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Abstract

Background: High-throughput screening (HTS) is a key part of the drug discovery process during which thousands
of chemical compounds are screened and their activity levels measured in order to identify potential drug
candidates (i.e., hits). Many technical, procedural or environmental factors can cause systematic measurement error
or inequalities in the conditions in which the measurements are taken. Such systematic error has the potential to
critically affect the hit selection process. Several error correction methods and software have been developed to
address this issue in the context of experimental HTS [1-7]. Despite their power to reduce the impact of systematic
error when applied to error perturbed datasets, those methods also have one disadvantage - they introduce a bias
when applied to data not containing any systematic error [6]. Hence, we need first to assess the presence of
systematic error in a given HTS assay and then carry out systematic error correction method if and only if the
presence of systematic error has been confirmed by statistical tests.

Results: We tested three statistical procedures to assess the presence of systematic error in experimental HTS data,
including the c2 goodness-of-fit test, Student’s t-test and Kolmogorov-Smirnov test [8] preceded by the Discrete
Fourier Transform (DFT) method [9]. We applied these procedures to raw HTS measurements, first, and to
estimated hit distribution surfaces, second. The three competing tests were applied to analyse simulated datasets
containing different types of systematic error, and to a real HTS dataset. Their accuracy was compared under
various error conditions.

Conclusions: A successful assessment of the presence of systematic error in experimental HTS assays is possible
when the appropriate statistical methodology is used. Namely, the t-test should be carried out by researchers to
determine whether systematic error is present in their HTS data prior to applying any error correction method. This
important step can significantly improve the quality of selected hits.

Background
High-throughput screening (HTS) is a modern technol-
ogy used by drug researchers to identify pharmacologi-
cally active compounds [10]. HTS is a highly automated
early-stage mass screening process. Contemporary HTS
equipment allows for testing more than 100,000 com-
pounds a day. HTS serves as a starting point for rapid
identification of primary hits that are then further
screened and evaluated to determine their activity, spe-
cificity, and physiological and toxicological properties
[2]. As a highly sensitive test system, HTS requires both
precise measurement tools and dependable quality

control. The absence of standardized data validation and
quality assurance procedures is recognised as one of the
major hurdles in modern experimental HTS [11-13].
Acknowledging the importance of automatic quality
assessment and data correction systems, many research-
ers have offered methods for eliminating experimental
systematic artefacts which, if left uncorrected, can
obscure important biological or chemical properties of
screened compounds (false negatives) and can seemingly
indicate biological activity when there is none (false
positives) [1-7,10-16].
Systematic error may be caused by various factors,

including robotic failures and reader effects, pipette mal-
function or other liquid handling anomalies, unintended
differences in compound concentrations due to agent
evaporation or variation in the incubation time and
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temperature differences, and lighting or air flow present
over the course of the entire screen [2,6]. Unlike ran-
dom error that produces measurement noise and usually
has minimal impact on the whole process, systematic
error produces measurements that are systematically
over- or underestimated. Systematic error may be time
dependent, introducing biases in individual plates or
subsets of consecutive plates, but it may also affect an
entire HTS assay (i.e., all screened plates). In practice,
systematic error is almost always location related. The
under- or overestimation affects compounds located in
the same row or column or in the same well location
across the screened plates. The row and column effects
may be persistent across the assay affecting repeatedly
the same rows and columns on different plates or may
vary from plate to plate, perturbing some rows and col-
umns within a particular plate only [6]. Plate controls
are used in HTS to ensure the accuracy of the activity
measurements being taken. Controls are substances with
stable well-known activity levels. They might be positive
(i.e., a strong activity effect is observed) or negative (i.e.,
no any activity effect is observed). Controls help to
detect plate-to-plate variability and determine the level
of background noise.
The following normalisation and pre-processing meth-

ods have been widely used in experimental HTS to
remove plate-to-plate variation and make plate measure-
ments comparable across plates [6,13]:

• Percent of control - the following formula is used:
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, where xij is the raw measurement of the

compound in well (i, j), x̂ ij is the normalized value

of xij, and μpos is the mean of positive controls.
• Control normalization (known also as normalized
percent inhibition transformation) is based on the
following formula:
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, where xij is the raw measurement

of the compound in well (i, j), x̂ ij is the normalized

value of xij, μpos is the mean of positive controls, and
μneg is the mean of negative controls.
• Z-score normalization is carried out as follows:
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, where xij is the raw measurement of

the compound in well (i, j), x̂ ij is the normalized

value of xij, μ is the mean of all the measurements
of the given plate, and s is the standard deviation of
all the measurements of the given plate.

• B-score (i.e., Best score normalization [3]) is carried
out as follows:
First, a two-way median polish procedure [17] is per-
formed to account for row and column effects of the
plate. The resulting residuals within each plate are
then divided by their median absolute deviation,
MAD. It is worth noting that there is an additional
smoothing step that could be applied across plates
(see the original article [3] for a description of the
smoothing). This optional smoothing step was not
applied however in [[5,6] and [17]].
The residual (rijp) of the measurement in row i and
column j on the pth plate is obtained as follows by a
two-way median polish procedure (Equation 1):

r x x x R Cijp ijp ijp ijp p ip jp= − = − + +( )ˆ ˆ ˆ ˆ . (1)

The residual is defined as the difference between the

observed result (xijp) and the fitted value x̂ ijp ,

defined as the estimated average of the plate ( ̂p ) +

estimated systematic measurement offset R̂ip( ) for

row i of plate p + estimated systematic measurement

column offset Ĉ jp( ) for column j of plate p. For

each plate p, the adjusted median absolute deviation
(MADp) is then obtained from the rijp’s.
Median absolute deviation (MAD)- a robust estimate
of spread of the rijp’s values is computed as follows:

median r median rijp ijp    − ( ){ } .
The B-score normalized measurements are then cal-
culated as follows:

