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Abstract The serotonergic system of the brain is complex,
with an extensive innervation pattern covering all brain
regions and endowed with at least 15 different receptors
(each with their particular distribution patterns), specific
reuptake mechanisms and synthetic processes. Many
aspects of the functioning of the serotonergic system are
still unclear, partially because of the difficulty of measuring
physiological processes in the living brain. In this review
we give an overview of the conventional methods of
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measuring serotonin synthesis and methods using positron
emission tomography (PET) tracers, more specifically with
respect to serotonergic function in affective disorders.
Conventional methods are invasive and do not directly
measure synthesis rates. Although they may give insight
into turnover rates, a more direct measurement may be
preferred. PET is a noninvasive technique which can trace
metabolic processes, like serotonin synthesis. Tracers
developed for this purpose are «-[''C]methyltryptophan
(["'CJAMT) and 5-hydroxy-L-[B-''C]tryptophan ([''C]5-
HTP). Both tracers have advantages and disadvantages.
[''CJAMT can enter the kynurenine pathway under inflam-
matory conditions (and thus provide a false signal), but this
tracer has been used in many studies leading to novel
insights regarding antidepressant action. [''C]5-HTP is
difficult to produce, but trapping of this compound may
better represent serotonin synthesis. AMT and 5-HTP
kinetics are differently affected by tryptophan depletion
and changes of mood. This may indicate that both tracers
are associated with different enzymatic processes. In
conclusion, PET with radiolabelled substrates for the
serotonergic pathway is the only direct way to detect
changes of serotonin synthesis in the living brain.

Keywords Serotonin - Positron Emission Tomography -
[''C]5-HTP- [''C]JAMT - Depression

Introduction

Serotonergic innervations are widely spread throughout the
brain with cell bodies of origin lying in the dorsal (DRN) or
median (MRN) raphe nucleus, and a column of raphe nuclei
in lower brainstem regions, projecting to basically all
divisions of the brain and spinal cord (Fig. 1). Synthesis
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of serotonin (5-HT) takes place within neurons and
especially in serotonergic terminals, and this process
includes two enzymatic steps. The first step is the
conversion of the precursor molecule, the amino acid
tryptophan (Trp), to 5-hydroxytryptophan (5-HTP) by
tryptophan hydroxylase (TPH) 1 or 2. The second step in
the production of 5-HT involves the enzymatic action of
aromatic amino acid decarboxylase (AADC) that has L-
dopa and 5-HTP as a substrate. 5-HT is eventually
degraded to 5-hydroxyindoleacetic acid (5-HIAA) by
monoamine oxidase (MAO).

After synthesis, 5-HT is transported by the vesicular
monoamine transporter and stored in vesicles at the
neuronal presynaptic endings. When neurons fire, these
vesicles fuse with the synaptic membrane and release 5-HT
into the synaptic cleft. Released 5-HT can bind to many
different receptors, both postsynaptic and presynaptic or be
taken up by the serotonergic reuptake transporter (SERT).
There are at least 15 different 5-HT receptors which are
divided into 7 distinct families (5-HT; 7) [1]. Postsynaptic
receptor binding can be either inhibitory or excitatory,
depending on which subtype is stimulated. The presynaptic
receptors (5-HT; 4, located somatodendritic, and 5-HTg,
located on terminals) are autoreceptors that inhibit seroto-
nergic neurotransmission, while heteroreceptors influence
the release of neurotransmitters other than 5-HT [2].
Almost all 5-HT receptors are G protein-coupled (metabo-
tropic), with the exception of the 5-HT; subtype which is a
ligand-gated ion channel [1].

Different subtypes of the 5-HT receptor are located in
different brain regions and probably regulate different
behavioural functions. An important role of 5-HT is the
regulation of mood, and several 5-HT receptor subtypes
are involved in the actions of antidepressants and

Fig. 1 The serotonergic system.
The cell bodies of serotonergic
neurons lay in the brainstem
raphe nuclei. These neurons
project to many brain areas like
the cortex, basal ganglia, cere-
bellum, thalamus, limbic areas
like hippocampus and amygda-
la, and spinal cord. Different 5-
HT receptor subtypes have a
specific distribution in the brain.
Autoreceptors in the raphe nu-
clei are depicted on neuronal
cell bodies (5-HT;4) or in ter-
minal areas and raphe nuclei on
the presynapse (5-HT;g). The
depiction of other 5-HT receptor
subtypes in terminal areas can
either represent heteroreceptors

Cerebellum

antipsychotics. Serotonin synthesis may be of special
interest because this process is controlled by 5-HT;,
receptors, which are implied in the therapeutic efficacy of
antidepressants [3].

It is clear that 5-HT influences many other neurotransmitter
systems in an excitatory or inhibitory manner. One important
key aspect that regulates serotonergic neurotransmission is the
availability of the 5-HT precursor: the amino acid Trp.

In addition to conversion to serotonin, Trp is metabo-
lized in the kynurenine pathway and used for protein
synthesis. The rate-limiting step in the kynurenine pathway
is the activity of indoleamine 2,3-dioxygenase (IDO) in the
CNS and tryptophan 2,3-dioxygenase in peripheral organs.
Both enzymes convert Trp to kynurenine. Activation of
IDO within the CNS takes place under the influence of
proinflammatory cytokines mainly within microglial cells.
Increased cytokines and IDO activity have been linked to
major depression in depressed subjects and in patients with
inflammatory somatic disorders [4]. Increased IDO activity
under inflammatory conditions may increase the amount of
Trp used in the kynurenine pathway and consequently
reduce the availability of Trp for 5-HT synthesis.

All the above-mentioned aspects of the serotonergic
system may act in concert to enable the organism to
function properly. The question is how can we obtain a
reliable view of ongoing serotonergic processes in the
living brain and what is the contribution of different
receptor subtypes and determinants of 5-HT release (like
its synthesis). Positron Emission Tomography (PET) can
quantify these processes in a noninvasive manner. In
Table 1, the most often used radiotracers to measure aspects
of the serotonin system are listed [5—25]. Such tracers are
reviewed elsewhere in greater detail [26, 27]. As there are
no Single Photon Emission Computed Tomography

(Pre)frontal
cortex

\ Basal ganglia

Limbic areas (hip/
amyg) .

Raphe nuclei

or postsynaptic receptors on 5- 8 5-HT,, 5-HT,
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(SPECT) tracers to measure serotonin synthesis, we
mention only PET tracers.

In the present review we will mainly focus on the
quantification of serotonin synthesis and its preclinical and
clinical application using conventional and PET imaging
techniques.

Conventional methods: measuring 5-HT
and its metabolites in platelets and CSF

In early studies of experimental animals, concentrations of 5-
HT and its metabolites in tissue after inhibition of AADC or
MAO were used as an estimate of 5-HT turnover. Inhibiting
MAQO results in a decrease of the conversion of 5-HT to 5-
HIAA. By measuring either the reduction of 5-HIAA or the
accumulation of 5-HT, turnover rates of 5-HT can be

Table 1 PET tracers used for research on serotonergic neurotransmission

estimated. A similar approach is inhibition of the transport
of 5-HIAA over the blood-brain barrier (BBB), from brain to
the circulation. Inhibition of this transport by probenecid
results in 5-HIAA accumulation within the brain, and the
rate of this accumulation is related to the turnover rate of 5-
HT. The accumulation of 5-HTP in the brain after AADC
inhibition with NSD-1015 can be used as a measure for 5-
HT synthesis. Assays of serotonin and its metabolites can be
performed by analysis of tissue homogenates, by micro-
dialysis or by analysis of body fluids (blood, urine or CSF)
[28-30]. Such methods have four major disadvantages: (1) it
is not certain that the target enzymes are fully inhibited under
the conditions of the study, (2) the inhibitors may influence
other physiological processes (for example 5-HT synthesis),
(3) the measurements in plasma and urine include peripheral
processes and (4) these invasive techniques cannot be
applied in humans.

