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Abstract

Purpose—To mimic the physicochemical selectivity of the blood-brain barrier (BBB) and to
predict its passive permeability using a PAMPA model based on porcine brain lipid extract (PBLE
10%w/v in alkane).

Methods—Three PAMPA (BD pre-coated and PBLE with 2 different lipid volumes) models
were tested with 108 drugs. Abraham solvation descriptors were used to interpret the in vitro-in
vivo correlation with 282 in situ brain perfusion measurements, spanning over 5 orders of
magnitude. An in combo PAMPA model was developed from combining measured PAMPA
permeability with one H-bond descriptor.

Results—The in combo PAMPA predicted 93% of the variance of 197 largely efflux-inhibited
insitu permeability training set. The model was cross-validated by the “leave-many-out”
procedure, with ¢2=0.92+0.03. The PAMPA models indicated the presence of paramembrane
water channels. Only the PBLE-based PAMPA-BBB model with sufficient lipid to fill all the
internal pore space of the filter showed a wide dynamic range window, selectivity coefficient near
1, and was suitable for predicting BBB permeability.

Conclusion—BBB permeability can be predicted by in combo PAMPA. Its speed and
substantially lower cost, compared to in vivo measurements, make it an attractive first-pass
screening method for BBB passive permeability.

Keywords

blood-brain barrier; brain permeability-surface area (PS); in combo PAMPA-BBB; P-
glycoprotein; rodent in situ brain perfusion

INTRODUCTION

The persistent difficulty of delivering therapeutic molecules across the blood-brain barrier
(BBB) to achieve optimal central nervous system (CNS) exposure continues to be a
formidable challenge in the neuropharmaceutical industry. During drug discovery, costly in
vivo measurements of brain penetration (1-8) are impractical, given the large number of
molecules to test. This necessitates an ongoing search for simple and cost-effective in vitro
(9-14) and in silico (15-18) models to predict the BBB permeation (rate of brain penetration)
and other important properties relevant to successful CNS delivery (1).
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The chemical selectivity of the barrier microenvironment governing the passive permeation
of drugs across the BBB can be probed with simple isotropic solvent/water partition (e.g.,
octanol, hexadecane, octanol-hexadecane) models (19-21), with egg lecithin bilayer lipid
membrane (BLM) models (22,23), with parallel artificial membrane permeability assays
(PAMPA) (9-14), and with in vitro brain microcapillary endothelial cell (BMEC) models
originating from different species (24-28). The in vivo benchmark against which the simpler
permeability models are often compared is the in situ rodent brain perfusion technique
(11,29-36).

Anderson and coworkers (22,23) have found that 1,9-decadiene/water partition coefficients
precisely mimic the chemical selectivity of the egg lecithin BLM barrier domain, from
comparisons with the intrinsic permeability coefficients, P,BLM, of a series of substituted
toluic and hippuric acids. (PoB-M refers to the permeability of the bilayer membrane to the
uncharged form of an ionizable molecule.) The plot of log P,B-M as a function of the
logarithm of the partition coefficient for the series of toluic acids had the slope 0.99+ 0.04
and intercept —0.17+0.12 (r2=0.996). Often, the slope in such a log-log plot is called the
selectivity coefficient, SC. A value ~1 suggests that the microenvironment of the rate-
limiting unilamellar BLM barrier domain closely matches that of the isotropic reference
solvent. Based on a linear free energy relationship (LFER) analysis, it was possible to assign
quantitative fragment contributions in the homologous series of weak acids studied. To date,
it has not been demonstrated to what extent the egg lecithin unilamellar bilayer membrane
model matches the chemical selectivity of the more complex BBB permeation barrier.

Levin (19) noted that the octanol-water partition coefficients, log PocT, correlate with in situ
rat brain perfusion intrinsic permeability coefficients, P," SV, In that and a number of other
studies, the reported log P, SitV as a function of log Poct plots generally indicated SC ~0.5,
suggesting that octanol only partly matches the chemical selectivity of the rate-limiting
microenvironment controlling passive BBB permeability. Past comparisons have been
limited to small sets of drugs, due to the relative scarcity of in situ brain perfusion
measurements for drug molecules prior to 2003 (15).

Di et al. (9) introduced the PAMPA model based on porcine brain lipid extract (PBLE)
dissolved in dodecane (2%w/v) and demonstrated that drug molecules can be binned into
CNS+ and CNS— activity classes. In a follow-up study (10), a comparison of the PBLE-
based PAMPA and the in situ rat brain perfusion permeability coefficients reported by
Summerfield et al. (35) tentatively suggested appreciable chemical selectivity in the
PAMPA model, with r?=0.47.

Mensch et al. (12) tested four PAMPA models for predicting the brain-plasma ratio, log BB.
The CNS+/— discrimination was confirmed with the Di et al. model. The ability to predict
log BB was comparable with the PBLEand much simpler dioleoylphosphatidylcholine
(DOPC)-based PAMPA models (r2=0.63 and 0.73, respectively).

An in combo PAMPA (measured permeability “combined” with calculated H-bond
descriptors) study based on a concentrated lecithin lipid mixture (20% w/v in dodecane)
membrane indicated a high linear correlation (r2=0.92) in the prediction of in situ rodent
brain perfusion permeability (11). However, when just the lecithin PAMPA permeation
values were compared to those of the in situ data, SC=0.49 for the training set (r2=0.56),
suggesting that although the model could be made highly predictive by augmenting with in
silico “booster” descriptors based on the LFER solvation model of Abraham (16), the
lecithin-based PAMPA model alone did not well match the microenvironment of the BBB.