B - score
r

MAD
ijp

p

= . (2)

The B-score normalization was introduced by a team
of Merck Frosst researchers [3] as a systematic error
correction method.
• Well correction is another advanced systematic
error correction technique [5,6] used to remove sys-
tematic biases affecting the assay’s wells, rows or col-
umns, and spread across all the plates of the assay. It
consists of two main steps:

1. Least-squares approximation of the data carried
out separately for each well location of the assay;
2. Z-score normalization of the data within each
well location of the assay (i.e., the Z-score nor-
malization is performed across all the plates of
the assay).
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In the HTS workflow, the normalization/data correc-
tion phase is usually followed by the hit selection process.
During this process the most active compounds are iden-
tified as hits and selected for additional screens. A prede-
fined threshold is usually established to select hits [13].
Depending on the specifics of the research study, one
may be looking for compounds whose activity level is
greater than the defined threshold (i.e., activation assay)
or interest may lie in the compounds whose measure-
ments are below the defined threshold (i.e., inhibition
assay). In this study, we always assume the latter case
where the hits are the compounds with the smallest mea-
surement values. The threshold for defining hits is
usually expressed using the mean value and standard
deviation of the considered measurements. The most
widely used threshold is μ-3s, where μ is the mean value
and s is the standard deviation of the considered mea-
surements. Hits can be selected globally, over the whole
assay, when the mean and standard deviation of all assay
compounds are calculated, or on a plate-by-plate basis,
when the mean and standard deviation of the compounds
of each single plate are considered [6,13].
The presence of systematic error in a HTS assay can

be identified and visualized using its hit distribution sur-
face [4,6]. Such a surface can be computed by determin-
ing the number of selected hits for each well location.
In the ideal case when systematic error is absent, we
expect that the hits are evenly distributed over the well
locations. However, this expectation is not always ful-
filled in real datasets (see Figure 1). This figure presents
the hit distribution surfaces computed for two hit selec-
tion thresholds,μ-2s and μ-3s, of two experimental HTS
screens performed at McMaster (Figure 1a,b - [18]) and
Princeton (Figure 1c,d - [19]) Universities. The row and
column effects in the hit distributions across plates are
easily noticeable here, especially in the case of a lower
(i.e., μ-2s) hit selection threshold. The dataset provided
by the Chemistry Department of Princeton University
consists of a screen of compounds that inhibit the glyco-
syltransferase MurG function of E. coli [19]. The experi-
mental data for 164 plates were considered. According
to the ChemBank description, this assay has been
obtained during a screen that measured the binding of
MurG to a fluorescent (fluorescein-labelled) analogue of
UDP-GlcNAc. Positives were defined as compounds that
inhibit binding of GlcNAc to MurG. The McMaster
assay was originally used as a benchmark in McMaster
Data Mining and Docking Competition [18]. The
McMaster dataset, which will be examined in detail in
this study, consists of compounds intended to inhibit
the E. coli Dihydrofolate reductase (DHFR). The screen
of 50,000 training molecules selected by the organizers
of McMaster Competition yielded 96 primary hits, then,

12 potent hits (i.e., hits confirmed by dose response ana-
lysis), the majority of which were novel DHFR inhibitors
that fell into 3 broad structural classes [18].
It is worth noting that the application of sophisticated

pre-processing HTS techniques does not always guaran-
tee data improvement. Moreover, the application of sys-
tematic error correction methods on error-free HTS
assays will produce data in which certain activity mea-
surements will be biased [6]. The result of such a misuse
of data pre-processing methods can lead to a dramati-
cally inaccurate hit selection. Makarenkov et al. (see
Figure 2 and Figure 4, cases a and c, in [6]) showed that
all data correction methods introduce a bias when applied
to error-free HTS data. This bias can be less important
(e.g., in the case of the Well correction procedure) or
very significant (e.g., in the case of the B-score method).
Hence, the data correction methods should be applied
with caution and only in situations when the presence of
systematic error in the given assay has been demonstrated
by an appropriate statistical methodology. Assessing the
presence of systematic error in experimental HTS is the
main focus of this article.

Figure 1 Systematic error in experimental HTS data. Hit
distribution surfaces for the McMaster (cases (a) and (b) - 1250
plates - [18]) and Princeton (cases (c) and (d) - 164 plates - [19])
Universities experimental HTS assays. Values deviating from the
plate means for more than 2 standard deviations - cases (a) and (c),
and for more than 3 standard deviations - cases (b) and (d) were
selected as hits. The well, row and column positional effects are
shown (the wells containing controls are not presented).
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Methods
Data description
In this study we consider an experimental assay provided
by the HTS laboratory of McMaster University. This
assay was called Test assay and used as a benchmark in
McMaster Data Mining and Docking Competition [18].
McMaster Test assay consists of 50,000 different chemi-
cal compounds whose potential to inhibit the E. coli
DHFR was tested. Each of the 50,000 considered com-
pounds was screened in duplicate; two copies of each of
the 625 plates were run through the HTS equipment;
1250 plates in total, with wells arranged in 8 rows and 12
columns, were screened; columns 1 and 12 of each plate
were used for positive and negative controls and were,
therefore, not considered in our study. Thus, every plate
comprised 80 different compounds. The exact experi-
mental conditions of Test assay are reported in [18]. The
competition organizers defined as primary hits the com-
pounds that reduced the DHFR of E. coli to 75% of the
average residual activity of the high controls. Two lists of
hits were published (for more details, the reader is
referred to: http://www.info2.uqam.ca/~makarenv/
experimental_actives.pdf). The first list, called a consen-
sus hits list, contained all compounds that were classified
as hits in both of their replicate measurements (i.e., both
measurement values were lower than or equal to 75% of
the reference controls). Only 42 of all the 50,000 tested
compounds were declared consensus hits. The second
list, called an average hits list, contained 96 compounds
classified as hits when the average value of the two HTS
measurements was lower than or equal to 75% of the

reference controls. Obviously, all consensus hits were
also average hits. A secondary screening of the 96 average
hits was also performed in order to determine their activ-
ity in different concentrations. As result of the secondary
screening, 12 of the average hits were identified as D-R
hits (i.e., hits having well-behaved dose-response curves).

