1), and seizures (n � 1). No control had a fever above 38.5°C.
For samples with available data, glucose was normal, protein was
slightly elevated in one sample, and cultures were negative. White
and red blood cell counts were normal in all samples. Demographic
data are available in table 1. Data on subjects excluded due to young
age are available in table e-1 on the Neurology® Web site at www.
neurology.org.

Variables. The endpoints of the study were differences in CSF
biomarker levels between groups. The main predictor was NPC
diagnosis. Within the NPC group, we examined miglustat treat-
ment, disease severity, and duration as predictors of biomarker
levels. Potential confounders were age, sex, and APOE genotype.

CSF sampling. All CSF samples were collected in the morning
by lumbar puncture in the L4/L5 interspace, after an age-
appropriate overnight fast. The lumbar puncture was done un-
der anesthesia and concurrent with MRI and ABR testing. CSF
was collected in a polystyrene tube, and immediately transported
to a local laboratory where it was aliquoted into polypropylene
tubes. Samples were frozen on dry ice and stored at �80°C prior
to assay. Samples were coded prior to sending to the Clinical
Neurochemistry Laboratory in Mölndal, Sweden.

CSF biomarkers of amyloid metabolism and neuronal
cell damage. CSF levels of A�1–42, the axonal damage marker
T-tau, and tau phosphorylated at threonine 181 (P-tau) were
determined using xMAP technology, as previously described.17

APP cleavage by �-secretase releases the extracellular sAPP-�
fragment. APP may also be cut by �-secretase within the A�

domain, precluding A� formation and releasing sAPP-�. CSF

Figure 1 Flow diagram for participating
patients with Niemann-Pick type C
(NPC)

Number of patients with NPC in the study. One patient did
not undergo CSF tapping due to warfarin treatment. One
patient was under 1 year of age and excluded from analysis
due to known effects of young age on the CSF biomarkers
under study.14
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sAPP-� and sAPP-� levels were determined using the MSD®

sAPP�/sAPP� Multiplex Assay as described by the manufacturer

(Meso Scale Discovery, Gaithersburg, MD). This assay employs

the 6E10 antibody to capture sAPP-� and a neoepitope-specific

antibody to capture sAPP-�. Both isoforms are detected by

SULFO-TAG™-labeled anti-APP antibody p2–1. CSF A�x-38,

A�x-40, and A�x-42 were measured using the MSD® Human/

Rodent (4G8) Abeta Triplex Assay as described by the manufac-

turer. This assay employs C-terminal specific antibodies to

specifically capture A�x-38, A�x-40, and A�x-42. All isoforms are

detected by SULFO-TAG™-labeled 4G8 detection antibody.

Intra-assay coefficients of variation (CVs) were �5% for all anal-

yses, except for A�38 (11.7%), sAPP-� (10.9%), and 1 kit of

P-tau (5.13%). A�42 measured by MSD correlated to A�1–42

measured by Luminex in the total study population (R � 0.938,

p � 0.001) and in the subgroups of patients (R � 0.898, p �

0.001) and controls (R � 0.933, p � 0.001). When not other-

wise stated, results for A�1–42 were similar to those for A�42. All

biochemical analyses were performed at the Clinical Neuro-

chemistry Laboratory in Mölndal, Sweden, by experienced and

certified laboratory technicians who were blinded to diagnoses

and clinical data. Two internal control samples (aliquots of

pooled CSF) were run on each plate, and strict acceptance crite-

ria were used for approval of each assay.

Statistics. Statistical calculations were performed using SPSS

17.0 (SPSS Inc., Chicago, IL). As the distribution of quantitative

measures was significantly skewed as determined by the Shapiro-

Wilk test of normality, statistical tests involving these variables

were conducted using the nonparametric Kruskal-Wallis test for

comparisons of multiple groups and the Mann-Whitney U test

for pairwise comparisons between groups. �2 statistics with

Fisher exact test were used for group comparisons of dichoto-

mized data. The Spearman correlation coefficient was used for

analyses of correlation between variables. Quantitative variables

are presented as median (range). To control for potential con-

founding factors, correlations were examined between biomark-

ers and age, sex, and APOE genotypes. Subgroup analyses were

done on patients with or without treatment, and patients with or

without high disease severity score (above the median value).