Serotonergic ~ Function Radioligand Literature
component
5-HTj 5 Autoreceptor on cell bodies in [''CINAD-195 Sandell et al. [22]
DRN/inhibitory postsynaptic [ISF]MPPF Shiue et al. [23]
receptor [carbonyl-''C] Pike et al. [19]
WAY-100635
[carbonyl-''C] Pike et al. [20]
desmethyl-WAY-
100635
["*FIFCWAY Lang et al. [13]
["*FIMEFWAY Saigal N., Synthesis and biologic evaluation of a novel serotonin 5-
HTI1A receptor radioligand, 18F-labeled mefway, in rodents and
imaging by PET in a nonhuman primate, 2006
[''CIRWAY Yasuno et al. [25]
["'C]CUMI-101 Kumar et al. [12]
5-HTp Autoreceptor on nerve terminals/  [''C]JAZ10419369  Pierson et al. [18]
inhibitory heteroreceptor [”C]P943 Gallezot et al. [8]
5-HT; Excitatory receptor (e.g. ["®F]setoperone Blin et al. [6]
regulation gene transcription) ['®F]altanserin Lemaire et al. [14]
["'CJMDL-100907  Lundkvist et al. [15]
["* FIMH.MZ Herth et al. [10]
5-HT, Excitatory receptor [''CISB207145 Marner et al. [17]
SERT Reuptake transporter (e.g. target ["'CIMcN5652 Suehiro et al. [24]
SSRI) ["'CIDASB Houle et al. [11]
["'"CIMADAM Halldin et al. [9]
["*F]ADAM Ma et al. [16]
Trp Precursor 5-HTP and substrate o-[1'C] methyltryptophan
TPH
Diksic et al.
(7]
5-HTP Precursor 5-HT and substrate 5-hydroxy-L- Bjurling et al. [5]
AADC [B-''C]
tryptophan
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Turnover rates of 5-HT in humans are usually assessed
by measuring 5-HT content of blood platelets or by
analysis of samples of CSF which are acquired through
lumbar puncture, an uncomfortable and invasive proce-
dure. Usually the ratio of 5-HIAA and 5-HT is measured
and sometimes only 5-HIAA concentrations are used as an
index of 5-HT turnover (because 5-HT concentrations are
negligible compared to 5-HIAA concentrations) [31].
Assays of platelet 5-HT content are of questionable value,
since peripheral processes may not be an accurate
reflection of the corresponding processes in the CNS. In
research focusing on this question contradictory results
were obtained.

Some studies indicate a close relationship between 5-HT
turnover in brain and platelets. There are similarities
between neurons and platelets regarding the mechanisms
of 5-HT transport and the presence of certain binding sites
including the 5-HT, receptor [32, 33]. For example, rats
show decreased levels of 5-HT both in platelet-rich plasma
and in brain homogenates after the forced swim test (FST),
used to assess antidepressant efficacy. This decrease is
reduced after acute treatment of animals with a selective
serotonin reuptake inhibitor (SSRI) (fluoxetine) and in
naive rats, fluoxetine causes an increase in 5-HT [34]. The
5-HT concentration in brain homogenates after chronic (12
days) treatment of rats with an SSRI was comparable to the
amount found in platelet-rich plasma. The 5-HT concentra-
tion in isolated platelets returned to control levels at day 12,
which may reflect comparable changes in neurons.

In contrast to these positive results, there is also evidence
indicating that 5-HT in platelets and in brain may not
always be changed in parallel. In 5-HT 5 receptor knockout
mice, 5-HT concentrations in platelets and in brain show
similar decreases until 2 weeks after birth. After 2 weeks,
however, the 5-HT content of platelets is increased
compared to wild-type mice, whereas brain 5-HT concen-
trations are normalized [34]. In addition, no correlation was
observed between the binding potential of the 5-HT,a
ligand ['®F]setoperone in the brain and binding of [PHJLSD
in blood platelets of healthy volunteers [35]. This indicates
that extrapolation of measurements in blood platelets to 5-
HT neurotransmission in the brain is difficult. Such
extrapolations must be performed with caution and direct
measurements of 5-HT in the brain should be preferred.

Another alternative for directly measuring brain con-
centrations is measurement of 5-HT and its metabolites
in samples of CSF acquired by lumbar puncture. Because
the levels of 5-HT in CSF are very low (less then 10 pg/
ml), measurements of 5-HT concentration cannot be used
for determination of 5-HT turnover rates [36]. Another
option is measuring 5-HIAA concentrations in CSF,
because 5-HIAA is present in much greater quantities.
Increases of 5-HIAA after inhibition of MAO or of 5-

HIAA transport by probenecid should correlate to the
formation rate of 5-HT. However, this method has also
many drawbacks [31]:

— A lumbar puncture is invasive and often experienced as
unpleasant.

— Measurements of 5-HIAA concentrations will partly
represent the rate of transport of 5-HIAA into the
CSF.

— Because of the high concentrations of 5-HIAA com-
pared to 5-HT, changes in 5-HIAA are only detectable
after a delay of several hours.

—  5-HT concentrations in lumbar CSF are not an accurate
reflection of cerebral 5-HT synthesis, since they
partially reflect synthesis of 5-HT within the spinal
cord. There is a gradient from cisterna magna to spinal
subarachnoid as more 5-HT is synthesized in the brain
than in the spinal cord.

— 5-HIAA is transported from brain and CSF, back into
the bloodstream.

The last process can be inhibited by administration of
probenecid, which blocks the active transport of acidic
metabolites out of the brain and CSF. Measurements of 5-
HIAA in CSF and the “probenecid test” were frequently
used by Van Praag and Korf [37]. Concentrations of 5-
HIAA were measured in the CSF at baseline and after
administration of probenecid. By using this method they
were one of the pioneers linking serotonin deficiency to
depressive symptoms and proposed the “predisposition
hypothesis” which is partially maintained even today. The
increase of 5-HIAA concentrations after probenecid was
lower in depressive patients compared to the control group.
This indicates involvement of 5-HT in depression. The
predisposition hypothesis was further based on different
findings. A higher frequency of depression was observed in
patients with 5-HT deficiency and this deficiency in 5-HT
persisted even after a depressive episode. Additionally, the
use of 5-HTP as a prophylactic agent reduced the rates of
relapse in depressed patients [38, 39].

A recent study reported that 5-HIAA in the blood of
patients with major depression, using a jugular vein
catheter, were actually increased, suggesting increased 5-
HT turnover. This increase in 5-HIAA was reduced by
SSRI treatment and dependent on the s and / allele
polymorphisms of SERT [40]. This result conflicts with
assumptions that 5-HT synthesis is decreased in depressed
patients and that antidepressants cause an increase in 5-HT
signal transduction. A possibility is that SSRIs influence 5-
HT synthesis differently under acute and chronic circum-
stances, but they could also indirectly influence breakdown
of 5-HT by MAO resulting in decreased turnover. SSRIs
may increase extracellular 5-HT concentrations and con-
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comitantly reduce 5-HT storage and breakdown because of
the decreased reuptake of 5-HT.

Later it appeared that 5-HT deficiency is related to other
behavioural dysfunctions like aggression and impulsivity,
while not solely deficiencies in 5-HT neurotransmission
underlie depressive symptoms. This led to the denosolog-
ization hypothesis implying that serotonergic dysfunction
may be related to dimensions of behaviour cutting across
diagnostic boundaries, and thus not necessarily show
correlations with diagnostic entities [41]. This approach
was probably systematically applied for the first time in
imaging studies by the Ghent group (head R.A. Dierckx)
through transnosological research of impulsivity using
SPECT activation studies and 5-HT,, receptor imaging in
suicidality, eating disorders and personality disorders (in
men and dogs) [42—45].

Depression has a multi-symptom pathology and may
probably be caused by flaws in several neurotransmitter
systems and molecular signalling pathways. Yet, the
serotonergic system may play an important role as it is a
modulatory system, influencing the activity of many other
neurotransmitter pathways throughout the brain.

Recent technologies: radiopharmaceuticals
for measuring serotonin synthesis

Recent technologies allow research in living animals and
humans. PET is such a noninvasive technique that enables
quantification of physiological processes by measuring tracer
kinetics. PET can reveal the dynamics of biological processes
like 5-HT neurotransmission. In the pathway for 5-HT
synthesis, the availability of Trp determines the rate of 5-
HT formation; because the K, values of TPH and AADC
are greater than the physiological Trp concentrations, the
enzymes are not saturated [46, 47]. This means that both Trp
and 5-HTP analogues can be used for measuring 5-HT
synthesis rates. The first attempts at imaging 5-HT synthesis
were conducted by labelling natural Trp with trittum. Some
disadvantages were noted, like the incorporation of Trp into
proteins which reduces tracer availability [48, 49]. Therefore,
other tracers have been developed with more favourable
characteristics, such as «-[''C]methyltryptophan ([''CJAMT,
Trp analogue) and 5-hydroxy-L-[3-''C]tryptophan ([''C]5-
HTP, radiolabelled 5-HTP).

o-["'C]methyltryptophan

As Trp turned out to be unsuitable as a tracer, a radiolabelled
analogue of Trp was introduced for measurement of 5-HT
synthesis, o-methyltryptophan (AMT). This compound is a
substrate of TPH and will eventually be converted to o-
methylserotonin. Because o-methylserotonin is not degraded

@ Springer

by MAO and cannot cross the BBB, it is trapped for a long
period in the brain [50].