Generating systematic error
We simulated data in order to evaluate the perfor-
mances of the systematic error detection tests. First, we
generated error-free datasets consisting of random nor-
mally distributed data. The basic data format adopted
here was that of the McMaster dataset - 1250 plates,
each containing 96 wells arranged in 8 rows and 12 col-
umns. In addition, we also generated two other basic
datasets which were 4 and 16 times bigger. They also
included 1250 plates, each of them comprising 384 (16 ×
24) and 1536 (32 × 48) wells, respectively. It is worth
noting that 96, 384 and 1536-well plates are the most
typical plate formats used in the modern HTS.
An assay was defined as an ordered set of plates PLp,

where p (1 ≤ p ≤ 1250) is the plate number. Each plate,
PLp, can be viewed as a matrix of experimental HTS
measurements xijp, where i (1 ≤ i ≤ NR) is the row num-
ber, j (1 ≤ j ≤ NC) is the column number, and NR and
NC are, respectively, the number of rows and columns
in PLP. The generated values Xijp’s followed the standard
normal distribution ~N(0, 1).
Then, the hits were added to the datasets. Several hit

percentages, h, were tested in our simulations: h = 0.5,
1, 2, 3, 4 and 5%. The locations and values of hits were
chosen randomly. The probability of each well in each
plate to contain a hit was h%. The values of hits fol-
lowed a normal distribution with the parameters ~N(μ -
5SD, SD), where μ and SD are the mean value and stan-
dard deviation of the error-free dataset.
In total, five types of datasets, presented in Table 1,

containing different kinds of systematic and/or random
error were generated and tested.
In order to render our simulation study more realistic,

we limited the number of rows, columns and wells
affected by systematic error. Typically, in real HTS
assays only some of the error parameters (i.e., ri, cj, wij,
rip and cjp, see Table 1) are non null and only a few col-
umns and rows are biased by systematic error. In data-
sets of types A and B, the number of rows and columns
affected by systematic error as well as their locations
were chosen randomly. These parameters were identical
for all the plates of the assay. In datasets of type D, the
number of rows and columns affected by systematic
error as well as their locations were also randomly
selected, but these parameters were different for differ-
ent plates of the assay. In datasets of type C, the number
of biased wells and their locations were randomly

Figure 2 Simulation 1, Plate Size: 96 wells - Cohen’s Kappa vs
Error Size. Systematic error size: 10% (at most 2 columns and 2 rows
affected). First column: (a) - (c): a = 0.01; Second column: (d) - (f): a =
0.1. Systematic Error Detection Tests: (◆) t-test and (■) K-S test.
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selected and were the same for all assay plates. The
datasets used in our simulations were subject to the fol-
lowing constraints. For the 96-well plates, at most 2
rows and 2 columns (cases A, B and D), and not more
than 10% of the wells (case C) were affected by systema-
tic error. For the 384-well plates, the limits were 4 rows,
4 columns and 10% of the wells, whereas for the 1536-
well plates, systematic error affected at most 8 rows, 8
columns and 10% of wells.

Systematic error detection tests
Three systematic error detection methods, including the
t-test, the c2 goodness-of-fit test and Discrete Fournier
Transform procedure followed by the Kolmogorov-
Smirnov test, were examined in this study in the context
of experimental HTS.
t-test
The first systematic error detection test was based on
the classical two-sample Student’s t-test for the case of
samples with different sizes. In Simulation 1, we carried
out this test on every row and every column of each
assay. In Simulation 2, we applied it to the rows and
columns of the assay’s hit distribution surfaces. In both
cases, we divided the data into two independent subsets
(i.e., samples). The first subset contained the measure-
ments of the tested row or column while the second
subset consisted of all remaining plate measurements. In
this test, the null hypothesis H0, was that the selected
row or column does not contain systematic error. If sys-
tematic error is absent, then the mean of the given row
or column is expected to be close to the mean of the
rest of the data in the given plate or hit distribution

surface. For the two samples in hand: S1 with N1 ele-
ments and S2 with N1 elements, we first calculated the

two sample variances s1
2 and s2

2 , and then their

weighted average (Equation 3):
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The value of the t-statistic was then obtained as pre-
sented in Equation 4:
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where μ1 is the mean of the sample S1 and μ2 is the
mean of the sample S2. The calculated t-statistic was
then compared to the corresponding critical value for
the chosen statistical significance level a (the a values
equal to 0.01 and 0.1 were used in our simulations) in
order to decide whether or not H0 should be rejected.
While assuming homogeneity of variance in the con-
struction of the t-test, the computation can be opti-
mized using the equivalent contrasts in the context of
an analysis of variance.
c2 goodness-of-fit test
The second tested method was the c2 goodness-of-fit
test. This test was performed in Simulation 2 only in
order to assess the presence of systematic error in the
hit distribution surfaces. It was first recommended in [6]
in order to identify systematic error in HTS data. The

Table 1 Five types of HTS datasets containing different kinds of systematic and/or random error generated and tested
in this study

Error type Generation of error-affected measurements

A. Datasets with both column and row systematic errors which are
constant across all assay plates.

′ = + + +x x r c Randijp ijp i j ijp , 1 ≤ i ≤ 8, 1 ≤ j ≤ 12, 1 ≤ p ≤ 1250.