The significance level threshold was set to p � 0.05. Due to

sample error, data were missing for all CSF parameters in one

subject. This subject was excluded from the study.

RESULTS CSF levels of A�. Patients with NPC had
higher CSF levels of the A� isoforms A�38, A�40,
and A�42 than controls (figure 2, A–C). Also, ratios
of A�42:A�40 and A�42:A�38 were higher in NPC,
indicating a shift in release toward the A�42 isoform
(figure 2, D–E). sAPP-� and sAPP-� were not af-
fected (table 1). Since several patients with NPC had
normal A� levels, we sought to identify factors re-
lated to A� in NPC. No correlations were seen be-
tween A� and age, sex, or disease duration (p �

0.05), but there were correlations to disease sever-
ity. Patients with high disease severity score (above
the median value 13.5, n � 19) had lower A�38,
A�40, A�42, and sAPP-� (figure e-1). When sub-
grouping by miglustat treatment, these disease
severity– dependent differences remained only in
untreated patients (A�38, 338 [129 –1,873] vs 573
[321–1,370] ng/L, p � 0.016; A�40, 4,105
[2,312–9,719] vs 6,256 [4,698 –10,637] ng/L,
p � 0.004; A�42, 314 [152–1,122] vs 535 [311–
1,045] ng/L, p � 0.007). Correlations between
A�38, A�40, A�42, sAPP-�, and sAPP-� are sum-
marized in table e-2.

CSF levels of T-tau and P-tau. The axonal damage
marker T-tau was higher in patients with NPC (fig-
ure 2F), but P-tau levels were normal (table 1). T-tau
correlated to A� and sAPP levels in controls and pa-
tients, while P-tau only correlated with other bi-
omarkers in patients (table e-2). In patients, T-tau
and P-tau decreased with disease duration (R �

�0.509, p � 0.001; R � �0.619, p � 0.001) and
age (R � �0.461, p � 0.004; R � �0.540, p �

0.001). T-tau and P-tau were not related to sex or
disease severity. The only exception was in the sub-
group of untreated patients, where those with high
disease score (above the median value 13.5) had
lower P-tau levels (22 [10–30] vs 31 [21–54] ng/L,
p � 0.004).

Influence of APOE genotype on CSF biomarkers. No
APOE-dependent differences were seen on any CSF
biomarker in patients (APOE �4/�3, n � 5; APOE
�2/�3, n � 2; APOE �3/�3, n � 26). APOE geno-
type was not available for controls.

Effects of miglustat treatment on A� and tau. Al-
though miglustat treatment did not seem to affect
A�38, A�40, or A�x-42 (p � 0.05), treated patients
had lower levels of A�1–42 and T-tau than untreated
patients (243 [106–351] vs 277 [172–373] ng/L,
p � 0.048; 170 [51–627] vs 348 [59–1,271] ng/L,
p � 0.033). sAPP-� and sAPP-� were also lower in
the treated group (326 [164–801] vs 502 [158–971]
ng/mL, p � 0.015; 81 [34–264] vs 140 [33–285]
ng/mL, p � 0.028).