Preclinical data

Kinetic modelling and validation The first studies employed
AMT labelled with *H and "*C to perform autoradiography
in rats. A kinetic model for measuring ['*CJAMT uptake was
developed using a three-compartment model (or two-tissue
compartment model) with irreversible tracer trapping, the
compartments being plasma, brain and irreversibly trapped
tracer [7, 51]. The slope of the linear function depicting
distribution volume (DV) plotted against time under steady-
state conditions represents the unidirectional trapping of the
tracer indicated by the constant K®. Subsequent studies used
AMT labelled with ''C for PET scanning in monkeys and
dogs to measure individual rate constants and to enable
Patlak analysis.

In this model, the K* (or K complex) describes a
trapping constant that takes all individual rate constants into
account according to the following formula:

K% = K 1 k3 (1)
(K + K5)

In Eq. 1, K; resembles tracer influx into the brain, k; is
the efflux constant and k; the irreversible trapping constant
(Fig. 2).

To estimate physiological rates of 5-HT synthesis, K*
must be divided by a lumped constant (LC) to correct for
difference in affinity of AMT and Trp for TPH and the
different amounts of both compounds entering the kynur-
enine pathway. The LC is on average 0.42 in rat brain [52,
53]. In this way, a K" value can be obtained which is
further converted to 5-HT synthesis rates by multiplication
with free Trp concentrations in plasma (Cp'F). Thus,
reliable in vivo 5-HT synthesis rates (R) may be estimated
[54]:

K .
R= (E)*(Cp ") (2)
plasma tissue
: ) - [riciamT
£ [ ["CIAMT || [11C}AMSHTP
ke ["'CJAMSHT

Fig. 2 Three-compartment model, or two-tissue compartment model,
with irreversible tracer trapping. [''CJAMT in plasma is transported
over the BBB into the brain, where it can be irreversibly trapped,
mainly as [''CJAMT but also as [''CJAMSHTP or [''C]JAMSHT. The
three compartments are plasma, precursor pool and irreversible
trapping compartment
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K® can also be measured with a graphical method like
the Patlak plot [55]. This graphical method is not con-
strained by individual rate constants, but based on macro-
system parameters, usually resulting in less variability. The
slope of the Patlak plot represents K“.

However, there are some contradictory results concerning
the efficiency and reliability of radiolabelled AMT. In the
first 60 min after injection, only a small fraction of
labelled AMT is converted to labelled AMSHT in the rat
brain [56]. Different research groups have obtained
significantly different results in calculating the percentage
of radioactivity corresponding to [''C]JAMSHT in the
DRN, ranging from 2—4% after 90 min in monkeys [57] to
31% after 60 min in rats [7]. It has been suggested that
AMT PET measures Trp uptake in the brain rather than rates
of 5-HT synthesis [57], although Diksic and colleagues
argue that the significantly better fit of a three-compartment
model compared to a two-compartment model suggests
irreversible tracer trapping and not only the presence of
AMT in the brain [58]. The slow kinetics resulted in the
lack of a linear portion of the Patlak plot at the moment of
tracer equilibrium between reversible compartments and
plasma [57, 59]. Gharib and colleagues correctly pointed
out that AMT does not meet all the assumptions made in
the Patlak model [56]. The transfer of unmetabolized
tracer between brain and plasma is not fully reversible.
Another problem is that labelled AMT can enter the
kynurenine pathway since it is an analogue of Trp and the
activity of this pathway will increase the amount of
radioactivity which is trapped in the brain. Therefore,
Chugani and Muzik refer to the measured K% as a
reflection of the capacity of 5-HT synthesis, rather than
the synthesis rate [59].

Although a kinetic analysis of AMT uptake may not
provide true synthesis rates, labelled AMT is sensitive
enough to detect physiological changes and may provide
more information about serotonergic neurotransmission.
Neurons stained for 5-HT or TPH were colocalized with
[P’HJAMT in the rat brain and ["HJAMTS5HT was released
from serotonergic cell bodies in the raphe nucleus and
serotonergic terminals in projection areas like the hippo-
campus and striatum. This release was increased after
depolarization by 50 mM KCI, as compared to baseline
[60]. Studies using autoradiography revealed that the half-life
of the precursor pool in rats is approximately 20 min and
treatment with lithium results in a 52% increase of 5-HT
synthesis rates in the parietal cortex and a 47% increase in the
caudate nucleus [7, 51]. This indicates the ability of AMT to
detect changes in serotonergic neurotransmission.

Effect of pharmacological challenges Studies with '*C-
labelled AMT in experimental animals using autoradio-
graphic techniques after various interventions and brain

lesions indicated that AMT could detect changes in the
rate of 5-HT synthesis (see reviews by [31, 54]). These
pharmacological interventions revealed differences in the
acute or chronic effect of SSRIs on serotonin synthesis
rates [61, 62] that could possibly be explained by
autoreceptor stimulation.

This was also shown in a more recent study with the
SSRI citalopram (10 mg/kg per day for 14 days) in
olfactory bulbectomized (OBX) rats, a depression model.
OBX rats showed an increase of 5-HT synthesis in terminal
areas and reductions in the DRN. Chronic citalopram
reduced 5-HT synthesis to the levels of sham-operated rats
receiving citalopram in the terminal areas, and marginally
increased synthesis in the DRN. As citalopram treatment in
sham-operated rats also reduced 5-HT synthesis in some
brain areas (DRN, hippocampus), the reduction of 5-HT
synthesis in terminal areas of OBX rats may be explained
by feedback inhibition through autoreceptors [63].

Autoreceptors located on serotonergic neurons are very
important in the regulation of 5-HT synthesis and they play
a crucial role in the therapeutic action of antidepressants.
The 5-HT; 5 (somatodendritic receptor on cell bodies) and
5-HT, subtypes (presynaptic receptor on nerve terminals),
regulating the feedback inhibition of 5-HT release, deserve
attention because of their role in the late onset of
therapeutic effects of many antidepressants.

Compared to the above-mentioned studies with anti-
depressants, similar effects were seen with the 5-HT;4
receptor agonist buspirone. Acute buspirone treatment of
rats (10 mg/kg, subcutaneous) significantly decreased 5-HT
synthesis rates, while chronic treatment (10 mg/kg per day
for 14 days, subcutaneous) abolished this effect [64]. This
finding is in accordance with previous results showing a
reduction of serotonergic firing rate and reduced 5-HT in
projection areas like the hippocampus [65, 66].

Less is known about the role of 5-HT, 3 receptors on the
nerve terminals in projection areas. The nonselective 5-
HT,p receptor agonists TFMPP and CGS12066B acutely
decrease 5-HT synthesis rates in the DRN and MRN
(probably caused by partial action on 5-HT;, receptors)
of rat brain [67]. Acute CGS12066B decreases 5-HT
synthesis rates in brain areas known to contain solely 5-
HT,g receptors (e.g. the median of the nucleus caudatus
and the nucleus accumbens) [68], while TFMPP decreases
5-HT synthesis in almost all terminal areas. Subchronic
treatment (7 days) with both compounds decreases 5-HT
synthesis in terminal areas.

The much more selective 5-HT;g receptor agonist CP-
93129 when administered acutely (7 mg/kg, i.p.) decreased
synthesis rates only in projection areas. This effect was
abolished by chronic treatment (7 mg/kg per day for 14
days, subcutaneous) which is explicable because of the
desensitization of the 5-HT g autoreceptors [69].
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In conclusion, both 5-HT;, and 5-HT;g autoreceptors
can reduce 5-HT synthesis rates in the brain, but the
receptors desensitize in response to chronic stimulation, so
that their inhibitory effects are transient.

These different effects of the pharmaceuticals are
difficult to detect by simple measurements of 5-HT
concentrations and made it clear that antidepressants have
a regional specific effect on serotonin synthesis. Eventually
effects on serotonin synthesis will influence the 5-HT
availability for release and therefore may be a very
important process in the efficacy of antidepressants. The
studies with AMT described are excellent examples of how
PET tracers can provide novel insights into physiological
processes.

The most pronounced effects of pharmacological
challenge are expected when the enzymes of the 5-HT
synthesis pathway (AADC and TPH) are directly inhibited
and this may provide information about the validity of the
method. Indeed, the TPH inhibitor p-chlorophenylalanine
(PCPA, 200 mg/kg for 3 days i.p.) and the inhibitor of
TPH activation, AGN-2979 (10 mg/kg, i.p.), both reduced
5-HT synthesis rates [70, 71]. Surprisingly, the AADC
inhibitor NSD-1015 (100 mg/kg, i.p.) appeared to increase
5-HT synthesis [72]. This discrepancy may be explained
by the additional inhibition of MAO by NSD-1015 or by
the ability of NSD-1015 to increase levels of free Trp in
plasma [73]. Therefore, results obtained with NSD-1015
should be interpreted with caution as they are probably not
solely attributable to inhibition of AADC.