In this study, we developed a new PBLE-based PAMPA model, using a five-fold higher
lipid concentration in a more viscous alkane solvent than dodecane and with thinner
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membranes, compared to that used by Di et al. (9,10). PAMPA-BBB intrinsic permeability
values for 108 compounds were correlated to those of 197 published in situ rodent brain
perfusion measurements, the largest such reported set to date. We were able to demonstrate
a remarkably high match between the physicochemical selectivity of the new PAMPA-BBB
and the in situ data, with SC=0.97 for a series of weak-base drugs thought to permeate
passively. The nature of this physicochemical selectivity was characterized in terms of the
Abraham (16) linear free energy solvation descriptors. For newly measured compounds with
unknown mechanism of transport, having a reliable prediction of passive BBB permeability
could serve to indicate the presence of carrier-mediated processes. This was investigated
with an additional 85 in situ rodent brain perfusion measurements (not used in the model
training) of cases where efflux or active transport was suspected.

MATERIALS AND METHODS

Chemicals and Materials

Most of the chemicals in this study were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used as received. Analytical-grade bremazocine, buspirone, p-F-phenylalanine,
indinavir, ritonavir, saquinavir, and SNC-121 were kindly provided by Astrazeneca
(Wilmington), as described elsewhere (11). Alfentanil and meperidine were generous gifts
from Prof. Per Artursson (Uppsala University) and Dr. Manfred Kansy (Roche, Basel),
respectively. Imitanib mesy-late was purchased from Selleck Chemicals LLC (Houston,
TX). Rosuvastatin acid was extracted from a tablet (AstraZeneca) containing 20 mg of the
drug as a calcium salt. PAMPA-BBB lipid (PBLE) was obtained from pION (PN 110672)
and was stored at —20°C when not used. BD pre-coated PAMPA plates (37) were purchased
from BD Biosciences (Bedford, MA, USA; PN 353015—LOT 02059) and were stored at
—20°C prior to use. The pH of the assayed donor solutions was adjusted with a universal
buffer (pION Prisma™ HT, PN 100151). A buffer solution at pH 7.4 containing a chemical
scavenger to simulate tissue binding and maintain sink conditions (pION BSB-7.4 buffer,
PN 110674) was used as the receiver solution.

pKg4 Determination

The potentiometric Gemini Profiler™ (pION) instrument was used to determine ionization
constants of amoxapine, atomoxetine, chlorambucil, citalopram, domperidone, doxorubicin,
ergotamine, ethosuximide, fluoxetine, fluphenazine, galanthamine, imitanib, lamotrigine,
loxapine, mirtazapine, oxycodone, pergolide, perphanazine, phenelzine, rosuvastatin acid,
sumatriptan, trazodone, trifluoperazine, venlafaxine, vinblastine, and vincristine at 25+0.5°C
and 0.15 M ionic strength (KCI). General details of the procedure have been described
elsewhere (38-40). Electrode calibration was performed in situ, concurrently with the pKy
determination (39). This is a substantial improvement in comparison to the traditional
procedure of first doing a “blank” titration to determine the four AvdeefBucher pH electrode
parameters (40), before proceeding to the pK, determination.

PAMPA Method

Data Collection—The PAMPA Evolution instrument from pION INC (Woburn, MA,
USA) was used in this study. The 96-well micratitre plate “sandwich” (pION, PN 110212,
pre-loaded with magnetic stirrers) filters were automatically coated with a 10% (w/v) alkane
solution of PBLE. In the study, we also used BD pre-coated (4%w/v DOPC in 1 pL hexade-
cane per well) plates (37). For most of the compounds, UV sensitivity was good, and the
typical concentrations were about 50-150 uM prepared from 10-30 mM DMSO stock
solutions. DMSO-free solutions were prepared for some of the compounds (buspirone,
tolbutamide, U69593, fentanyl, ritonavir, clozapine, deltorphin 1l, DPDPE, galanthamine,
indinavir) to improve on UV sensitivity in the 210-240 nm part of the spectrum. Sample
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concentrations in the buffer solutions for the compounds with low-UV absorption were
about 500-1000 puM (e.g., DPDPE, etoposide, ethosuximide, L-DOPA). The donor solutions
were varied in pH (NaOH-treated universal buffer), while the receiver solutions had the
same pH 7.4. The collection of data under the varied gradient-pH conditions enabled the
determination of the intrinsic permeability coefficients, the diffusion through aqueous pores
in the PAMPA-BBB membrane, and the aqueous boundary layer (ABL) effects (13,41,42).
The receiver solutions contained a surfactant mixture (“lipophilic sink”) to mimic tissue
binding (38). Since the BD pre-coated filters started to leak visibly on exposure to the “sink”
buffer, the sink-forming additive was removed from the buffer when the BD plates were
used. For lipophilic compounds, vigorous stirring was employed in the assay, with stirring
speed set to produce an ABL thickness of about 60 um, to minimize the ABL contribution to
the measured permeability. The PAMPA sandwich was assembled and allowed to incubate
for 30—60 min with lipophilic molecules (e.g., amitriptyline, chlorpromazine, loperamide,
sertraline, probenecid and verapamil), and 15 h for hydrophilic molecules (e.g.,
galanthamine, DPDPE, deltorphin I, indinavir), in a controlled-environment chamber
(pION Gut-Box™, PN 110205) with a built-in magnetic stirring mechanism. The BD pre-
coated plates were not stirred, since the magnetic stirrers used here could not be fitted in the
provided plates. Both the donor and receiver wells were assayed for the amount of material
present, by comparison with the UV spectrum (210-500 nm) obtained from a reference
standard. Permeability values were corrected for membrane retention (38).