B. Datasets with the column systematic error only which is constant
across all plates.

′ = + +x x c Randijp ijp j ijp , 1 ≤ i ≤ 8, 1 ≤ j ≤ 12, 1 ≤ p ≤ 1250.

C. Datasets with the well systematic error which is constant across all
plates.

′ = + +x x w Randijp ijp ij ijp , 1 ≤ i ≤ 8, 1 ≤ j ≤ 12, 1 ≤ p ≤ 1250.

D. Datasets with the variable column and row systematic error which
are different for each plate.

′ = + + +x x r c Randijp ijp ip jp ijp , 1 ≤ i ≤ 8, 1 ≤ j ≤ 12, 1 ≤ p ≤ 1250.

E. Datasets with the random error only (i.e., systematic error was absent). ′ = +x x Randijp ijp ijp , 1 ≤ i ≤ 8, 1 ≤ j ≤ 12, 1 ≤ p ≤ 1250.

where: ′xijp is the error-affected value in well i,j (row i, column j) of plate p.

xijp is the original value in well i,j of plate p in the error-free dataset.

ri is the systematic error in row i (constant over all plates); it had a normal distribution with the parameters ~N(0, C).

xj is the systematic error in column j (constant over all plates); it had a normal distribution with the parameters ~N(0, C).

wij is the systematic error that affects well i,j (row i, column j) and is the same for all plates; it had a normal distribution with the parameters ~N(0, C).

rip is the systematic error in row i of plate p; it had a normal distribution with the parameters ~N(0, C).

cjp is the systematic error in column i of plate p; it had a normal distribution with the parameters ~N(0, C).

Randijp is the random error affecting well i,j (row i, column j) of plate p; it had a normal distribution with the parameters ~N(0, 0.3×SD).

Datasets for C = 0, 0.6×SD, 1.2×SD, 1.8×SD, 2.4×SD and 3×SD were generated and tested, where μ is the mean and SD is the standard deviation of the error-free
dataset.
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null hypothesis H0, here, is that no systematic error is
present in the data. If H0 is true, then the hits are evenly
distributed across the well locations and the observed
counts of hits xij in each row i and each column j of the
hit distribution surface is not significantly different from
the expected value calculated as the total counts across
the entire surface divided by the number of wells. The
rejection region of H0 is P(c2 > Ca)>a, where Ca is the
c2 distribution critical value corresponding to the
selected a parameter (the a values equal to 0.01 and 0.1
were tested here) and to the number of degrees of free-
dom of the model.
For a hit distribution surface with NR rows and NC

columns, we can assess the presence of systematic error

in a given row r by computing the test statistic  r
2 by

means of Equation 5:

 r
rj

j

N
x E

E

C

2
2

1

=
−

=
∑ ( )

, (5)

where E is the total hits count of the whole hit distri-
bution surface divided by the number of wells (NR ×
NC) with the number of degrees of freedom equal to NR

- 1.
Similarly, the columns of the hit distribution surface

affected by systematic error can be identified by calcu-

lating the test statistic  c
2 , using Equation 6 below:

 c
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where E is the total hits count of the whole hit distri-
bution surface divided by the number of wells (NR ×
NC) with the number of degrees of freedom equal to
NC- 1.
The presence of systematic error in the assay can be

detected even if systematic error affects particular wells
of the assay, not necessarily located in the same row or
column. We can achieve it by calculating the test statis-
tic c2 over all well locations of the given hit distribution
surface (Equation 7):

 2
2

11
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−

==
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,
x E

E
ij

j

N

i

NR C
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where E is the total hits count of the whole hit distri-
bution surface divided by the number of wells (NR ×
NC) with the number of degrees of freedom equal to NR

× NC - 1.

Discrete Fourier Transform and Kolmogorov-Smirnov test
The third tested method consisted of the Discrete Four-
ier Transform (DFT) procedure [9] followed by the Kol-
mogorov-Smirnov goodness-of-fit test [8]. DFT has been
widely used in the frequency analysis of signals and, in
particular, for building the signal’s density spectrum.
The power density spectrum shows the energy con-
tained in each frequency component existing in the sig-
nal. In order to apply DFT to HTS data we need first to
unroll a plate measurement matrix into a linear
sequence of measurements. There are two natural ways
to do so: (a) to build the sequence starting by the first
row of the plate, followed by the second row, then third
one, and so on, and (b) to start by the first column of
the plate, followed by the second column, third one, and
so on. The analysis of sequences (a) and (b) would allow
us to detect column and row effects, respectively. DFT
detects frequencies of signals that repeat every two,
three, four, and so on, positions in the sequence. DFT
calculates the amplitudes of every possible frequency

component. Let yk
p (1 ≤ k ≤ N) be the power density

spectrum generated by the DFT analysis for the plate p
with N wells.
As a second step of this method, we carry out the

Kolmogorov-Smirnov test to compute the probability of

the density spectrum yk
p occurring under the null

hypothesis of no effect. The test statistic D can be calcu-
lated as follows:

D F y
k

N

k

N
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k N N N
k
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R C
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where F yk
p( ) is defined as the number of values in

the density spectrum that are lower than or equal to

yk
p , i.e., F y y l N y yk

p
l
p

l
p

k
p( ) ≡ ≤ ≤ <{ }, ,1 . Big

values of D lead to the rejection of the null hypothesis
(i.e., xijp’s have been drawn from random normally dis-
tributed data). The method consisting of the DFT analy-
sis followed by the Kolmogorov-Smirnov test was
included in some commercial software focusing on the
detecting systematic error in experimental data (e.g., in
Array Validator described in [20]).