Preclinical PET studies Although the above-mentioned
studies may provide important insights regarding physio-
logical processes in animals, autoradiography does not take
individual rate constants into account. Higher accuracy can
be obtained by monitoring tracer kinetics in living animals
and humans using PET. The first study using ''C-labelled
AMT for PET imaging was performed in dogs [74]. Both
oxygen and Trp increased the trapping of [''CJAMT in dog
brain, which should be expected if [''CJAMT trapping
reflects 5-HT synthesis. Another experiment in dogs
evaluated the time-dependent effect of 3,4-methylenediox-
ymethamphetamine (MDMA) infusion (2 mg/kg). After
1 h, 5-HT synthesis was strongly increased (up to six times
above baseline), though subsequently a decline in 5-HT
synthesis rates was observed to 50% of baseline after 5 h
[75]. This is in accordance with the observation that
MDMA first stimulates 5-HT release which leads to
increased 5-HT synthesis, but finally destroys 5-HT
terminals with a corresponding decrease of neurotransmitter
formation [76].

Interestingly, 5-HT synthesis rates measured with [''C]
AMT PET in rhesus monkeys did not correlate with 5-
HIAA concentrations in the CSF. Whether this is due to a
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lack of accuracy of the AMT method or a difficulty of
linking 5-HIAA in CSF to 5-HT synthesis within brain
remains unclear [77], although in theory, during steady state
there should be a close correlation between the conversion
of 5-HT to 5-HIAA and the elimination of 5-HIAA from
brain to CSF.

More concerns about the AMT method were raised by
the same research group as they showed that even after
3 h in rhesus monkeys no equilibrium had been reached
between tracer in plasma and tracer in reversible tissue
compartments. Therefore, the Patlak plot showed no
linear portion, which is necessary for calculation of
influx rates [57].

However, the preclinical data contributed to the
understanding of what the tracer is really measuring
and whether the tracer is valid for clinical research,
making it worthwhile to further investigate serotonin
synthesis under clinical conditions.

Clinical data

Eventually a tracer should have the ability to visualize
physiological processes in humans, in order to clarify the
pathophysiology of disease and to be employed in routine
clinical practice.

Human PET data of [''CJAMT are modelled in
approximately the same way as canine or monkey data
(see above). However, in humans both a Patlak approach
and a two-tissue compartment model can be used, although
the value of the LC in humans is unknown. While in
animals the Patlak approach may not be valid, in humans a
steady state appears to be reached which is accompanied by
a linear portion of the Patlak plot justifying its use for
quantification purposes [78]. By comparing different
studies in humans as well as in monkeys it was found that
there was a high correlation between [''CJAMT trapping,
[''C]5-HTP accumulation and 5-HT concentrations deter-
mined postmortem [79].

A disadvantage of kinetic modelling is that an arterial
cannula is required for blood sampling (determination of an
arterial input function), which is a quite invasive procedure.
The use of venous radioactivity as input causes a bias in the
results with overestimation of the K¢ values, but this may
be acceptable if no arterial blood samples can be taken [80].

The first study using [''CJAMT PET focused on gender
differences and Trp depletion [78]. Both females and males
showed much lower K values after acute Trp depletion
through ingestion of a Trp-free amino acid mixture. The
change was about 90% in males and 95% in females. Acute
Trp depletion has been associated with lowered mood in
vulnerable subgroups and with sensitivity to stress [81-83].
At baseline women had lower levels of free Trp in plasma
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than men. Possibly due to this difference in Trp levels,
women showed lower rates of 5-HT synthesis than men at
baseline, although the K* did not differ between genders.
The K should not be confused with rates of 5-HT synthesis
which are also based on plasma levels of free Trp.
Conflicting results were reported regarding gender differ-
ences. Where Chugani et al. [84] found an increase, Sakai
et al. [21] described a decrease of the K” in females. These
conflicting findings could be due to the different protocols
that were employed including a different nutritional and
metabolic state of the subjects.

Later studies focused on the effect of age on 5-HT
synthesis and on the examination of various pathologies
using [''CJAMT PET (see reviews by [31, 54]).

More recent research has focused on the effect of oxygen
on 5-HT synthesis, as it is necessary for TPH activity. Even
slight hypoxia affects the metabolism of Trp, probably
because TPH has a low affinity for oxygen [85]. This is
reflected in the K values measured under high and low
oxygen concentrations (60 and 15% oxygen, respectively).
The increase in the measured rate of 5-HT synthesis at high
oxygen concentrations is about 50% [86], providing
evidence that [''CJAMT can be used for measuring changes
of TPH activity.

When clinical applications for a tracer of 5-HT
synthesis are considered, research on depressed patients
is of great interest. Changes in Patlak K¢ were detectable
with [''CJAMT PET in medication-free patients with
major depression [87]. Most obvious was the reduction
of Patlak K” in the cingulate cortex (CC), bilaterally in
women and in the left hemisphere in men. This brain area
is involved in attention and emotion and shows abnormal-
ities of cerebral blood flow and glucose metabolism in
patients with major depression [88]. The CC receives large
projections from the DRN and MRN and projects to
orbitofrontal cortex (OFC) and amygdala, two areas
hypothesized to show dysfunction in depression. Remark-
ably, no differences in 5-HT synthesis rate were found in
the OFC or dorsolateral prefrontal cortex. This suggests
that the difference in glucose metabolism observed in
these regions may not be attributed to altered 5-HT
synthesis. Surprisingly, K* did not correlate with the
severity of depression [87].

Treatment with the SSRI citalopram increased K in the
CC and this increase is associated with elevated mood as
assessed by Hamilton rating scores [89]. Other brain areas
where citalopram increased 5-HT synthesis rates are the left
and right prefrontal gyrus. These effects were not seen after
10 days, only after 24 days. This delay in the onset of
therapeutic effects of an SSRI was probably caused by a
feedback loop involving 5-HT| 5 autoreceptors. It is known
that blocking the 5-HT;, receptor with pindolol can
accelerate the therapeutic effects of antidepressants [90].

Indeed, at day 24 the increase in 5-HT synthesis rate
induced by an SSRI was greater in patients who received
pindolol at day 10 compared to placebo. Whether this
increase in 5-HT synthesis is due to 5-HT;, autoreceptor
blocking remains questionable, because pindolol also
excites dopaminergic and noradrenergic neurons [91]. Most
probably the total blockage of central beta-adrenoceptors by
pindolol plays an important role [92].

In addition, the binding potential of ['*F]MPPF, a 5-
HT;5 receptor ligand, could not be correlated to 5-HT
synthesis rates as measured with [''CJAMT in the raphe
nuclei [93]. However, in terminal areas of serotonergic
neurons (like hippocampus, anterior CC and anterior insula)
a negative correlation was found, indicating that decreased
binding of ['*F]MPPF to 5-HT, heteroreceptors increased
5-HT synthesis. These studies show that a combination of
different tracers can lead to greater understanding of
processes in the human brain.

While under healthy conditions [''CJAMT may give
estimates of 5-HT synthesis, a recent human PET study
confirmed that this tracer can actually enter the kynurenine
pathway. It was shown that brain tumours show differences
in IDO (the enzyme converting Trp to kynurenine)
expression and that this expression was related to the
amount of AMT taken up by the tumour [94].

[''C]5-HTP

Tracer conversion to kynurenine can be prevented by
labelling the direct precursor of 5-HT, which is only
metabolized in the pathway for 5-HT synthesis. Injection
of 5-HTP labelled in the [3-position can provide insight into
endogenously synthesized 5-HT, since 5-HTP is the
substrate of the last enzyme involved in the production of
5-HT. [''C]5-HTP will undergo the same conversions as 5-
HTP and will eventually end up as [''C]5-HIAA (Fig. 3).
Because of the difficulty of labelling 5-HTP in the f3-
position with ''C, a procedure which involves rapid
enzymatic steps, this radiotracer has only been synthesized
in a few imaging institutions [5, 95].

Neuroendocrine tumour imaging

[''C]5-HTP is mainly used for the detection of neuroendo-
crine tumours and not for brain imaging. These tumours are
usually slowly growing, highly differentiated and may have
various characteristics, although active uptake and decar-
boxylation of monoamine precursors like L-dopa and 5-
HTP and overproduction of hormones are typical. Conven-
tionally used metabolic PET tracers, like ['®F]FDG,
appeared unsuitable for the detection of neuroendocrine
tumours, whereas detection of the uptake of monoamine
precursors with [''C]5-HTP PET resulted in the visualiza-
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Fig. 3 Metabolism of [''C]5-HTP. Most of 5-HT synthesis takes
place in the terminal areas. Tryptophan is acquired through the diet
and is transported across the blood-brain barrier (BBB) by the large
amino acid transporter (LAT). Within neurons Trp is catabolized by
tryptophan hydroxylase (7PH) to S5-HTP. Subsequently, 5-HTP is
converted to 5-HT by AADC. PCPA and NSD 1015 can block TPH
and AADC, respectively. 5-HT is taken up and stored in vesicles by
the vesicular monoamine transporter (VMAT). When neurons fire, the
vesicles fuse with the synaptic membrane whereafter 5-HT is released
within the synaptic cleft. The serotonin transporter (SERT) causes

tion of lesions which were missed by FDG. Especially the
diagnostic sensitivity of pancreatic islet cell tumours greatly
benefits from [''C]5-HTP PET in combination with a CT
scan, while carcinoid tumours are better visualized with
["®FJFDOPA, a radiolabelled analogue of the precursor of
dopamine [96].