To test the stability and integrity of the PAMPA membrane barrier as a function of the
amount of lipid solution deposited, assays were performed with 1.5 uL (“Type I” assay in
Table I1) and 3 pL(“Type 11”) lipid volume depositions on the filters, as well as with the 1
uL/ well BD pre-coated plates (37). In the Type | case, a volatile solvent was mixed with the
lipid formulation (to minimize volumetric errors in small-volume dispensing by the robotic
instrument) and allowed to evaporate before the start of assay.

PAMPA-BBB Permeability Equation

The computational model assumed that the PAMPA effective permeability, P, can be
expressed by its three underlying components: Pagy, Po,and Ppara (aqueous boundary layer,
intrinsic transmembrane, and paramembrane, respectively; cf. Abbreviations). The Ppara
term describes the diffusion of permeant through water-filled channels hypothesized to form
in very thin PAMPA-BBB membrane barriers and in the BD pre-coated filters. This term
was added to account for the observed lipophilicity-independent permeation of charged
species in thin-membrane barrier.

A weighted nonlinear regression method (38,39,43,44) was used to determine the Pagy, Po,
and Ppara coefficients from a series of P measurements performed at different values of
donor-well pH (acceptor-wells at pH 7.4), according to the equation:

1|1 1
P + Py

e PABI, m

+P e
para (1)

From the three refined constituent permeability coefficients, the thickness of the ABL, hagy,
and the porosity-pathlength ratio (43,44), (¢/5),, parameters were calculated as hag= Dag/
PagL and (&/8)2=Ppara/Daq (cf., Abbreviations). Values of the aqueous diffusivity, Dyq
(cm?s~1), at 25°C were empirically estimated (43) from the molecular weight, MW, as log
Dag=—4.131 —0.453 log MW.
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In Silico Model-Building Software and the In Combo Strategy

PS Training and “External” Set Selection Criteria—Our computational object was
to predict the values of the passive permeability-surface area product, PSpassive. From a
survey of the published literature, 596 PS values were identified, based on in vivo
intravenous injection (i.v.), bolus carotid artery injection brain uptake index (BUI), and in
situ brain perfusion methods, for rats, mice, guinea pigs, rabbits, dogs, and cats. We decided
to focus only on rat and mouse data, accounting for about 92% of the collected values. It
was assumed here that the mouse and rat data could be merged for the purposes of the
prediction, as supported by Murakami et al. (32) and Dagenais et al. (11). Since plasma
protein binding lowers values of PS (in comparison to protein-free perfusate experiments),
i.v. data were not used for lipophilic compounds to train the model. Compounds that had
reported saturable transport were also excluded. Since we were interested to select for the
training set the in situ data as free of efflux effects as practical, we chose PS values from
studies which used some sort of transport inhibition (e.g., GF120918, PSC833, cyclosporin
A, self-inhibition at high concentrations, mdrla(—/=)/mrpl(—/-)/brcp-knockout mouse
model). Simple amino acids and dipeptides were excluded, except for those with reported
non-saturable K4 values. Out of the starting set of 596 PS values, a total of 197 values were
selected as “efflux-minimized” training set for the study. An additional 85 values were
designated as the non-trained “external” set. These were selected as possibly being from
substrates of carrier-mediated or actively transported processes, based on the following
criteria. In studies where both knockout (KO)/efflux-inhibited and wild-type (WT)/
uninhibited rodent measurements were reported, the KO/efflux-inhibited values directed to
the training set (n=197), but the corresponding WT/uninhibited paired values were added to
the external set (n=85), unless the WT/uninhibited values were either within a factor of three
of the KO/inhibited or were very high (P," S > 0.01 cm/s), in which case both values were
used in training. Thus, the external set was not viewed as a rigorous model validation set,
but was rather used to indicate whether actively transported molecules could be identified by
their deviations from the predicted passive values (negative/positive deviations indicating
efflux/uptake transport processes, respectively).

Table | contains physical properties of the 108 selected molecules encompassing the 282
(197+85) in situ brain perfusion measusrements used in the study. The inter-laboratory
variance in permeability measurements are estimated to be no less than +0.2 log units (e.g.,
log P,!" SitU + SD values of antipyrine, colchicine, and sucrose are —4.1+0.2, —5.3+0.3, and
—6.9£0.5, respectively, with each mean based on 13-21 literature values).

Model Validation—A validation strategy was applied to the 197 measurements in the
training set, based on the “leave-many-out” (LMO) cross-validation procedure (20% of the
measurements randomly excluded in 100 different repeated combinations), where a cross-
validated g2 was used to assess model predictivity. The commercial statistical software is
briefly described below.

Linear Free Energy Relation (LFER) Descriptors “Boosting” PAMPA Measured Values

Abraham's linear free energy relations (LFER) applied to a BBB permeability model may be
stated as (16)

log P i (L FER) =co+cja+caf+cam+csR+cs Vy @

where cj...Cg are the multiple linear regression (MLR) coefficients, and where o is the
solute H-bond acidity, B is the solute H-bond basicity, = is the solute polarity/polarizability
due to solute-solvent interactions between bond dipoles and induced dipoles, R (dm3mol~1/
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10) is the excess molar refraction, which models dispersion force interaction arising from pi-
and n-electrons of the solute, and V, is the McGowan molar volume (dm3mol~1 / 100) of
the solute.

Equation 2 uses intrinsic BBB permeability values, P," SitU, rather than PS values, because
the Abraham molecular descriptors have been developed for uncharged species in the LFER
approach, and so it was decided to convert all effective permeability values (in situ PS,
PAMPA Py)to intrinsic values, P," S and Py, in order to develop the LFER model. In the
case of zwitterions, the conversion was to the P.. form (39). This may seem unnecessary,
given that the environment of the BBB is very close to pH 7.4. However, the transformation
is solely a computational strategy, in order to take full advantage of the Abraham
descriptors. In effect, by these transformations, we have adapted the Abraham molecular
descriptors for charged molecules (11).

