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Abstract
Wnt signal transduction plays a crucial role in stem cell proliferation and regeneration. When
canonical Wnt signaling is low, heads develop, and when it is high, tails are formed. In planarians,
Wnt transcription is activated by wounding in a β-catenin–independent way. Hedgehog is one of
the signals involved, because it induces regeneration of tails (instead of heads) through the
activation of Wnt transcription. Depletion of Smad4 blocks regeneration entirely, which suggests
that the bone morphogenetic protein signaling pathway and the Wnt pathway are required for
regeneration and body patterning.

Introduction
Animal cells utilize a surprisingly small number of cell-cell signaling pathways to
communicate with each other—such as Wnt, Hedgehog, transforming growth factor–β
(TGF-β), Notch, receptor tyrosine kinases, and nuclear hormone receptors (1). These
conserved signal transduction pathways have been used to generate diverse animal forms
during evolution (2). Planarians have long fascinated biologists because an entire animal can
regenerate from small fragments of an adult animal (3). Studies on regeneration of the
planarian Schmidtea mediterranea have provided important insights into how wound healing
is related to the overall position of the wound in the animal (3–5).

Planarian biology
The planarian strain used in modern studies is asexual (because of a chromosomal
translocation) and reproduces by stretching its body until it breaks in two, producing two
flatworms. The only cells that divide mitotically in these animals are stem cells called
neoblasts, which are distributed relatively uniformly throughout the body in a salt-and-
pepper fashion (6,7). During regeneration, neoblasts proliferate and cells accumulate in the
wound, forming a regeneration blastema. The body of the adult planarian contains a gradient
of positional information, as illustrated by the simple experiment shown in Fig. 1. When a
planarian is cut transversely, the caudal fragment will regenerate a head and the anterior
piece will regenerate a tail. If two different animals are cut transversely at very similar
positions (indicated by the black and white dashed lines in Fig. 1), the resulting blastemas
will regenerate entirely different structures (8). Because the cells in these blastemas
originate essentially from the same region, the formation of heads or tails depends not on the
neoblasts, but rather on the relationship of the wound to an antero-posterior (A-P) gradient
of positional information.
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Wnt and A-P patterning
In embryos of the frog Xenopus laevis, A-P polarity is determined by a gradient of canonical
Wnt/β-catenin signaling, in which Wnt concentrations are low in the head and high in the
tail (9,10). This key role of Wnt signaling in patterning has now been confirmed during axis
formation in most animals (2,10,11).

The laboratory of Sánchez Alvarado discovered that planarians are exquisitely sensitive to
RNA interference (RNAi) of gene expression triggered by feeding Escherichia coli
expressing double-stranded RNA (dsRNA) or by injecting dsRNA (12). High-throughput
screens led to the identification of genes required for regeneration and stem cell maintenance
(13). Among these, some of the most informative were those encoding components of the
Wnt/β-catenin pathway. Depletion of β-catenin or Disheveled (a Wnt transducer) resulted in
the regeneration of heads instead of tails (14,15). Conversely, RNAi for adenomatous
polyposis coli (APC), which encodes a protein that normally facilitates the degradation of β-
catenin, caused the regeneration of tails instead of heads (14). Depletion of wntless, a gene
required for Wnt secretion, or of wntP-1, a gene encoding the posterior-most planarian Wnt
growth factor, promoted head formation (16). The observation that WntP-1 was required for
tail formation provided the starting point for the new investigations reviewed here.

Wnt and regeneration
Planarians depleted of WntP-1 regenerate heads in place of tails (16,17) in about 25% of
animals (Fig. 2). wntP-1 transcripts were unexpectedly detected in both anterior and
posterior wounds during the first day after the operation, even though the gene is normally
expressed only posteriorly. wntP-1 was present in any type of wound (such as diagonal,
longitudinal, or puncture), which indicated a coupling between its early expression and
regeneration. However, after 3 days, wntP-1 expression was maintained only in its normal
posterior domain (17).

Nine planarian Wnt genes have been identified to date. wntP-2 is expressed in the posterior
half of the animal, and double knock-down of WntP-2 and WntP-1 increased the frequency
of posterior heads (17). During regeneration, wntP-2 is expressed in posterior wounds after
wntP-1, and this expression requires β-catenin and wntP-1. Furthermore, the early
expression of wntP-1 in all wounds is independent of Wnt signaling, which indicates that the
early regenerative response to wounding is activated by a different signal transduction
pathway acting upstream of Wnt.

A component of this upstream signal is Hedgehog (Hh) signaling. Most of the Hh pathway
components have been cloned in planarians and show relatively uniform distribution
patterns (3). Reducing Hh signaling with hh RNAi inhibited tail regeneration. Activating the
Hh pathway with patched RNAi (Patched normally inhibits Hh signaling) caused
overexpression of wntP-1 and regeneration of tails instead of heads at the anterior end (3).
Double knock-down of WntP-1 and Patched reversed the high Hh signaling phenotype and
caused the regeneration of heads at both ends. Thus, the effects of Hh are mediated by the
transcriptional activation of WntP-1 at wound sites (3).