Results and discussion
Simulation 1: Detecting systematic error in individual
plates
Simulation 1 consisted of the detection of systematic
error on a plate-by-plate basis. Artificial HTS data for
three different plate sizes: 96 wells - 8 rows and 12
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columns, 384 wells - 16 rows and 24 columns, and 1536
wells - 32 rows and 48 columns were first generated.
We started by creating basic error-free datasets for
which the well measurements followed a standard nor-
mal distribution ~N(0,1). For all datasets the number of
plates was set to 1250 - the same as in McMaster Test
assay [18]. Then, we added 1% of hits to each of the
generated basic datasets. The hits were added in such a
way that the probability that a given well contained a hit
was 1%. All the hit values followed a normal distribution
with the parameters ~N(μ - 5SD, SD), where μ and SD
are the mean value and standard deviation of the basic
dataset (without hits).
Using these error-free datasets, we generated datasets

comprising different types of systematic error, labelled A
to E, as reported in Table 1. Systematic error was added
only to some of the assay rows (columns, wells). The
number of rows (columns, wells) affected by systematic
error as well as the indexes of the affected rows, columns
and wells were determined randomly for each considered
dataset. Six types of error-affected sets were produced for
each error-free dataset by varying the standard deviation
of systematic error. The following values of the systema-
tic error standard deviation were used: 0, 0.6SD, 1.2SD,
1.8SD, 2.4SD and 3.0SD, where SD is the standard devia-
tion of the basic dataset. The t-test and K-S test were
then applied to error-affected data. Both tests produced a
binary result for each row and column of each plate: Sys-
tematic error was detected or not detected in this row or
column. The output was then compared to the informa-
tion from the data generation phase to determine
whether the result of the test was correct.
Cohen’s kappa coefficient [22,23] was calculated to

estimate the accuracy of both statistical tests. Cohen’s
kappa is a measure of inter-rater agreement or inter-
annotator agreement. The kappa coefficient, which takes
into account the agreement occurring by chance, is
computed as follows (Equation 9):

 = −
−

Pr( ) Pr( )
Pr( )

,
a e

e1
(9)

where Pr(a) is the relative observed agreement among
raters (i.e., statistical tests in our study) and Pr(e) is the
hypothetical probability of chance agreement. If the
raters are in complete agreement, then � = 1. If there is
no agreement among the raters, other than what would
be expected by chance, then � ≤ 0.
In our HTS context, Pr(a) and Pr(e) were

calculated as follows: Pr( )
( )

a
TP TN

P N NR C

= +
× +

and

Pr( )
( ) ( ) ( ) ( )

( ( ))
e

TP FN TP FP TN FN TN FP

P N NR C

= + × + + + × +
× + 2 ,

where P is the number of plates in the assay, NR and
NC, are, respectively, the number of rows and columns
per plate, TP (true positives) is the sum of the numbers
of rows and columns where systematic error was added
during the data generation and then detected by the
test, FP (false positives) is the sum of the numbers of
rows and columns where systematic error was not
added but detected by the test, TN (true negatives) is
the sum of the numbers of rows and columns where
systematic error was not added and not detected by the
test, and FN (false negatives) is the sum of the numbers
of rows and columns where systematic error was added
but not detected by the test.
For all generated variants of error-affected data, 500

different sets were created. The averages of obtained
Cohen’s kappa coefficients are represented in Figures 2, 3
and 4 (for the 96, 384 and 1536-well plates, respectively).
Also, the sensitivity (Figures 1SM, 2SM and 3SM, see the
section Supplementary Materials available in Additional
file 1), specificity (Figures 4SM, 5SM and 6SM) and suc-
cess rate (Figures 13SM, 14SM and 15SM) of the two
tests are depicted. The sensitivity and specificity of the
two tests were calculated as follows (Equations 10):

Sensitivity
TP

TP FN
Specificity

TN

TN FP
=

+
=

+
, . (10)

Since datasets of types C and E did not contain row or
column systematic error, the sensitivity and Cohen’s kappa
coefficient of both competing statistical tests for these data
were undefined (i.e., TP = FN = 0 for these data types).
The kappa coefficient curves in Figures 2, 3 and 4

show that the t-test clearly outperforms DFT followed
by the K-S test for all selected sizes of systematic error,
confidence levels and plate sizes. The accuracy of the t-
test grows as the size of systematic error increases. It
also grows slightly as the plate size increases. The accu-
racy of the K-S test remains very low and usually varies
between 0.0 and 0.1, thus suggesting a very poor sys-
tematic error recovery by this test. Figures 13SM, 14SM
and 15SM indicate that the success rate of the t-test is
largely independent of the systematic error variance and
remains very steady for all tested types of systematic
error and plate sizes. In contrast, the success rate of the
K-S test decreases as the standard deviation of systema-
tic error increases. The performance of the K-S test is
also affected by the size of the plate (Figures 2, 3 and 4).
The K-S test success rate decreases significantly, and
often falls below 50%, for larger plates (Figure 15SM).
The chosen confidence level a affects the accuracy of
both statistical tests. For instance, the use of a = 0.1
generally causes a decrease in the kappa coefficient (the
decrease of 0.2 on average, see Figures 2, 3 and 4) and
in the success rate (the decrease of 10% on average, see
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Figure 4 Simulation 1, Plate Size: 1536 wells - Cohen’s Kappa vs Error Size. Systematic error size: 10% (at most 8 columns and 8 rows
affected). First column: (a) - (c): a = 0.01; Second column: (d) - (f): a = 0.1. Systematic Error Detection Tests: (◆) t-test and (■) K-S test.