In addition to the LFER model, we explored how well PAMPA-BBB measurements,

augmented with one (or two) of Abraham's molecular solvation descriptors, can predict

passive intrinsic permeability values of the in situ data. The combination of measured

PAMPA-BBB and a calculated LFER descriptor defines the in combo method:

Pin situ
[s]

log (in combo) =c,+c1log Po+A (c2,c3) 3)

where A(cy,c3) is a linear function of one/two Abraham descriptors. The usefulness of such
an approach has been demonstrated elsewhere (11,13). Fewer MLR coefficients are
necessary in Eg. 3, compared to Eq. 2, because the PAMPA-BBB P, already encodes for
some of the properties of the microenvironment of the in vivo barrier that are related to
permeation.

The best prediction model was validated by testing its ability to predict BBB permeability of
data not used in the training set.

The octanol-water partition coefficients, log PocT, sSome of the pKgs (cf., Table 1), and the
Abraham descriptor calculation, as well as the computational modeling, used the Algorithm
Builder V1.8 and ADME Boxes V4.9 computer programs (17) from ACD/Labs (Toronto,
Canada). The pCEL-X program (plON) was used to predict PAMPA permeability
coefficients from 2-D structural input.

Selectivity Coefficients and the Solubility-Diffusion Theory

According to the solubility-diffusion theory (22,23), the passive permeability of the BBB,
P, can be estimated as the product of the partition coefficient of the rate-limiting BBB
boundary domain and water, PCgggw, and the BBB-phase diffusivity of the solute, Dggg,
divided by the thickness of the barrier domain, dggg, which may be stated in logarithmic
form as

log Py’ ™=10g (Dypy /8y55) +log PCyyy )

Diffusivity in the rate-limiting membrane phase is expected to be proportional to the
minimum cross-sectional area of the solute (38,43,91). Using a Collander-like equation
(22,23), the PCggppy is expected to be linearly related to the PAMPA-lipid/water partition
coefficient, PCpampaw: @S 10g PCggppy =a+SC: log PCpampasw- The Collander
relationship, along with Eq. 4 applied to the PAMPA-BBB intrinsic permeability, Py,
produces the relationship,
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log P75 =j4+SC - log P, 5)

where the constant intercept term, i=a+log (Dggg / ggg) — SC ' log (Dpampra ! Spampa). If
the model PAMPA-BBB lipid precisely mimics the physicochemical selectivity of the
boundary domain region in the BBB, then the value of SC=1 and i=a, the intercept term
from the Collander equation.

RESULTS AND DISCUSSION

pKg4 Determinations

Table | lists the pK,s used in the study, with those specifically determined here indicated by
table footnotes b, d and f. The estimated standard deviations in the determined values are
about 0.05 (ranged from 0.01 to 0.11). For the purposes of this study, four classes of drugs
were defined based on the pK, values used. “Bases” were defined as molecules with a
predominant (= 50%) positive charge at pH 7.4; “acids” had a predominantly negative
charge; “neutrals” were predominantly uncharged; “zwitterions” were ampholytes with the
predominant zwitterionic form. These were operational labels used to partition the
compounds into four charge classes for the prediction model development.

PAMPA-BBB Measurements

Table Il lists the refined PAMPA intrinsic permeability values (log P,), the aqueous
boundary layer permeability (log Pagy), and the “water-pore” permeability coefficients (log
Ppara)- Also listed are the calculated membrane permeability values at pH 7.4, Pm’. Figure
1 shows a sampling of the effective permeability, P, coefficients used to determine these
constituent permeability coefficients by regression analysis, based on Eq. 1.

In this study, the permeability values based on BD- and PBLE-coated plates were compared
under otherwise identical conditions for 22 compounds (P,BP data summarized in Fig. 2a).
The frames in Fig. 1a—d were performed with 3 plL-coated filters, using the PBLE-based
PAMPA-BBB model. The frames in Fig. le-h correspond to the 1 ulL-pre-coated BD plates.
Since the lipid barriers are thinner in the latter case, values of P,BP are somewhat larger than
those of PoPBLE as indicated in Fig. 1. This is to be expected, due to the decreased
resistance of thinner lipid barriers. However, the near absence of pH dependence in the BD-
plate data was surprising and unanticipated (37).

The three bases in Fig. 1(a, b, c, e, f, g) have ascending membrane permeability (dashed)
hyperbolic curves, Py, with increasing pH. The acid (Fig. 1d, h) shows a converse
descending behavior. The maximum point in the log P,-pH curves corresponds to the
intrinsic permeability coefficient, log Pg.

The best-fits of Eq. 1 to the P, data (circle symbols) are represented by the sigmoidal solid
curves. Just above the maximum leveling in the solid sigmoidal Pg curves is the value of the
ABL permeability (dotted horizontal lines). This is the rate-limiting ABL barrier to the
membrane permeability for lipophilic compounds, and values of Py, greater than Pag|
cannot be directly measured. Just below the minimum leveling in the solid sigmoidal Pe
curves are the Ppara permeability values corresponding to the shunting aqueous pores
(horizontal dot-dash lines). Values of Py, less than Ppar, cannot be measured directly. Hence,
the available dynamic range window (28), DRW, is bounded at the top by Pag| and at the
bottom by Ppara. As can be seen in Fig. 1 (right frames), the DRW is very narrow when BD
plates are used (“1 pL lipid”). The DRW is substantially widened in the case of less leaky
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filters, with solutions that are adequately stirred, as in the case of the “3 pL lipid” PAMPA-
BBB model (Fig. 1a—d).