Table 1 Demographics and CSF parametersa

Parameter
Controls
(n � 14)

NPC
(n � 38) p

Age, y 8.9 (1.4–20.3) 7.9 (1.9–51.3) 0.665

Women, n (%) 9 (64) 20 (53) 0.539

Age at first symptom, y NA 0.85 (0–39) NA

Duration of NPC, y NA 6.84 (1.55–24.08) NA

Disease severity score NA 13.5 (1–40) NA

CSF sAPP-�, ng/mL 360 (160–653) 432 (158–971) 0.27

CSF sAPP-�, ng/mL 99 (34–209) 120 (33–285) 0.38

CSF P-tau, ng/L 24 (7–50) 26 (9–54) 0.40

Abbreviations: NPC � Niemann-Pick type C disease; P-tau � phosphorylated tau; sAPP �

soluble amyloid precursor protein.
a Data presented as median (range).
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DISCUSSION Using a well-characterized group of
patients with NPC, a condition with altered neu-
ronal lipid homeostasis, we found increased
�-secretase-dependent A� production in humans
in vivo. The patients had increased levels of the
�-secretase-dependent APP metabolites A�38,
A�40, and A�42 in parallel with unaltered sAPP-�
levels. These findings were in accordance with our
hypothesis, which was based on experimental studies
of lipid effects on �-secretase function. We also
found that CSF A� and T-tau are promising biomar-
kers in NPC. This is the first systematic study of
these parameters in patients with NPC. This study
utilized patient CSF, generating data on in vivo hu-
man properties that are unobtainable from animal or
cell model studies. The sample size was large consid-

ering the rarity of NPC, which favors generalization
of the results to other patients with NPC. However,
since most patients were children, generalization to
adult patients is limited.

Due to its ability to cut APP at different posi-
tions, �-secretase yields A� peptides of different
length.18 The patients in this study had increased
A�42:A�40 and A�42:A�38 ratios, demonstrating a
shift of the cleavage site activity toward production
of A�42. It has been proposed that the cleavage spec-
ificity might be influenced by membrane thickness19

and different lipid species have different effects on
�-secretase activity in vitro.20 In NPC, it is not clear
which lipid species is the primary offending metabo-
lite.21,22 Also, although NPC neurons accumulate
cholesterol in late endosomes and lysosomes, the to-

Figure 2 Elevated CSF levels of A�38, A�40, and A�42 in Niemann-Pick type C (NPC)

CSF levels of A�38, A�40, and A�42 (A–C), ratios of A�42 to A�40 and A�38 (D–E), and CSF levels of T-tau (F) in controls and patients with NPC.
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tal cholesterol content in NPC brains is not in-
creased.23,24 The altered A� production in this study
may have been caused by changed �-secretase activity
due to changed lipid constituents of neuronal mem-
branes. However, �-secretase activity is located in
late secretory, endosomal, and synaptic pathways.25,26

It is therefore possible that lysosomal impairment, as
a result of lipid accumulation, led to decreased clear-
ance of C-terminal APP fragments with more sub-
strate available for �-secretase.27 This would
implicate alterations in lysosomes or endosomes
rather than changed lipid constitution of the plasma
membrane as key pathways of abnormal APP pro-
cessing. Studies on APP processing in patients with
other lysosomal storage diseases, both with and with-
out neurologic manifestations, could elucidate this
further.

A large body of evidence supports that BACE1 is
the main �-secretase.28 BACE1 is a transmembrane
protease with a low pH optimum, found in acidic
intracellular endosomes and transgolgi. Upon matu-
ration, BACE1 is S-palmitoylated on residues located
at the junction of the transmembrane and cytosolic
domains, facilitating targeting to lipid rafts.29,30 Al-
though this might enhance BACE1-mediated pro-
cessing of APP,31 nonpalmitoylated BACE1 seems
equally efficient in APP processing.32 We found sim-
ilar levels of sAPP-� in patients with NPC and con-
trols. Since CSF sAPP-� reflects brain �-secretase
activity in primates, this argues against increased ac-
tivity of �-secretase.33 Likewise, decreased activity of
�-secretase was unlikely, since sAPP-� was similar in
patients and controls. It is unknown which enzyme
exerts the major �-secretase activity in vivo in hu-
mans, but the putative �-secretase ADAM10 is ab-
sent from lipid rafts, linking low cholesterol content
to nonamyloidogenic APP processing.34 The normal
sAPP levels in this study argue against increased pro-
duction or intracellular transport of APP in NPC,
but protein expression studies on brain tissue are
needed to verify this.