Figure 3 Simulation 1, Plate Size: 384 wells - Cohen’s Kappa vs Error Size. Systematic error size: 10% (at most 4 columns and 4 rows
affected). First column: (a) - (c): a = 0.01; Second column: (d) - (f): a = 0.1. Systematic Error Detection Tests: (◆) t-test and (■) K-S test.
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Figures 13SM, 14SM and 15SM) of the t-test, when
compared to a = 0.01. The sensitivity charts (Figures
1SM, 2SM and 3SM) show that the increase in the var-
iance of systematic error leads to the increase in sensi-
tivity of both tests. In terms of sensitivity, the t-test
outperforms the K-S test for all data types and all sizes
of systematic error, the only exception being large plates
tested with the confidence level a = 0.1 (Figure 3SM).
Similarly to real HTS assays, our artificially generated

datasets had systematic error in only a few rows and/or
columns. They contained many negative and only a few
positive samples. Such an imbalance between positive
and negative samples implies that the overall accuracy
of the tests will depend much more on the test specifi-
city than on its sensitivity. Figures 4SM, 5SM and 6SM
confirm this observation - most of the specificity charts
resemble the corresponding success rate charts (see
Figures 13SM, 14SM and 15SM).

Simulation 2: Detecting systematic error on hit
distribution surfaces
The second simulation, Simulation 2, consisted of the
detection of systematic error on the hit distribution sur-
faces. The recommendation to use statistical tests to
examine hit distribution surfaces of experimental HTS
assays was first formulated in [6], in the case of the c2

test. In Simulation 2, we also considered artificially gen-
erated assays with plates of three different sizes (i.e., 96-,
384- and 1536-well plates as well as 1250-plate assays)

with the measurements following the standard normal
distribution. From every basic dataset we generated 6
error-free datasets comprising 0.5%, 1%, 2%, 3%, 4% and
5% of hits. All the hit values followed a normal distribu-
tion with the parameters ~N(μ - 5SD, SD). Using the
error-free datasets, we generated assays containing differ-
ent types of systematic error (i.e., from A to E). Systema-
tic error, added to some of the assay rows (columns,
wells) only, followed the normal distribution with the
mean value of 0 and the standard deviation of 1.2SD. For
each such an assay, we calculated its hit distribution sur-
face for the hit selection threshold of μ-3s. Then we
applied, in turn, the t-test, and the K-S and c2 goodness-
of-fit tests to detect the presence of systematic error.
For each error variant, 500 different datasets were gen-

erated and the averages of obtained Cohen’s kappa coeffi-
cients were plotted in Figures 5, 6 and 7. The sensitivity
and specificity of the three tests were depicted in Figures
7SM to 12SM, and the success rate in Figures 16SM,
17SM and 18SM. The hit distribution surfaces for the
assays of types C, D and E (these assays don’t contain sys-
tematic error that repeats along all assay plates) cannot
be used to retrace row or column systematic error.
Hence, the sensitivity and Cohen’s kappa coefficient for
datasets of types C, D and E were undefined.
The kappa coefficient curves presented in Figures 5, 6

and 7 illustrate that the t-test clearly outperforms the c2

goodness-of-fit test as well as the combination of DFT
and the K-S test for all selected sizes of systematic

Figure 5 Simulation 2, Plate Size: 96 wells, Cohen’s Kappa vs Hit Percentage. Systematic error size: 10% (at most 2 columns and 2 rows
affected). First column: cases (a) - (b): a = 0.01; Second column: cases (c) - (d): a = 0.1. Systematic Error Detection Tests: (◆) t-test, (■) K-S test
and (▲)c2 goodness-of-fit test.
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Figure 7 Simulation 2, Plate Size: 1536 wells, Cohen’s Kappa vs Hit Percentage. Systematic error size: 10% (at most 8 columns and 8 rows
affected). First column: cases (a) - (b): a = 0.01; Second column: cases (c) - (d): a = 0.1. Systematic Error Detection Tests: (◆) t-test, (■) K-S test
and (▲)c2 goodness-of-fit test.

Figure 6 Simulation 2, Plate Size: 384 wells, Cohen’s Kappa vs Hit Percentage. Systematic error size: 10% (at most 4 columns and 4 rows
affected). First column: cases (a) - (b): a = 0.01; Second column: cases (c) - (d): a = 0.1. Systematic Error Detection Tests: (◆) t-test, (■) K-S test
and (▲)c2 goodness-of-fit test.
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error, confidence levels and plate sizes. The accuracy of
the t-test generally grows as the size of systematic error
increases, but this trend is not as steady as in Simulation
1: The curve’s minimum is not always associated with
the lowest systematic noise (e.g., see cases c and d in
Figure 5). The kappa values for the c2 and K-S tests
usually varies between 0.0 and 0.25, thus suggesting a
poor systematic error recovery provided by both of
them. As in Simulation 1, the success rate of the t-test
is largely independent of the systematic error variance
(Figures 16SM, 17SM and 18SM). Moreover, the success
rate of the t-test varies between 90 and 100% in the
most of simulated experiments. At the same time, the
accuracy of the K-S test is extremely low in almost all
of the considered situations. The success rate analysis of
the c2 goodness-of-fit test suggests that this test follows
different patterns for different types of data. For datasets
of types D and E, whose hit distribution surfaces did not
contain systematic error, the accuracy of the c2 test is
very close to that of the t-test (Figures 16SM, 17SM and
18SM, cases d, e, i and j). However, for the datasets that
contained row and/or column systematic error and well
systematic error, the success rate of the c2 goodness-of-
fit test is significantly lower than that of the t-test (Fig-
ures 16SM, 17SM and 18SM, cases a to c and f to h)
and shows a tendency to deteriorate when the percen-
tage of hits in the data increases. The sensitivity patterns
shown in Figures 7SM, 8SM and 9SM demonstrate that
the sensitivity of the three statistical tests grows as the
percentage of hits contained in the data increases. Simi-
larly to Simulation 1, choosing a bigger value of a led to
a decrease in the accuracy of all tests.