In the case of the effective permeability of charged species, the significant participation of
ion-pair permeability was ruled out, since the Ppar, Values are not proportional to the
lipophilicity of the compounds, but seem to be nearly constant for a given stirring speed,
which is consistent with the diffusion of compounds through aqueous pores in the PAMPA
membrane.

Table 1l summarizes the average permeability values for the three PAMPA models
considered in this study: BD Pre-coated, Type | PAMPA-BBB and Type 1| PAMPABBB,
which had filters coated with 1.0, 1.5, and 3.0 pL lipid volumes, respectively. Stirred
(average log Pag| —3.2 to —3.3) and non-stirred (average log Pag —4.3 to —4.8) assays
were considered. The thickness of the ABL, hag =2000£791 um, in the PBLE unstirred
assays was about half of the value observed with the BD assays, hag =3909+1405 um; the
lower values in the PBLE system are due to the effect of the “sink” buffer (41). The average
values of Ppqr, from the three models indicated aqueous pore permeability that appeared to
depend on the lipid thickness of the PAMPA membrane barrier. For unstirred plates, the
porosity (¢ in Table I11) of the BD pre-coated plates was determined to have the average
value of 0.84%, compared to 0.29% (1.5 pL) and 0.04% (3.0 uL) PBLE-based lipid-coated
plates. The higher the aqueous channel porosity, the greater the transmembrane aqueous
pore diffusion of drug species. As can be seen, the dynamic range window (DRW), which is
defined by log PagL—10g Ppara, in Fig. 1e-h is severely lessened by the high porosity
(0.84%), compared to that of the Fig. 1a—d frames, where the porosity is much lower
(0.04%). Stirring increases the porosity (Table 111). Unexpectedly, the increase in membrane
porosity is less with the 1.5 uL coated plates (0.29 — 0.33%) than the 3.0 pL coated plates
(0.04 — 0.47%). Theoretically, the lipid volume capacity of the 70% porosity PVDF filters
is 2.6 uL(88), so the 3 uL volume represents a slight excess over the internal volume
capacity of the filter. We were not able to stir the BD plates (cf., Materials and Methods
section) to see how much porosity would increase, although an increase in porosity would be
expected.

From these results, it is prudent only to use aggressive stirring with highly lipophilic
compounds (to increase the DRW), but not with compounds expected to have low
permeability coefficients, since high values of Py, Would have a masking effect on the
PBLE membrane contribution (28,43). Of the 22 drugs tested with the BD plates, three
compounds could not be reliably processed, evidently, since Py<Ppar, Over the tested pH
range.

Table Il indicates four types of permeability data used in the BBB modeling: I, II, I/1l and
DS. Type Il data were collected with PAMPA plates that had 3 uL lipid-volume-coated
filters. Type I/11 data were collected twice: once with 1.5 uL coated filter plates and once
with 3 uL coated filter plates. Comparison of the two sets of data indicated the highly
collinear relationship: log P,(3#1)=—0.22(+0.14)+1.00(+0.04) log P13+, r2=0.96, 5=0.30,
F=659, n=31. The antilog of the intercept indicates that the thin-membrane permeability
coefficients were nearly twice as large as the thick-membrane values, which is consistent
with the additivity of membrane barrier resistance. Only the 3 uL data are reported in Table
I1 under the 1/11 category. The data reported in Table Il as Type | were collected under the
1.5 pL conditions but scaled to match the 3 pL setting, using the above correlation equation.
The Type DS data in Table Il represent compounds not available to us during this study, but
whose permeability had been originally determined by us, using the Double-Sink PAMPA
model. In this study, the PAMPA-DS values were transformed by pCEL-X to the “3 uL”
PAMPA-BBB basis. These molecules were only used as non-training compounds in the
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study, since their precision is not expected to match that of the directly-measured PAMPA-
BBB data.

Selectivity Coefficients (SC)

One of the overall objectives of the study was to identify a PAMPA-BBB model that has a
selectivity coefficient, SC~1. We have nearly succeeded in this study. (Where the model fell
short, the in combo technique led to dramatic improvements, as described below.) Figure 2
shows how well the various simple models measure up against the in situ brain perfusion
intrinsic permeability values, log P,'" S, The frames in the figure are ranked by SC values.
The two lowest SC value models are the BD pre-coated (PAMPA-BD) and the log Pocr,
with SC~0.6. The 4% w/v DOPC in dodecane PAMPA-BD system is slightly more
lipophilic than log Poct and considerably more lipophilic than the BBB (22,23). In Fig. 3,
apparently the lower the value of SC, the higher the scatter in the data, as indicated by the
calculated r2 and standard deviation, s. This may support the hypothesis that when the
microenvironment controlling passive diffusion in the BBB is better matched by a simple
model, the quality of the prediction improves. PAMPA-BD (Fig. 2a) appears to perform
better than log PocT (Fig. 2b), although the number of compounds tested with the former
model is not large.

The egg lecithin bilayer lipid (BLM) model (Fig. 2d) performed surprisingly well, although
the number of reported measurements of P,B-M for compounds whose P," SitY values were
also reported was very small, and the compounds were not drug-like. It could be posited that
the BLM model (100% lecithin) is the asymptotic limit of the BD model (4% lecithin) and
that the presence of 96% hexadecane in the latter model contributes to lowering SC from
0.76 to 0.55.

The performance of the PAMPA-BBB model (10%w/v PBLE in alkane) based on 3 pL lipid
deposition is quite remarkable, albeit primarily for weak bases (Fig. 2e). The value of
SC=0.97, near-zero intercept, and r2=0.84, based on 85 training set weak base drugs, was a
promising lead in the search for a more-encompassing (in combo) model.