The intimate relation between Wnt and regeneration is becoming increasingly apparent in
other organisms. In Hydra, a cnidarian that also has unlimited regenerative plasticity, polyp
development is mediated by the Wnt/β-catenin pathway (18). The expansion of mammalian
stem cells requires Wnt signaling, usually in conjunction with growth factors that activate a
receptor tyrosine kinase (19). For example, villus regeneration in the intestine can be
blocked by the Wnt inhibitor Dickkopf-1 (20). The importance of these findings for
regenerative medicine is illustrated by the discovery that injection of liposomal vesicles
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containing Wnt3a into mouse fractures accelerates bone regeneration (21). In the future, it
will be informative to identify wound-responsive enhancer elements in genes such as wntP-1
or its mammalian orthologs. Reporter genes activated by wounding may help to establish
whether Hh is generally required for wound repair. Another candidate pathway is fibroblast
growth factor (FGF)–mitogen-activated protein kinase (MAPK), which is readily activated
by wounding in vertebrate embryos (22).

Regeneration and morphogenetic fields
Planarian regeneration leads to the most perfect pattern possible. Multiple deep cuts in the
head region can lead to animals with many little heads in which A-P and dorsal-ventral (D-
V) patterns are seamlessly integrated (Fig. 3). How is this regulatory feat achieved? Self-
regulating morphogenetic fields are of interest to developmental biologists, because they
explain, for example, the pattern regeneration observed when an early embryo is cut in half,
which leads to the formation of identical twins in sea urchin, Xenopus, or chick embryos
(23,24).

In Xenopus, D-V patterning is established by a gradient of bone morphogenetic protein
(BMP) signaling. BMPs are members of the TGF-β family, which also has a second branch
represented by the Nodal and Activin subfamily of growth factors. A self-regulating D-V
patterning field is established by a network of secreted proteins involving dorsal and
ventrally expressed BMPs, the BMP-binding protein Chordin, and Tolloid—a
metalloproteinase that degrades Chordin, which releases active BMPs (24). Binding of
BMPs to the BMP receptor triggers the phosphorylation and activation of the Smad1
transcription factor, which, together with its cofactor Smad4, transduces the BMP signal. In
addition, Smad1 is phosphorylated by glycogen synthase kinase–3 (GSK3), which promotes
its degradation. Phosphorylation of Smad1 by GSK3 is inhibited by Wnt/β-catenin signaling
(25), and this provides a mechanism for integration of the A-P (Wnt) and D-V (BMP)
patterning systems that has been conserved between vertebrates and Drosophila (26).

In invertebrates such as planarians, the D-V axis is inverted compared with vertebrates
during evolution (2), so that BMP4 is expressed dorsally (4). The central nervous system
(CNS) is located ventrally, but when BMP4 was depleted, a duplicated CNS (including an
extra pair of eyes) was formed ectopically on the dorsal side (27). RNAi against tolloid,
BMP4, or Smad4 caused animals to form two ventral sides, some of which even glided
upside down on their former dorsal surface. These genes encoding BMP pathway
components are also required for regeneration, particularly in the midline region (4). The
most spectacular phenotype is that induced by Smad4 RNAi, which blocks the formation of
all regeneration blastemas (4).

Smad4 is essential for regeneration and required for the transduction of both BMP and
Activin-Nodal signals. Wnt can prolong the signal of the Smad4 binding partner, Smad1, by
inhibiting its degradation through GSK3 (25). Planarian Smad1 contains putative GSK3
phosphorylation sites (28) and could therefore be potentially regulated by Wnt. The
mammalian Activin-Nodal transcription factor Smad3 might also be regulated by GSK3 and
Wnt (29). Thus, Smads provide a good entry point to investigate how a harmonious body
plan, in which A-P and D-V patterns are integrated, is formed and regenerated. There is still
room for a role for TGF-β signaling in A-P patterning: In zebrafish and Xenopus,
coexpression of Wnt, Nodal, and BMP facilitates tail formation, whereas inhibition of these
growth factors promotes head formation (30,31).

A final issue concerns the role of neoblasts in the planarian body plan. These stem cells can
be eliminated by x-ray irradiation. Neoblast-depleted planarians can still activate
transcription of wntP-1, wntP-2, and BMP4 after wounding (4,17). Therefore, the key to the
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gradient of positional information in planarians resides in the nondividing differentiated
cells. The stem cells seem to proliferate and differentiate in response to instructions present
as a blueprint in somatic nondividing cells.

Studies in the planarian model system have provided powerful new insights into the role of
Wnt in the wounding response, regeneration, and stem cell proliferation. There is hope that
future studies may illuminate how gradients of positional information are maintained along
the body axes of an adult animal.
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Fig. 1.
Planarian head or tail regeneration blastemas sense the A-P positional information in the
animal body. In this experiment, though transverse sections (indicated by the white and
black dashed lines) were performed at essentially identical levels, the proliferating blastemas
(in dark brown) regenerate very different structures (indicated in blue); the posterior
fragment also regenerates a pharynx. [Adapted from (22)]
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Fig. 2.
Wnt is required for the regeneration of tails in planarians. Anterior fragments treated with
control RNAi regenerate normal tails posterior to the cut (right), whereas wntP-1 RNAi
causes the formation of posterior heads (left). Note that the posterior head develops eye (ey)
photoreceptors and that tissues resulting from proliferation of regeneration blastema are less
pigmented than preexisting tissue. [Image: Christian P. Petersen and Peter W. Reddien,
Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology.
Adapted from (3)]
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Fig. 3.
Self-regulation of pattern formation in the head field of planaria after a series of anterior
cuts. [Adapted from (8)]
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