Application to the McMaster data
As a final step in our study we applied the three dis-
cussed systematic error detection tests on real HTS data.
We examined the impact that the presented methodology
would have on the hit selection process in McMaster
Data Mining and Docking Competition Test assay [18].
Similarly to Simulations 1 and 2 carried out with artificial
data, we performed two types of analysis. First, we stu-
died the raw HTS measurements, and then calculated
and analyzed the hit distribution surfaces of Test assay.
We carried out the t-test on every plate of Test assay,

scanning all rows and columns of each plate for the pre-
sence of systematic error. We performed the calculation
for several confidence levels including: a = 0.01, 0.05,
0.1 and 0.2. In each case, we counted the number of
rows and columns in which the test reported the pre-
sence of systematic error and also the number of plates
in which at least one row or column contained systema-
tic error. The collected results are presented in Table 2.
The obtained results suggest that the number of posi-

tives for the row and column effects is almost exactly

what we would expect by chance (e.g., approximately 1%
when we used a = 0.01, 5 % when we used a = 0.05,
etc.). This means that there is no statistical evidence of
bias for columns and rows in McMaster Test assay.
For comparative purposes, we corrected the raw

McMaster data using the B-score method in all plates
where systematic error was detected by the t-test. Unlike
the artificially generated data used in the simulation
study, McMaster Test assay contained replicated plates -
every compound of the assay was screened twice [18].
We adjusted our hit selection procedure to search for
average hits. Thus, we first calculated the average of the
two compound measurements and then used it in the
hit selection process. If systematic error was detected
only in first plate and, therefore, corrected using the B-
score method, then the residuals produced by B-score
were incomparable with the values of the second (i.e.,
replicated) plate. In order to make the measurements in
both plates comparable, we normalized both plates by
means of the Z-score method prior to calculating the
average compound activity. Using the corrected dataset,
we determined the assay hits for two hit selection
thresholds: μ-3SD- the most popular hit cutting thresh-
old employed in HTS, and μ-2.29SD- the threshold used
by the McMaster competition organizers to identify the
original 96 average hits. The obtained results are
reported in Tables 3 and 4, respectively. A comparison
between the original set of hits and the newly selected
hits is also made in these tables. In fact, these tables

Table 2 Number of rows, columns and plates (where at
least one row or column contains systematic error) of
McMaster Test assay in which the t-test reported the
presence of systematic error, depending on the a
parameter

a Plates Rows Rows % Columns Columns %

0.01 159 76 0.76% 94 0.75%

0.05 814 575 5.76% 606 4.86%

0.1 1121 1148 11.50% 1296 10.38%

0.2 1241 2242 22.46% 2583 20.70%

Only 8 rows and 10 columns of McMaster Test assay were examined because
the first and twelfth columns of the (8 by 12) plates were used for controls.

Table 3 Number of hits selected in McMaster Test assay
for the μ-3SD threshold after the application of the B-
score correction, depending on the a parameter

a Original
hits

Obtained
hits

Preserved
hits

Added
hits

Removed
hits

0.01 96 123 57 66 39

0.05 96 125 55 70 41

0.1 96 126 52 74 44

0.2 96 130 55 75 41

The t-test was carried out to detect systematic error.
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report how many of the original hits remained hits, how
many of them were removed and how many new hits
were selected. For the threshold μ-3SD, only about half
of the original hits were preserved, whereas for the
threshold μ-2.29SD about four times more hits were
selected for the B-score corrected data. The presented
results demonstrate how significantly the selected error
correction method and confidence level a can affect the
hit selection process in experimental HTS.
In our second experiment, we computed and analyzed

the hit distribution surfaces of McMaster Test assay for
the hit selection thresholds: μ-3SD and μ-2SD. We
assessed the presence of systematic error in the assay by
applying the three discussed systematic error detection
tests: t-test, K-S test and c2 goodness-of-fit test. All
three tests detected the presence of systematic error in
both surfaces for both considered confidence levels a =
0.01 and 0.1. While the hit distribution surface is useful
for detecting the presence of overall bias, it does not
capture the variability of the bias on a plate-by-plate
basis.
Finally, we also applied the Well correction method to

remove systematic error from McMaster Test assay.
After Well correction was performed, the hit selection
was carried out again for the hit selection thresholds: μ-
3SD and μ-2.29SD. Table 5 reports the comparative
results of the two hit selections. When analyzing the
obtained hits for the μ-2.29SD threshold, one can notice
that 24 of the original hits were not detected and, at the
same time, 30 new compounds were selected as hits.
Figure 8 presents a summary of our experiments
conducted with McMaster Test assay. The pairwise inter-
sections between the three obtained sets of hits are pre-
sented. The dashed grey area in the middle represents

the intersections between the three hit sets and thus
defines the consensus hits for McMaster Test assay. The
results provided by the B-score method (414 hits in total)
shows that this data correction procedure tends to over-
estimate, at least when compared to Z-score and Well
correction, the number of hit compounds. On the other
hand, the results provided by the Well correction method
suggest that about one third of the original hits could be,
in fact, false positives and that about the same percentage
of false negatives could be ignored if systematic error
present in the raw McMaster data is not identified and
removed adequately.