PAMPA-BBB Selectivity Coefficients by Charge Classes

Figure 3 shows the log-log correlation between the rodent data and the PAMPA-BBB model
for the four charge classes of drugs for the 197 training-set measurements. The overall
selectivity coefficient, SC=0.87, with r2=0.77 and s=0.76, might have suggested a highly
predictive model. But when the measurements are scrutinized by charge classes, a more
complicated view unveils. The selectively predictive bases (positively charged), indicated by
blue points in Fig. 3, are associated with SC=0.97+0.05 (r2=0.84). The acids (negatively
charged), indicated by red points, show SC=1.08+0.25 (r2=0.42). The green points are
neutral compounds, which show SC=0.55+0.07 (r=0.46). The orange points are zwitterions
with SC~0 (r2~0). As can be seen, the BBB microenvironment affecting passive
permeability is not well matched by the neutral and zwitterionic drugs. For zwitterions, there
was no evident correlation between the two permeability scales. As the discussion below
indicates, it was possible to improve the correlation for each of the deficient classes, up to
r2=0.61-0.88 (Table IV), by using the in combo technique.

Abraham LFER and In combo PAMPA Models

The Abraham LFER solvation descriptors have been applied in predictions of log Poct (98),
as well as BBB permeability-related properties, log PS (16,73), log BB of a diverse set of
compounds (92) and ampholytes, including zwitterions (99). Table IV lists the PAMPA-
BBB MLR coefficients for bases as log Po(LFER)=-3.61+0.16 0—1.47 —0.61 n—0.06 R
+1.69 Vy. The high positive coefficient for the McGowan volume term, Vy, signifies that a
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lot less energy is needed to form a “cavity” in PAMPA-BBB lipid to accomodate the
molecule, compared to water. The PAMPA-BBB lipid favors the permeation of large bases,
all else being the same. The +0.16 coefficient of the H-bond acidity term, o, suggests that
the PAMPA-BBB lipid and water have nearly matching H-bond acceptor property, slightly
favoring the PAMPA side. The —1.47 coefficient for the H-bond basicity term, B, suggests
that H-bond donor strength of water is much greater than that of the PAMPABBB lipid.
That is, the PAMPA-BBB lipid disfavors the permeation of bases with high H-bond
acceptor character, due to the strong interaction of H-bond donors of water.

Such an LFER analysis (Table 1) may suggest some potentially useful compound
promotion criteria, which may help medicinal chemists modify/select test compounds to
enhance passive BBB permeation. For example, for enhanced permeation, one may select

a. small zwitterions, large bases (Vy effect);

b. acids with high dispersion forces (more polarizable piand n-electrons), bases with
low dispersion forces (R effect);

c. neutrals with high dipole moments (solute-solvent interactions), low dipole
moment zwitterions/bases/acids (r effect);

d. zwitterions/bases with high H-bond donor strength, acids with low H-bond donor
strength (a effect);

e. zwitterions with high H-bond acceptor strength, acids with low H-bond acceptor
strength (B effect).

The in vitro—in vivo (IVIV) relationship between the PAMPA-BBB and the in situ brain
perfusion models can also be framed in terms of the Abraham descriptors. Figure 4 displays
the quintet of Abraham MLR coefficients in polar plots to facilitate the VIV model
comparisons. As can be seen, the two pentagons in Fig. 4 for bases are nearly congruent.
The relationships for the other charge classes show characteristic differences. For example,
for acids, the in situ intrinsic permeability greatly decreases with increasing p (H-bond
acceptor) content in the molecule. On the other hand, the PAMPA-BBB model for acids is
less sensitive to values of B. The opposite B trend appears to hold for neutral molecules in
Fig. 4. A dramatic discordance is indicated for zwitterions in Fig. 4, with the prediction that
high  content in the molecule greatly enhances permeation in PAMPA-BBB and also
somewhat facilitates permeation in vivo. One plausible explanation for the differences in the
IVIV behavior in acids and zwitterions is that H-bond donors in the in vivo
microenvironment facilitate transport for these two charge classes. There may be
unsuspected carrier-mediated transport processes in the in vivo data for the acids and
zwitterions selected in this study. The training set of molecules was chosen to minimize
efflux contributions, but no explicit filtering was selected to identify facilitated transport
(other than not using simple amino acids and dipeptides).

Whatever the nature of the IVIV discordance for the acids and zwitterions between the two
permeability systems, the in combo technique can be used to minimize the differences to
improve the global predictability of the PAMPA-BBB model (11,13). The bottom third of
Table IV indicates the in combo PAMPA-BBB MLR coefficients which improve IVIV. For
bases, only a slight improvement was achieved (r2 increased from 0.84 to 0.86) by
introducing the a descriptor, which mainly drove the —0.14 intercept (Fig. 2d)to —0.01. For
the two charge classes with SC well below unit value (neutral, zwitterion), a search
procedure revealed that two Abraham-based descriptors, o+ and a—p can dramatically
enhance the predictability of the PAMPABBB model. For acids, a contribution of 2.54—
0.64(o+B)to experimentally determined log P, values raises r2 from 0.42 to 0.61 and lowers
s from 0.67 to 0.56. Just one added variable, (a+p), improves the I\VVIV for acids (“sum” H-
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bond effect). The zwitterion model can be made predictive by just using one variable
descriptor, (a-p), with PAMPA playing no role (Table 4). That is, the in vivo permeability
coefficient of the zwitterion is strongly correlated to the difference between the H-bond
acidity and the H-bond basicity of the molecule (“difference” H-bond effect). Excess H-
bond acidity increases permeation, while excess H-bond basicity decreases it. This is an
intriguing and unexpected result. Since so few in situ brain perfusion measurements are
available for this class of molecules, the general robustness of the zwitterion model will
require additional investigation.

