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Neuronal plasticity in animal models and the epileptic human
hippocampus
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Prolonged status epilepticus in humans as in experimental animals can initiate the
development of temporal lobe epilepsy (TLE) (Kapur, 1999). Therefore, application of
potent convulsant substances such as kainic acid or pilocarpine in rats induces acute status
epilepticus that, after a silent period of 1-2 weeks, is followed by spontaneous convulsions.
The status epilepticus is characterized by severe limbic seizures and sequelae of
neuropathologic signs including opening of the blood—brain barrier, local brain edema,
bleeding into the brain, and activation of microglia and astrocytes followed by
neurodegeneration in the hippocampus, amygdala, entorhinal cortex, and other brain areas
(Sperk et al., 1983; Du et al., 1993; Rizzi et al., 2003). Induced by the seizure activity,
neurotransmitters such as y-aminobutyric acid (GABA), glutamate, or amine transmitters
are released from their stores and mechanisms of their resynthesis are strongly activated
(Sperk et al., 1983). In addition, pronounced changes in the expression of multiple
functionally important proteins have been found in brains of experimental animals and
humans (Herdegen et al., 1993; Sperk, 1994; McNamara, 1999; Morimoto et al., 2004).

Some of these dynamic neurochemical changes persist also in the chronically epileptic state
or may be altered or substituted by other changes. They are accompanied by progressing
rearrangement of neuronal circuitries, characterized by continuing neurodegeneration and by
axonal outgrowth. The best-characterized example of such plastic changes is the sprouting
of mossy fibers to the inner molecular layer of the dentate gyrus, where they seem to
substitute the loss of associational/commissural fibers arising from dentate mossy cells
(Houser et al., 1990).

Herein we review some of our findings and the findings of others on neurochemical and
morphologic changes related to GABAergic and peptidergic neurotransmission (Table 1;
Pirker et al., 2001).

There are clear indications for a loss of excitatory as well as of inhibitory GABAergic
neurons early after induction of the status epilepticus. At the same time, expression of
immediate early genes and of many proteins becomes severely altered, mostly activated
presumably leading to an altered functioning of neuronal circuitries (Herdegen et al., 1993;
Sperk, 1994; Morimoto et al., 2004). Expression of the GABA-synthesizing enzymes
glutamate decarboxylases GAD65 and GADG67 and of an embryonic form of GAD67
becomes enhanced (Sperk et al., 1983, 2003; Esclapez & Houser, 1999; Szabo et al., 2000),
indicating enhanced GABA synthesis in the surviving neurons. Also at the receptor level,
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GABAergic transmission appears to be markedly altered. In human TLE, as in animal
models, GABAA and GABAGg receptors undergo dynamic changes in their expression.
Whereas expression of GABARg receptors is decreased initially after status epilepticus
(perhaps resulting in enhanced release of glutamate), it is increased in patients with chronic
TLE (Furtinger et al., 2003a,b). Changes in the expression of GABA receptor subunits are
complex. In animal models, typically expression of the S-subunits (82 and £3) containing
the binding site for GABA, and of a2 and 2, contributing to the binding of the
anticonvulsant benzodiazepines is increased. On the other hand, levels of subunits
presumably comprising extrasynaptic receptors involved in tonic GABA-mediated
inhibition, such as §and a5 (in mice), become decreased in the dentate gyrus after status
epilepticus. Interestingly in human TLE most subunits expressed in the hippocampus seem
to be upregulated (notably subunits a2, a3, ab, S1-3, 2, and é), indicating little functional
changes but consistent upregulation of the receptors presumably leading to generally
enhanced GABAergic transmission. (Table 1; Loup et al., 2000; Pirker et al., 2001).

Neuropeptides are cotransmitters of classical neurotransmitters. They are rapidly released
during status epilepticus but are considerably slower resynthesized than classical
neurotransmitters (Vezzani et al., 1996). It has been well documented that synthesis of
neuropeptides is dynamically regulated by seizures and that neuropeptides may potently
influence later epileptic events in different ways. Therefore, the peptides thyrotropin-
releasing hormone (TRH) and neurokinin B exert proconvulsive actions, and neuropeptide Y
(NPY), galanin, and dynorphin exert potent anticonvulsive actions (Vezzani et al., 1999;
Mazarati & Wasterlain, 2002). Expression of all of these peptides is altered by the status
epilepticus. NPY exerts its anticonvulsive effects through presynaptic Y2 receptors located
presynaptically on glutamate neurons and by mediating inhibition of the release of the
excitatory transmitter (Vezzani et al., 1999; Furtinger et al., 2001). Seizures not only cause
marked upregulation of NPY but also of Y2 receptors in mossy fibers of rats and patients
with TLE (Furtinger et al., 2001). Interestingly, whereas NPY is expressed ectopically in
principal neurons of epileptic rats and may act there on presynaptic receptors, it becomes
overexpressed in GABA/NPY neurons that prominently sprout in human TLE. In contrast to
the rat, in human TLE, the peptide may be released from interneurons upon nerve endings of
excitatory neurons and may result in impaired glutamate release (Furtinger et al., 2001).

Other than for NPY, expression of dynorphin becomes decreased in the hippocampus of
epileptic rats (Douglass et al., 1991). Consequently, its endogenous action may be limited in
epileptic rats. In contrast, in patients with TLE, expression of dynorphin is markedly
upregulated in mossy fibers. mMRNA levels are especially high in patients that experienced
seizures within 48 h prior to epilepsy surgery, indicating a confounding effect of seizures on
dynorphin expression (Pirker et al., 2009). Because dynorphin exerts anticonvulsive actions
(mediated by x-opioid receptors) in experimental animals, it may act as an endogenous
anticonvulsant peptide in human TLE, upregulated by a previous seizure episode. The
anticonvulsant potency of various neuropeptides, notably of NPY and galanin, has recently
led to the concept of using viral vectors overexpressing the neuropeptides, which then may
be selectively released during epileptic seizures and may exert anticonvulsive action.
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