Previous findings on lipid homeostasis and amy-
loid metabolism are contradictory. Hypercholesterol-
emia is a risk factor for AD in epidemiologic studies35

and the major genetic risk factor for sporadic AD is
the �4 allele of APOE, the main cholesterol carrier in
the CNS.36 However, although cholesterol-lowering
agents reduce A� in experimental studies, results
from clinical trials are ambiguous.5,37–40,e1 Clinical
correlations between hypercholesterolemia and AD
are difficult to interpret, since cholesterol does not
cross the blood–brain barrier and nearly all brain
cholesterol is synthesized in situ.e2

NPC has some intriguing similarities with AD,
including intraneuronal tangles containing P-tau.e3

Despite this, CSF P-tau levels were normal in pa-
tients with NPC. This is actually not surprising,
since several neurodegenerative conditions, including
frontotemporal dementia, have neurofibrillary tan-
gles despite normal CSF P-tau levels.e4 Increased
CSF P-tau appears to be a rather AD-specific find-
ing.e5 Increased CSF T-tau in patients with NPC is
consistent with axonal degeneration, and CSF T-tau
is increased in AD also. Miglustat-treated patients
had lower CSF T-tau than untreated patients, which
suggests that treatment might have reduced axonal
degeneration. Similarly, CSF T-tau was reduced in
antibody responders in the AN1792 AD trial with
immunization against A�, interpreted as a possible
reduction of cellular degeneration.e6 These findings
allow us to propose that CSF T-tau is a biomarker for
treatment effects on axonal degeneration. However,
detailed follow-up studies are needed to validate that
CSF T-tau was indeed reduced as a consequence of
miglustat treatment. Such studies could also include
measurements of CSF glycolipids, which would be
expected to be lowered by the direct mechanism of
action of the drug. Other similarities between AD
and NPC include endosomal alterations,e7 lysosomal
dysfunction,e8 and accelerated neurologic deteriora-
tion in the presence of APOE �4.e9,e10 In autopsy
studies, patients with NPC homozygous for APOE
�4 had amyloid plaques, but these were diffuse and
AD-type dense core plaques were absent.e9,e11 This
lack of dense core A� plaques is surprising consider-
ing the increased production of A�42 reported here.
Patients with NPC in autopsy studies might be too
young to present dense core plaque pathology,e11,e12

but patients up to 40 years of age have been exam-
ined, corresponding well to age at autopsy in familial
AD, where dense core plaques are readily
detected.e13-e15 In this study, APOE genotype did
not affect biomarker levels, but only 5 patients car-
ried the APOE �4 allele and these patients were
young (age 3.3–12.7 years). Amyloid markers did
not correlate with disease duration or age, arguing
against amyloid accumulation even in later stages. If
patients with NPC indeed do not aggregate extracel-
lular A�, increased A�42 production might be insuf-
ficient for extracellular dense core plaque formation.

The role of A� in NPC neurodegeneration is un-
clear. NPC endosomes accumulate A�e16 and intra-
cellular A� accumulation might be toxic.e17

Correlations between amyloid markers and the clini-
cal disease severity score suggest that CSF A� may be
used to evaluate disease activity. It is not clear why
more severely affected patients had lower CSF A�,
but advanced neurodegeneration could hypotheti-
cally compromise the ability to release A�, since syn-
aptic activity is required for A� release.e18
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Longitudinal studies will clarify if A� production
changes over time in NPC, which will influence the
possibility of using CSF A� measurements as disease
biomarkers. Experimental studies with drugs target-
ing amyloid metabolism may give clues on the role of
amyloid in NPC neurodegeneration. Studies includ-
ing larger numbers of adult patients with NPC may
show if these initial observations hold true also for
older patients where the disease phenotype may be
even more heterogeneous.
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