The four charge-class analyses were combined into a single equation, using orthonormal
indicator indices, Ia,lg, Iy and Iz, each of which had unit value as acids, bases, neutrals, and
zwitterions, respectively, and zero otherwise:

log P sifi="{co+c) - log Potcy - a} - 1,
+{ca+cy - log Potes - (a+B)} - 1,
+{ce+cy - log Potcs - (a+B)} - I
+{cotcio - (@+p)} - 1, 6)

Precisely the same MLR coefficients were determined with Eq. 6 as those in the last four
rows of Table IV: i.e., cp= —0.01, ¢1=0.94, c,=-0.68, c3=3.50, ..., ¢10=0.73. The MLR
analysis for the training set yielded r2=0.93, s=0.42, F=1454, n=197. Figure 5 shows the
IVIV correlation plot, based on Eq. 6. These results represent the most predictive BBB in
vitro model published to date, as far as we are aware.

Model Validation

The multiple linear regression model developed in this study, based on Eq. 6, was validated
by two variants of the leave-one-out (LOO) method, using the Algorithm Builder V1.8
program (17). The traditional LOO approach, with repetitive MLR calculation, each time
randomly taking out one measured in situ permeability, produced the q2=0.925. The leave-
many-out (LMO) approach, where 20% of the dependent variables were randomly removed,
with the MLR repeated 100 times, produced nearly the same q2=0.920, with the g2 standard
deviation of 0.030. These values are only slightly less than the value of r? (0.930)
determined by normal MLR analysis, suggesting internal robustness of the in combo model.

“External” Set Comparisons

Figure 6 shows the relationship between the in combo model predicted (Eq. 6) and observed
permeability values for 85 in situ “external” set measurements not used in the training of the
model. Many of the compounds in the external set comparison (Table V) are known to be
substrates for efflux transporters (e.g., quinidine, paclitaxel, fexofenadine, DPDPE),
especially the molecules which lie significantly below the identity line in Fig. 6. Of note,
doxorubicin in situ permeability values, which are based on data where the efflux effect was
largely suppressed (verapamil, knockout-mouse models mdrla(—/—) and mrpl(—/-)), lie
above the identity line. This may hint of a possible residual uptake carrier-mediated process
(11). However, the PAMPA-BBB data for doxorubicin (and cyclosporine A) were more
uncertain than that of the other molecules, due to low UV-sensitivity (cf., PAMPA errors in
Table I1). The PAMPA-BBB model could suggest that molecules substantially outside of the
three-fold window (dashed lines on both sides of the identity line in Figs. 5 and 6), might be
affected by a carrier-mediated process. For newly measured compounds with unknown
mechanism of transport, having a reliable prediction of passive BBB permeability could
serve to indicate the presence of carrier-mediated processes, as discussed at greater length
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elsewhere (11). As suggested above, cyclosporine A and doxorubicin may be considered
outliers (Fig. 6) due to difficulties in evaluating the permeability from UV measurement.

In Combo PAMPA Method Throughput

The PAMPA method described here may appear to be lowto-medium throughput, since for
most of the compounds, permeability was determined in 6-12 different pH buffers (cf., Fig.
1). This was done to characterize the membrane contributions to permeability by eliminating
the interfering effects of the ABL and the aqueous pore leakage, two effects not playing a
significant role in the blood-brain barrier. Some pharmaceutical companies perform PAMPA
measurements at a single pH in high-throughput assays (without stirring). To improve the
throughput of the new PAMPABBB model, it can be proposed here that the assay be done at
pH 7.4, stirring for compounds with predicted log Poct>2, using assay time 30-60 min. For
molecules with calculated log PocT<2, 15 h assay time without stirring is recommended.
Such a proposed procedure would have the same workload throughput as the commonly
used high-throughput protocols. Taking it a step further, given that PAMPA-BBB values
themselves can be predicted (e.g., pPCEL-X), current prediction model can be applied
entirely as a very fast in silico method, perhaps suitable for ranking molecules in virtual
compound libraries.

Water Pores in PAMPA Membrane Barrier

Chen et al. (37) hypothesized a lipid/oil/lipid tri-layer structure for the BD pre-coated filter
barriers. Since the void volume in the PVDF filter is calculated to be about 2.6 pL/well (88),
1 ulL lipid volume used in the pre-coated plates is not enough to fully plug the filter inner
volume. It is reasonable to assume that the membrane structure adopted would minimize the
hexadecane-water interface surface area. The added amphiphilic phospholipid (4%w/v)
would be expected to embed its acyl chains into the exposed hexadecane coating the inner
filter surface, while maintaining its polar head groups in contact with the aqueous phase,
reducing the surface tension, and possibly allowing some water channels to form.

The earlier investigations of Thompson et al. (97) considered several pore-filling
hypothetical structures, including lipid-solvent plug, lipid-solvent plug with a unilamellar
bilayer, as well as multilamellar bilayers. However, the presence for any of these putative
membrane structures has been difficult to substantiate for the case of PAMPA barriers
formed from dilute solutions of a lecithin in an alkane solvent. Figure 7 is a hypothesized
view of some of the possible domains that may form in PAMPA barriers that could support
the existence of water-filled pore channels. Aqueous channel diffusion would be expected to
be greater in very thin membrane barriers. The true structure of the barrier remains
unknown.