Conclusions
In this article we discussed and tested three methods for
detecting the presence of systematic error in experimen-
tal HTS assays. We conducted a comprehensive simula-
tion study with artificially generated HTS data,
constructed to model a variety of real-life situations.
The variants of each dataset, comprising different hit
percentages and various types and levels of systematic
error, were examined. The experimental results show
that the method performances depend on the assay
parameters - plate size, hit percentage, and type and var-
iance of systematic error. We found that the simplest,
and computationally fastest method, the t-test, out-
performed the Kolmogorov-Smirnov (K-S) and c2

Table 4 Number of hits selected in McMaster Test assay
for the μ-2.29SD threshold (i.e., threshold used by the
McMaster competition organizers to select the 96
original average hits) after the application of the B-score
correction, depending on the a parameter

a Original
hits

Obtained
hits

Preserved
hits

Added
hits

Removed
hits

0.01 96 357 79 278 17

0.05 96 419 79 340 17

0.1 96 411 79 332 17

0.2 96 417 76 341 20

The t-test was carried out to detect systematic error.

B-Score
411

Original Hits
96

Well Correction
102

315

 16  8 

 63  9 

 17 
 13 

 79 

 72 

 80 

Figure 8 Intersections between the original set of hits (96 hits in
total) and the sets of hits obtained after the application of the B-
score (411 hits in total; the method was carried out only on the
plates where systematic error was detected) and Well correction
methods (102 hits in total) computed for McMaster Test assay.
The μ- 2.29SD hit selection threshold was used to select hits.

Table 5 Number of hits selected in McMaster Test assay for the μ-3SD and μ-2.29SD thresholds after the application of
the Well Correction method

Threshold Original hits Obtained hits Preserved hits Added hits Removed hits

μ-3SD 96 26 26 0 70

μ-2.29SD 96 102 72 30 24
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goodness-of-fit tests in most of the practical situations.
The t-test demonstrated a high robustness when applied
on a variety of artificial datasets. The success rate of the
t-test was, in most situations, well above 90%, regardless
the plate size, noise level and type of systematic error,
while the values of Cohen’s kappa coefficient computed
for this test suggested its superior performance espe-
cially in the case of large plates and high level of sys-
tematic noise. We can thus recommend the t-test as a
method of choice in experimental HTS. On the con-
trary, advocated in some works [20,21] Discrete Fourier
Transform followed by the K-S test yielded very disap-
pointing results. Moreover, the latter technique required
a lot of computational power but provided the worst
overall performance among the three competing statisti-
cal procedures. The K-S test can still be used to exam-
ine HTS data located in small plates (i.e., 96-well
plates), but we strongly recommend not using it for the
analysis or large plates (i.e., 384 and 1536-well plates)
and hit distribution surfaces. The main reason for such
a disappointing performance of the K-S test is it that
was applied, as recommended in [20], on the data
already transformed by the Discrete Fourier method.
Figure 19SM presents an example of data from one of
the simulated 96-well plates before and after the appli-
cation of Discrete Fourier Transform. The raw data fol-
lowed a normal distribution and contained random
error only (i.e., systematic error was not added). The
raw data did not deviate from the normal distribution,
as shown both graphically (Figure 19SMa) and by the K-
S test (KS = 0.03, p = 0.5). However, after the applica-
tion of Discrete Fourier Transform, the data deviate
from normality as shown in the graph (Figure 19SMa)
and by the K-S test (KS = 0.06, p = 0.0018). The third
method, the c2 goodness-of-fit test suggested in [6], can
be employed to assess hit distribution surfaces for the
presence of systematic error. In general, its perfor-
mances were lower than those of the t-test and were
very sensitive to the type of systematic error as well as
to its variance. The c2 goodness-of-fit test could be
recommended, especially to analyze HTS assays with
small plate sizes, but we suggest carrying out the t-test
as well to confirm its results.
In addition to the experiments with simulated data, we

applied the three discussed systematic error detection
tests to real HTS data. Our goal was to evaluate the
impact of systematic error on the hit selection process
in experimental HTS. The obtained results (see Tables
2-5 and Figure 8) confirm the following fact: If raw HTS
data are not treated properly for eliminating the effect
of systematic error, then many (e.g., about 30% of hits
in the case of McMaster Test assay, as reported in
Table 5) of the selected hits may be due to the presence

of systematic error and, at the same time, many promis-
ing compounds may be missed during hit selection. A
special attention should be paid to control the results of
aggressive data normalization procedures, such as B-
score, that could easily do more damage by introducing
biases in raw HTS data and, therefore, lead to the selec-
tion of many false positive hits even in the situations
when the data don’t contain any kind of systematic
error.
Our general conclusion is that a successful assessment

of the presence of systematic error in experimental HTS
assays is achievable when the appropriate statistical
methodology is used. Namely, the t-test should be car-
ried out by HTS researchers to pre-process raw HTS
data. This test should help improve the “quality” of
selected hits by discarding many potential false positives
and suggesting new, and eventually real, active com-
pounds. The t-test should be used in conjunction with
data correction techniques such as: Well correction
[5,6], when row or column systematic error (detected by
the test) repeats across all plates of the assay, and B-
score [3] or trimmed-mean polish score [7], when sys-
tematic error varies across plates. Thus, we recommend
adding an extra preliminary systematic error detection
and correction step in all HTS processing software and
using consensus hits in order to improve the overall
accuracy of HTS analysis.

Additional material

Additional file 1: Supplementary Materials. Additional file 1 includes
Supplementary Materials for the article. This file contains Figures 1SM to
19SM presenting additional simulation results (Figures 1SM to 18SM) and
an example of data distribution before and after the application of the
Discrete Fourier Transform (DFT) method (Figure 19SM).
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