However, a problem in this detection method is the high
urinary concentration of ''C, caused by excretion of radio-
labelled 5-HIAA. Inhibition of peripheral decarboxylase
activity by administering the AADC inhibitor carbidopa
reduces the excretion of ''C and increases tracer uptake in
the tumours [97, 98]. The effects of carbidopa on tracer
uptake have also been investigated in a xenograft model of
neuroendocrine pancreatic tumours by Neels and colleagues
[99]. Carbidopa improved tumour imaging also in this
animal model, probably by inhibiting peripheral AADC
activity and increasing availability of the tracer.

Preclinical data

In 1992, an initial preclinical study with [''C]5-HTP for
measuring cerebral 5-HT synthesis was performed in rhesus
monkeys [100]. The authors used a reference area in the
brain for modelling the time-activity curves of other brain
areas, in order to analyse tracer kinetics. In this model the
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reuptake of 5-HT that can either be restored into vesicles or be broken
down by monoamine oxidase (MA40) to 5-HIAA. Eventually, 5-HIAA
is released into the bloodstream and excreted by the kidneys. A similar
process takes place in peripheral organs. Radiolabelled 5-HTP under-
goes the same conversions as endogenous 5-HTP and is therefore a
suitable tracer for 5-HT synthesis. A two-tissue compartment model
with irreversible tracer trapping can be used for modelling [''C]5-HTP
kinetics. The rate constant for transport from plasma to brain is
indicated by K;, k, represents efflux of the tracer back into the
bloodstream and k; is the irreversible trapping constant

rate constant k; represents irreversible tracer trapping
(Figs. 2 and 3).

Since blocking of specific enzymatic steps in the metabolic
pathway had the expected effects, [''C]5-HTP appeared to be
a valid tracer for measurement of the rate of decarboxylation
of 5-HTP to 5-HT. Blocking central AADC with NSD-1015
resulted in a decrease of the rate constant ks in both monkeys
and rats. This constant reflects 5S-HTP decarboxylation and
mirrors 5-HT synthesis. The nonspecific blocking of MAO
with pargyline (2 days 2 x 4 mg/kg) or the selective blocking
of MAO-A with clorgyline (0.2 mg/kg) did not change the
rate constant indicating that radiolabelled 5-HIAA does not
readily leave the brain [100, 101]. Especially in the striatum,
levels of radioactivity were high and the value of k; was
influenced by the concentration of pyridoxine or vitamin By,
the cofactor of AADC [102].

Not only 5-HTP is a substrate of AADC, but also L-
dopa, the precursor of dopamine. The affinity of AADC for
5-HTP is probably higher than for rL-dopa [103]. When
unlabelled substrates were administered to increase the size
of the endogenous pools, the measured value of k; was
decreased. This indicates a limited capacity of the enzyme
for substrate conversion and saturation of the decarboxyl-
ation reaction [103]. The detriment of [''C]5-HTP is that
AADC is not only present in serotonergic but also in
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dopaminergic and noradrenergic neurons, possibly trapping
the tracer in these neurons as well [103, 104].

The only experiments with [''C]5-HTP in rodents were
performed by Lindner and colleagues [101]. PET imaging
was not performed in this study, but animals were
sacrificed 40 min after tracer injection and high-
performance liquid chromatography (HPLC) was used to
separate [''C]5-HTP from its metabolites in brain extracts.
At 40 min after injection, 95% of the radioactivity within
the brain originated from [''C]5-HTP, [''C]5-HT and
[''C]5-HIAA, the latter compound comprising 75% of
total brain radioactivity. These data indicated an extensive
metabolism of [''C]5-HTP in the 5-HT synthesis pathway.
Less than 5% of the cerebral radioactivity was related to
other metabolites. By blocking the enzyme MAO, the
fraction of 5-HT in the striatum was increased, which
could be expected if MAO degrades 5-HT. Blocking of
central AADC by NSD-1015 decreased the conversion of
5-HTP to 5-HT and 5-HIAA, while the blocking of
peripheral AADC with carbidopa increased the brain
uptake of 5-HTP, although it decreased the formation of
5-HIAA. Surprisingly, carbidopa increased k3 in the
striatum indicating increased turnover of the tracer, but it
lowered k3 in the cerebellum. The underlying mechanism
is unclear.

Most of the above-mentioned research was performed
with a reference tissue analysis or with HPLC rather than
PET. HPLC can be used in preclinical research, but PET
offers opportunities to visualize the living brain in humans.
The most accurate way of determining tracer uptake in
tissue is to relate this to plasma input, instead of using a
reference tissue. An input function derived from arterial
blood samples can be used to model time-activity curves in
brain to characterize the cerebral kinetics of the tracer. The
most suitable model for analysis of the kinetics of [''C]5-
HTP is a two-tissue compartment model with irreversible
tracer trapping (Fig. 3). This model is approximately the
same as for [''C]JAMT. The individual rate constants for
tracer uptake (K;), tracer efflux (k,) and irreversible tracer
trapping (k3) can be used for calculating the accumulation
constant K,.. (see Eq. 1).

This model appears to be valid in the rhesus monkey, as
it could detect changes in AADC activity after pharmaco-
logical manipulation, and elimination of [''C]5-HIAA was
negligible within a scan time of 60 min [105].

In another study [106], the authors compared the
ability of the PET tracers [''C]5-HTP and [''CJAMT to
measure AADC activity in the monkey brain. It appeared
that these tracers had different rate constants and accumu-
lation rates. While [''CJAMT showed higher uptake of
radioactivity in the brain, which is not surprising because
less [''C]5-HTP than [''CJAMT is available in plasma,
the values of K, k3 and K, in striatum and thalamus

were lower. The reason for a lower availability of [''C]5-
HTP could be extensive decarboxylation of this tracer by
AADC in peripheral organs. Remarkable is the fact that
although 5-HT concentrations differ highly between
different brain areas, the trapping of [''CJAMT is rather
uniform throughout the brain, while this is not the case for
[''C]5-HTP [106].

Clinical data

To the best of our knowledge, the first PET study with [''C]
5-HTP in the human brain was performed in 1991 [107].
Patients suffering from major depression showed a reduced
uptake of the tracer in their brains. A recent clinical study
reported a relationship between [''C]5-HTP trapping and
mood states [108]. A clear negative correlation was
observed between the cardinal symptoms of premenstrual
dysphoria in women, like irritability and depressed mood,
and changes in tracer trapping in the entire brain (Fig. 4),
prefrontal regions and some regions of the striatum. The
opposite mood states, feelings of happiness and mental
energy, showed a strong positive correlation with tracer
trapping. The same two-tissue compartment model as was
used for monkeys has been employed for PET studies of 5-
HT synthesis in the human brain [109]. Tracer influx should
never be rate limiting or it will lower the k;. Hagberg and
colleagues found a distribution volume above zero, indi-
cating considerable tracer uptake in the brain. The constant
that takes the distribution volume into account is the net
accumulation rate constant K., which is referred to as K¢
in ["'CJAMT PET.

There are only a few published reports on the use of
[''C]5-HTP for imaging 5-HT synthesis, and thus there are
many opportunities for clinical studies with this tracer. The
correlation of tracer trapping with mood indicates that this
method may be useful for assessing the therapeutic efficacy
of antidepressants. Other pathological conditions may be
elucidated using [''C]5-HTP PET, such as the role of
serotonergic dysfunction in eating disorders.

Discussion

The serotonergic system is complex, influencing many
other neurotransmitter systems and behavioural functions.
Monitoring 5-HT synthesis or other elements of serotoner-
gic neurotransmission in vivo with PET gives insight into
what is going on in the living brain. Research reviewed
here shows the possibilities of this technique to elucidate
processes otherwise not fully understood. However, refine-
ment is necessary to increase resolution and increase target
to background ratios. In addition, many elements of the 5-
HT system have not yet been visualized, making the picture
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Fig. 4 Mood correlates with T

[''C]5-HTP trapping. Both pos-
itive and negative mood states
are related to the amount of
tracer trapping in the brain of
women with premenstrual dys-
phoria. Especially irritability,
depression, energy and happi-
ness show strong correlations
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incomplete. The most elegant studies are studies where
multiple tracers could be used, visualizing different aspects
of serotonergic neurotransmission like receptor binding
potential and 5-HT synthesis.