CONCLUSION

The new PAMPA-BBB model based on porcine brain extract (10%w/v PBLE in alkane) can
precisely mimic the physicochemical microenvironment of the BBB governing passive
permeability of basic drugs, with SC=0.97+0.05, using the rodent in situ brain perfusion
technique as a benchmark. For acids, SC=1.08+0.25. The neutral molecules underestimated
the physicochemical selectivity of the BBB. The PAMPA-BBB model for zwitterions
appeared not to correlate with the in vivo data. The in combo PAMPABBB technique
improved the general performance of all classes of compounds, using the 197 training set in
situ efflux-minimized rodent brain perfusion data (r2=0.93). The cross-validation LMO
analysis produced a satisfactory q2=0.92+0.03. The comparison of the intrinsic BBB
permeability of 85 “external” set BBB data to that calculated from the passive in combo
PAMPA-BBB model suggested that excessive outliers could be indicative of active efflux or
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carrier-mediated uptake processes. Our investigation, based on a total of 282 rodent brain
perfusion results, is one of the largest PS-based published study to date used to develop a
BBB permeability prediction model. It was found that the thin PAMPA lipid barriers
possessed water channels that allowed some paramembrane aqueous diffusion of
compounds. This was an extensive shunting effect (possibly limiting the determination of
low-permeable compounds and obscuring pH-dependence of permeability with ionizable
compounds) of the BD pre-coated filters (1 pL lipid/well) and filters coated with 1.5 pL
PAMPABBSB lipid based on PBLE. The 3 uL-coated PAMPA-BBB filters were most robust
and had the largest dynamic range window, DRW. We have thus developed a practical, low-
cost, and fast quantitative method which could be used for early passive BBB permeability
screening, and for assisting medicinal chemists with structure modification to improve the
BBB permeability of test compounds downstream in the CNS drug discovery process.
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ABBREVIATIONS

(€/8)2 porosity of paramembrane aqueous pores divided by the length of the
water-filled channels in thin PAMPA-BBB membranes (6 ~0.01 cm)

ABL aqueous boundary layer—thin stagnant layer adjacent to the surface of a
membrane

BLM bilayer lipid membrane, unilamellar barrier formed from egg lecithin

Daq aqueous diffusivity (cm2.s71)

DRW dynamic range window: DRW=log Pag| ~10gPpara

hagL ABL thickness (cm)

in combo methodology where a measured property (e.g., PAMPA permeability
coefficient) is aditively “combined” with a calculated (in silico) descriptor
(e.g., H-bond potential)

PagL ABL permeability coefficient (cm-s™1: Pag| = Dag/haBL

PAMPA effective permeability coefficient (cm-s~1)—the experimentally-
determined value

Pm PAMPA transmembrane permeability (cm-s~1)—P,, corrected for ABL

and aqueous pore diffusion effects; pH dependence follows Henderson-
Hasselbalch equation

PAMPA intrinsic permeability coefficient of the uncharged-form of
permeant; for ionizable compounds, Py=P,(10(PH-PK&)+1), where “+* for
acids, ‘—’ for bases

Ppara PAMPA paramembrane permeability coefficient (cm-s~1)—diffusion of

permeant via aqueous pores formed in the thin PAMPA-BBB membrane:
Ppara:(8/5)2 Dag

p,in situ BBB transendothelial permeability coefficient (cm-s~1) from in situ brain

perfusion technique: PN Siti=(PS)/S, where S=microcapillary surface
area=100 cm2g~1
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p,insitu BBB intrinsic permeability coefficient of the uncharged-form of permeant;

for ionizable compounds, PN situ=p_in situ(10+(PH-PKa)11) “+* for acids,
‘=" for bases

PAMPA.- parallel artificial membrane permeability assay, based on PBLE

BBB

formulation

PBLE porcine brain lipid extract

PS

SC

capillary permeability-surface area product (mL-s~1.g™1), determined from
the uptake rate constant (Kjn) using Crone-Renkin equation: Kj,=Fp¢
(1-e7PS/FRT) where Fpy is the regional cerebral flow of perfusion fluid
(mLstg™

selectivity coefficient; slope in the log-log in vitro—in vivo correlation
plot
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Fig. 1.

The log permeability vs. pH plots of four of the 108 molecules determined by the PAMPA-
BBB method. The a—d frames are based on 3 uL PBLE lipid coated filters, while the e-h
frames are based on the 1 uL 4%w/v DOPC in hexadecane BD pre-coated filter plates. The
pH was varied to assess the contribution of the aqueous boundary layer and the shunting
effect of the paramembrane aqueous pores. The best-fit of the log form of Eq. 1 to the
measured effective permeability data, Pe vs. pH, are represented by the solid curves, and the
paramembrane- and ABL-corrected log Py, vs. pH curves are represented by dashed curves.
The dot curves correspond to the log Pag| Vvalues, and the dot-dash curves correspond to the
paramembrane permeability, 10g Ppara. The maximum point in the log Py, curves
corresponds to the intrinsic permeability coefficient, log Py, which characterizes the
permeability of the neutral form of an ionizable molecule. The intersections of the horizontal
and the diagonal tangents occur at pH values corresponding to the pK, in the dashed curves.
The dynamic range window, DRW, is the permeability gap defined by log Pag,_at the top
and log Ppar, at the bottom.
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DOPC); b octanol-water partition coefficients; ¢ egg lecithin unilamellar BLM (95,96); d
PAMPA-BBB (3 uL/well 10%w/v PBLE in alkane), for base drugs.
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In vitro-in vivo correlation between in situ rodent brain perfusion intrinsic permeability and
PAMPA-BBB (3 uL/well 10%w/v PBLE in alkane) intrinsic permeability.
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Fig. 4.

Polar plots representing the quintet of Abraham MLR coefficients for the four charge
classes, to illustrate the IVIV model differences. Dashed lines correspond to in situ-based
data; solid lines represent the PAMPA-BBB model (3 uL/well 10%w/v PBLE in alkane).
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The 85 measured in situ “external” set values of compounds which could potentially be
actively transported compared to those calculated from the in combo PAMPA-BBB model.
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Fig. 7.
A hypothetical view of the structure of PAMPA-BBB in a pore of the lipophilic PVDF filter,
suggestive of possible water channel passages.
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