A dynamic process such as 5-HT synthesis cannot
reliably be assessed by single time point measurements of
5-HT and its metabolites in CSF or blood platelets. Since 5-
HT synthesis is one of the initial processes in serotonergic
neurotransmission and a crucial determinant of 5-HT-
mediated signal transduction, quantification of this process
by PET is of great interest. Two tracers, [''C]5-HTP and
[''C]JAMT, have been developed for this purpose, which
have distinct advantages and disadvantages.

A specific tracer that measures 5-HT synthesis rates may
answer some of the questions about changes of 5-HT
synthesis in different physiological or pathological con-
ditions. Most important results show the effects of
antidepressants on 5-HT synthesis through activation of
autoreceptors, which may indicate a crucial role for 5-HT
synthesis in the efficacy of antidepressants. This should be
elucidated in future research.

As outlined above, more research has been done with
["'C]JAMT than with [''C]5-HTP, probably because pro-
ducing [''C]5-HTP is difficult, requiring several enzymatic
steps [110]. At the moment it is only produced in four to
five centres all over the world.

The most striking difference between the results of AMT
and HTP studies concerns the effect of Trp depletion and its
correlation with mood states. While [''C]JAMT detects a
large decrease in 5-HT synthesis rates after acute Trp
depletion, ["'C]5-HTP does not [78, 111]. The opposite
accounts for mood states; no correlation was found between
[''C]AMT radioactivity in the brain and Hamilton scores,
whereas the brain uptake of [''C]5-HTP is correlated with
different mood states [87, 108]. The different results
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obtained with [''C]5-HTP and [''C]JAMT may be due to
the fact that 5-HTP and AMT are substrates for different
enzymes, AADC and TPH, respectively. The tracers may
measure different aspects of Trp metabolism and 5-HT
synthesis. There are some reasons why [''C]5-HTP may be
preferred over [''CJAMT:

« [""C]JAMT kinetics is very slow, resulting in a low
production of ['"CJAMSHT and a high fraction of
trapped tracer representing [''CJAMT (parent) [56].

* AMT is an analogue of Trp which behaves differently
than the natural amino acid (Fig. 5).

* In rats and monkeys, equilibrium between irreversible
compartments and plasma is not reached within a PET
time scale. As a consequence of this, Patlak modelling
produces erroneous results [56, 57].

« In contrast to [''C]5-HTP, [''CJAMT can enter the
kynurenine pathway since it is an analogue of Trp. This
route becomes important under inflammatory conditions
and it may cause difficulties in the interpretation of
["'CJAMT scan data [94].

=T

HO

"1CH,
H2N

"CH;
COOH

["CI5-HTP ["CIAMT

Fig. 5 Chemical structures of [''C]5-HTP and [''CJAMT. The
radionuclide ''C (indicated in blue) is incorporated in the B-position
of the carbon skeleton of 5-HTP, but in the methyl group of AMT
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Results obtained with [''CJAMT under pathological
conditions may reflect activation of the kynurenine pathway
rather than 5-HT synthesis. Because 5-HTP is the endog-
enous direct precursor of 5-HT its metabolic fate is much
less complex (Fig. 5), even though AADC is also present in
dopaminergic neurons to convert L-dopa into dopamine.
After oral administration of 5-HTP in rats, the immuno-
reactivity of 5-HT and 5-HTP colocalized in the raphe
nuclei, but also in the dopaminergic neurons in the
substantia nigra pars compacta. This suggests that [''C]
5-HTP could also be converted to ectopic [''C]5-HT in
dopaminergic neurons [112].

Thus, based upon these considerations we would prefer
[''C]5-HTP PET for the study of alterations of 5-HT
synthesis in different pathological conditions.

However, some prerequisites of the model used for
calculating 5-HT synthesis rates with [''C]5-HTP should be
mentioned. Erroneous data can be obtained if the biological
system does not meet the following conditions:

*  AADC must operate far from saturation, so that changes
in the rate of 5-HT formation can be measured. This
condition is probably met, because the tissue concen-
tration of 5-HTP is below the Michaelis-Menten
constant of AADC. However, the enzyme may ap-
proach saturation under conditions where 5-HT synthe-
sis is strongly increased [103].

* 5-HIAA should not leave the brain within the time span
of the scan. This metabolite is finally excreted, but
MAUO inhibition does not affect k3 indicating that within
a 60-min scan the loss of radiolabelled 5-HIAA from
brain tissue is negligible [100].

* 5-HIAA from the blood should not contribute to
measured radioactivity in the brain. 5-HTP is converted
to 5-HT and 5-HIAA in peripheral organs. Although 5-
HT cannot be transported across the BBB, 5-HIAA can.
However, plasma concentrations of 5-HIAA are only
large at the end of the scanning period and MAO
inhibition does not change the k;. Therefore, the
contribution of 5-HIAA in the circulation to cerebral
radioactivity is probably minor.

* Enough tracer should enter the brain as the amount of
tracer should not be rate limiting. Therefore, the
cerebral distribution volume must be above zero, as
indicated by Hagberg and colleagues [109]. The
delivery of [''C]5-HTP to the brain could be facilitated
by intraperitoneal administration of carbidopa [99].

» Synaptic transport of Trp and 5-HTP should be limited
to 5-HT neurons and AADC should be specific for 5-
HTP. Although L-dopa is also a substrate of AADC, it
seems to influence [''C]5-HTP trapping to a lesser
extent than cold 5-HTP, indicating that S-HTP may be
predominantly used by serotonergic neurons [103].

Most of these prerequisites have been investigated in
humans and monkeys and the conditions for modelling
[''C]5-HTP kinetics seem to be met in these species, but
tracer validation for microPET studies in rodents has not
yet been performed. [''C]5-HTP scans in rodents could be
used in preclinical testing of the effects of antidepressants
and provide new insight into the pathophysiology of
disease. Future research should indicate whether [''C]
5-HTP and [''CJAMT measure enzymatic activity (TPH,
AADC, IDO) or the true rates of 5-HT synthesis.

The above-named prerequisites of measuring 5-HT
synthesis with [''C]5-HTP and the fact that [''C]JAMT is
not an ideal tracer for this purpose emphasize the complexity
of measuring 5-HT synthesis. Although most properties of
[''C]5-HTP seem appropriate, the difficult production of this
radiopharmaceutical limits its widespread application. Future
research should concentrate on elucidating what [''C]5-HTP
is exactly measuring and improving tracer properties.
Attempts to develop a novel tracer with improved
properties should focus on: (1) specific uptake of the
tracer by serotonergic neurons, (2) chemical modification
of the radiopharmaceutical so that it is no longer
converted to a 5-HIAA analogue and (3) a simplified
production process.

Conclusion

We have reviewed several techniques for the evaluation of
serotonin synthesis. PET can directly visualize this physi-
ological process, whereas other techniques can only provide
an indirect measurement. This makes it a valuable tool in
clinical research especially because results indicate that
serotonin synthesis seems to play a role in depression and
antidepressant action, although widespread application of
[''C]5-HTP and [''CJAMT in clinical research is not
possible yet.

A unified theory of affective disorders can only be
achieved if we consider different imaging methods and also
take into account both animal and human histological data.
In the future it may be worthwhile to develop the tools to
study both receptor density and 5-HT synthesis, and this
will hopefully yield a better and more complete under-
standing of the processes involved in the pathophysiology
of affective disorders.

Conflicts of interest None.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are
credited.

@ Springer



588

Eur J Nucl Med Mol Imaging (2011) 38:576-591

References

10.

11.

12.

14.

15.

16.

17.

. Barnes NM, Sharp T. A review of central 5-HT receptors and

their function. Neuropharmacology 1999;38(8):1083—152.

. Fink KB, Goéthert M. 5-HT receptor regulation of neurotrans-

mitter release. Pharmacol Rev 2007;59(4):360—417.

. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A,

Metzger KL, Kung HF, et al. 5-HT1A autoreceptor levels
determine vulnerability to stress and response to antidepressants.
Neuron 2010;65(1):40-52.

. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW.

From inflammation to sickness and depression: when the
immune system subjugates the brain. Nat Rev Neurosci 2008;9
(1):46-56.

. Bjurling P, Watanabe Y, Tokushige M, Oda T, Langstrém B.

Syntheses of (3-11C-labelled L-tryptophan and 5-hydroxy-L-
tryptophan using a multi-enzymatic reaction route. J Chem Soc
Perkin Trans 1989;1(7):1331-4.

. Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC. [18F]

setoperone: a new high-affinity ligand for positron emission
tomography study of the serotonin-2 receptors in baboon brain in
vivo. Eur J Pharmacol 1988;147(1):73-82.

. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new

method to measure brain serotonin synthesis in vivo. I. Theory
and basic data for a biological model. J Cereb Blood Flow Metab
1990;10(1):1-12.

. Gallezot JD, Nabulsi N, Neumeister A, Planeta-Wilson B,

Williams WA, Singhal T, et al. Kinetic modeling of the serotonin
5-HT(1B) receptor radioligand [(11)C]P943 in humans. J Cereb
Blood Flow Metab 2010;30(1):196-210.

. Halldin C, Lundberg J, Sovago J, Gulyas B, Guilloteau D,

Vercouillie J, et al. [(11)C]MADAM, a new serotonin transporter
radioligand characterized in the monkey brain by PET. Synapse
2005;58(3):173-83.

Herth MM, Piel M, Debus F, Schmitt U, Liiddens H, Rosch F.
Preliminary in vivo and ex vivo evaluation of the 5-HT2A
imaging probe [(18)F]MH.MZ. Nucl Med Biol 2009;36(4):447—
54.

Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging
the serotonin transporter with positron emission tomography:
initial human studies with [11C]DAPP and [11C]DASB. Eur J
Nucl Med 2000;27(11):1719-22.

Kumar JS, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC,
Tamir H, et al. Synthesis and in vivo evaluation of a novel 5-
HTIA receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-
methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5
(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol
Imaging 2007;34(7):1050-60.

. Lang L, Jagoda E, Schmall B, Vuong BK, Adams HR, Nelson

DL, et al. Development of fluorine-18-labeled 5-HT1A antago-
nists. ] Med Chem 1999;42(9):1576-86.

Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens
L. Fluorine-18-altanserin: a radioligand for the study of serotonin
receptors with PET: radiolabeling and in vivo biologic behavior in
rats. J Nucl Med 1991;32(12):2266-72.

Lundkvist C, Halldin C, Ginovart N, Nyberg S, Swahn CG, Carr
AA, et al. [11ICIMDL 100907, a radioligland for selective
imaging of 5-HT(2A) receptors with positron emission tomog-
raphy. Life Sci 1996;58(10):PL 187-92.

Ma KH, Huang WS, Kuo YY, Peng CJ, Liou NH, Liu RS, et al.
Validation of 4-[18F]-ADAM as a SERT imaging agent using
micro-PET and autoradiography. Neuroimage 2009;45(3):687—
93.

Marner L, Gillings N, Comley RA, Baar¢ WF, Rabiner EA,
Wilson AA, et al. Kinetic modeling of 11C-SB207145 binding to

@ Springer

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

5-HT4 receptors in the human brain in vivo. J Nucl Med 2009;50
(6):900-8.

Pierson ME, Andersson J, Nyberg S, McCarthy DJ, Finnema SJ,
Varnids K, et al. [11C]AZ10419369: a selective 5-HT 1B receptor
radioligand suitable for positron emission tomography (PET).
Characterization in the primate brain. Neuroimage 2008;41
(3):1075-85.

Pike VW, McCarron JA, Lammertsma AA, Osman S, Hume SP,
Sargent PA, et al. Exquisite delineation of 5-HT1A receptors in
human brain with PET and [carbonyl-11 C]WAY-100635. Eur J
Pharmacol 1996;301(1-3):R5-7.

Pike VW, Halldin C, McCarron JA, Lundkvist C, Hirani E,
Olsson H, et al. [carbonyl-11C]Desmethyl-WAY-100635
(DWAY) is a potent and selective radioligand for central 5-
HTI1A receptors in vitro and in vivo. Eur J Nucl Med 1998;25
(4):338-46.

Sakai Y, Nishikawa M, Leyton M, Benkelfat C, Young SN,
Diksic M. Cortical trapping of alpha-[(11)C]methyl-I-tryptophan,
an index of serotonin synthesis, is lower in females than males.
Neuroimage 2006;33(3):815-24.

Sandell J, Halldin C, Hall H, Thorberg SO, Werner T, Sohn D, et
al. Radiosynthesis and autoradiographic evaluation of [11C]
NAD-299, a radioligand for visualization of the 5-HT1A
receptor. Nucl Med Biol 1999;26(2):159-64.

Shiue CY, Shive GG, Mozley PD, Kung MP, Zhuang ZP, Kim
HIJ, et al. P-[18F]-MPPF: a potential radioligand for PET studies
of 5-HT1A receptors in humans. Synapse 1997;25(2):147-54.
Suehiro M, Scheffel U, Ravert HT, Dannals RF, Wagner Jr HN.
[11C](+)McN5652 as a radiotracer for imaging serotonin uptake
sites with PET. Life Sci 1993;53(11):883-92.

Yasuno F, Zoghbi SS, McCarron JA, Hong J, Ichise M, Brown AK,
et al. Quantification of serotonin 5-HT1A receptors in monkey brain
with [11C](R)-(-)-RWAY. Synapse 2006;60(7):510-20.

Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA,
Moore RY, et al. Serotonin in aging, late-life depression, and
Alzheimer’s disease: the emerging role of functional imaging.
Neuropsychopharmacology 1998;18(6):407-30.

Moresco RM, Matarrese M, Fazio F. PET and SPET molecular
imaging: focus on serotonin system. Curr Top Med Chem 2006;6
(18):2027-34.

Kim C, Speisky MB, Kharouba SN. Rapid and sensitive method
for measuring norepinephrine, dopamine, 5-hydroxytryptamine
and their major metabolites in rat brain by high-performance
liquid chromatography. Differential effect of probenecid, halo-
peridol and yohimbine on the concentrations of biogenic amines
and metabolites in various regions of rat brain. J Chromatogr
1987;386:25-35.

Mignot E, Serrano A, Laude D, Elghozi JL, Dedek J, Scatton B.
Measurement of 5-HIAA levels in ventricular CSF (by LCEC)
and in striatum (by in vivo voltammetry) during pharmacological
modifications of serotonin metabolism in the rat. J Neural
Transm 1985;62(1-2):117-24.

Stenfors C, Ross SB. Changes in extracellular 5-HIAA concen-
trations as measured by in vivo microdialysis technique in
relation to changes in 5-HT release. Psychopharmacology (Berl)
2004;172(2):119-28.

Diksic M, Young SN. Study of the brain serotonergic system
with labeled alpha-methyl-L-tryptophan. J Neurochem 2001;78
(6):1185-200.

Sneddon JM. Blood platelets as a model for monoamine-
containing neurones. Prog Neurobiol 1973;1(2):151-98.

Stahl SM. The human platelet. A diagnostic and research tool for
the study of biogenic amines in psychiatric and neurologic
disorders. Arch Gen Psychiatry 1977;34(5):509-16.

Bianchi M, Moser C, Lazzarini C, Vecchiato E, Crespi F. Forced
swimming test and fluoxetine treatment: in vivo evidence that



Eur J Nucl Med Mol Imaging (2011) 38:576-591

589

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

peripheral 5-HT in rat platelet-rich plasma mirrors cerebral
extracellular 5-HT levels, whilst 5-HT in isolated platelets
mirrors neuronal 5-HT changes. Exp Brain Res 2002;143
(2):191-7.

Janusonis S, Anderson GM, Shifrovich I, Rakic P. Ontogeny of
brain and blood serotonin levels in 5-HT receptor knockout
mice: potential relevance to the neurobiology of autism. J
Neurochem 2006;99(3):1019-31.

Anderson GM, Mefford IN, Tolliver TJ, Riddle MA, Ocame
DM, Leckman JF, et al. Serotonin in human Ilumbar
cerebrospinal fluid: a reassessment. Life Sci 1990;46(4):247—
S5.

van Praag HM, Korf J. Serotonin metabolism in depression:
clinical application of the probenecid test. Int Pharmacopsychia-
try 1974;9(1):35-51.

van Praag HM, de Haan S. Central serotonin metabolism and
frequency of depression. Psychiatry Res 1979;1(3):219-24.

van Praag HM. Depression, suicide and the metabolism of
serotonin in the brain. J Affect Disord 1982;4(4):275-90.
Barton DA, Esler MD, Dawood T, Lambert EA, Haikerwal D,
Brenchley C, et al. Elevated brain serotonin turnover in patients
with depression: effect of genotype and therapy. Arch Gen
Psychiatry 2008;65(1):38—46.

van Praag HM, Kahn RS, Asnis GM, Wetzler S, Brown SL,
Bleich A, et al. Denosologization of biological psychiatry or the
specificity of 5-HT disturbances in psychiatric disorders. J Affect
Disord 1987;13(1):1-8.

Peremans K, Audenaert K, Hoybergs Y, Otte A, Goethals I,
Gielen I, et al. The effect of citalopram hydrobromide on 5-
HT2A receptors in the impulsive-aggressive dog, as measured
with 1231-5-1-R91150 SPECT. Eur J Nucl Med Mol Imaging
2005;32(6):708-16.

Goethals I, Vervaet M, Audenaert K, Van de Wiele C, Ham H,
Vandecapelle M, et al. Comparison of cortical 5-HT2A receptor
binding in bulimia nervosa patients and healthy volunteers. Am J
Psychiatry 2004;161(10):1916-8.

van Heeringen C, Audenaert K, Van Laere K, Dumont F, Slegers
G, Mertens J, et al. Prefrontal 5-HT2a receptor binding index,
hopelessness and personality characteristics in attempted suicide.
J Affect Disord 2003;74(2):149-58.

Audenaert K, Van Laere K, Dumont F, Vervaet M, Goethals I,
Siegers G, et al. Decreased 5-HT2a receptor binding in patients
with anorexia nervosa. J Nucl Med 2003;44(2):163-9.
Fernstrom JD, Wurtman RJ. Brain serotonin content: physiolog-
ical dependence on plasma tryptophan levels. Science 1971;173
(992):149-52.

Fernstrom JD. Effects on the diet on brain neurotransmitters.
Metabolism 1977;26(2):207-23.

Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT.
Analysis of [C-11]alpha-methyl-tryptophan kinetics for the
estimation of serotonin synthesis rate in vivo. J Cereb Blood
Flow Metab 1997;17(6):659-69.

Tracqui P, Morot-Gaudry Y, Staub JF, Brézillon P, Perault-Staub
AM, Bourgoin S, et al. Model of brain serotonin metabolism. II.
Physiological interpretation. Am J Physiol 1983;244(2):R206—
15.

Roberge AG, Missala K, Sourkes TL. Alpha-methyltryptophan:
effects on synthesis and degradation of serotonin in the brain.
Neuropharmacology 1972;11(2):197-209.

Nagahiro S, Takada A, Diksic M, Sourkes TL, Missala K,
Yamamoto YL. A new method to measure brain serotonin
synthesis in vivo. II. A practical autoradiographic method tested
in normal and lithium-treated rats. J Cereb Blood Flow Metab
1990;10(1):13-21.

Diksic M. alpha-Methyl tryptophan as a tracer for in vivo
studies of brain serotonin system, from autoradiography to

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

positron emission tomography. J Chem Neuroanat 1992;5
(4):349-54.

Vanier M, Tsuiki K, Grdisa M, Worsley K, Diksic M. Determination
of the lumped constant for the alpha-methyltryptophan method of
estimating the rate of serotonin synthesis. J Neurochem 1995;64
(2):624-35.

Diksic M. Labelled alpha-methyl-L-tryptophan as a tracer for the
study of the brain serotonergic system. J Psychiatry Neurosci
2001;26(4):293-303.

Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evalua-
tion of blood-to-brain transfer constants from multiple-time
uptake data. J Cereb Blood Flow Metab 1983;3(1):1-7.

Gharib A, Balende C, Sarda N, Weissmann D, Plenevaux A,
Luxen A, et al. Biochemical and autoradiographic measurements
of brain serotonin synthesis rate in the freely moving rat: a
reexamination of the alpha-methyl-L-tryptophan method. J
Neurochem 1999;72(6):2593-600.

Shoaf SE, Carson RE, Hommer D, Williams WA, Higley JD,
Schmall B, et al. The suitability of [11C]-alpha-methyl-L-
tryptophan as a tracer for serotonin synthesis: studies with dual
administration of [11C] and [14C] labeled tracer. J Cereb Blood
Flow Metab 2000;20(2):244-52.

Diksic M. Does labeled alpha-methyl-L-tryptophan image
ONLY blood-brain barrier transport of tryptophan? J Cereb
Blood Flow Metab 2000;20(10):1508-11.

Chugani DC, Muzik O. Alpha[C-11]methyl-L-tryptophan PET
maps brain serotonin synthesis and kynurenine pathway metab-
olism. J Cereb Blood Flow Metab 2000;20(1):2-9.

Cohen Z, Tsuiki K, Takada A, Beaudet A, Diksic M, Hamel E.
In vivo-synthesized radioactively labelled alpha-methyl seroto-
nin as a selective tracer for visualization of brain serotonin
neurons. Synapse 1995;21(1):21-8.

Miick-Seler D, Jevric-Causevic A, Diksic M. Influence of
fluoxetine on regional serotonin synthesis in the rat brain. J
Neurochem 1996;67(6):2434-42.

Tsuiki K, Yamamoto YL, Diksic M. Effect of acute fluoxetine
treatment on the brain serotonin synthesis as measured by the
alpha-methyl-L-tryptophan autoradiographic method. J Neuro-
chem 1995;65(1):250-6.

Hasegawa S, Watanabe A, Nguyen KQ, Debonnel G, Diksic
M. Chronic administration of citalopram in olfactory bulbec-
tomy rats restores brain 5-HT synthesis rates: an autoradio-
graphic study. Psychopharmacology (Berl) 2005;179(4):
781-90.

Okazawa H, Yamane F, Blier P, Diksic M. Effects of acute and
chronic administration of the serotoninl A agonist buspirone on
serotonin synthesis in the rat brain. J Neurochem 1999;72
(5):2022-31.

Sharp T, Bramwell SR, Grahame-Smith DG. 5-HT1 agonists
reduce 5-hydroxytryptamine release in rat hippocampus in vivo
as determined by brain microdialysis. Br J Pharmacol 1989;96
(2):283-90.

VanderMaelen CP, Matheson GK, Wilderman RC, Patterson LA.
Inhibition of serotonergic dorsal raphe neurons by systemic and
iontophoretic administration of buspirone, a non-benzodiazepine
anxiolytic drug. Eur J Pharmacol 1986;129(1-2):123-30.
Tohyama Y, Yamane F, Fikre Merid M, Blier P, Diksic M.
Effects of serotine receptors agonists, TFMPP and CGS12066B,
on regional serotonin synthesis in the rat brain: an autoradio-
graphic study. J Neurochem 2002;80(5):788-98.

Vergé D, Daval G, Marcinkiewicz M, Patey A, el Mestikawy S,
Gozlan H, et al. Quantitative autoradiography of multiple 5-HT1
receptor subtypes in the brain of control or 5,7-dihydroxytrypt-
amine-treated rats. J Neurosci 1986;6(12):3474-82.

Hasegawa S, Watanabe A, Nishi K, Nguyen KQ, Diksic M.
Selective 5-HT1B receptor agonist reduces serotonin synthesis

@ Springer



590

Eur J Nucl Med Mol Imaging (2011) 38:576-591

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

following acute, and not chronic, drug administration: results of
an autoradiographic study. Neurochem Int 2005;46(3):261-72.
Hasegawa S, Kanemaru K, Gittos M, Diksic M. The tryptophan
hydroxylase activation inhibitor, AGN-2979, decreases regional
5-HT synthesis in the rat brain measured with alpha-[14C]
methyl-L-tryptophan: an autoradiographic study. Brain Res Bull
2005;67(3):248-55.

Tohyama Y, Takahashi S, Merid MF, Watanabe A, Diksic M.
The inhibition of tryptophan hydroxylase, not protein synthesis,
reduces the brain trapping of alpha-methyl-L-tryptophan: an
autoradiographic study. Neurochem Int 2002;40(7):603—-10.
Miick-Seler D, Diksic M. The acute effects of reserpine and
NSD-1015 on the brain serotonin synthesis rate measured by an
autoradiographic method. Neuropsychopharmacology 1995;12
(3):251-62.

Treseder SA, Rose S, Summo L, Jenner P. Commonly used
L-amino acid decarboxylase inhibitors block monoamine
oxidase activity in the rat. J Neural Transm 2003;110
(3):229-38.

Diksic M, Nagahiro S, Chaly T, Sourkes TL, Yamamoto YL,
Feindel W. Serotonin synthesis rate measured in living dog brain
by positron emission tomography. J Neurochem 1991;56(1):153—
62.

Nishisawa S, Mzengeza S, Diksic M. Acute effects of 3.4-
methylenedioxymethamphetamine on brain serotonin synthesis
in the dog studied by positron emission tomography. Neurochem
Int 1999;34(1):33—40.

Molliver ME, Berger UV, Mamounas LA, Molliver DC,
O’Hearn E, Wilson MA. Neurotoxicity of MDMA and related
compounds: anatomic studies. Ann N Y Acad Sci
1990;600:649-61.

Shoaf SE, Carson R, Hommer D, Williams W, Higley JD,
Schmall B, et al. Brain serotonin synthesis rates in rhesus
monkeys determined by [11C]Jalpha-methyl-L-tryptophan and
positron emission tomography compared to CSF 5-
hydroxyindole-3-acetic acid concentrations. Neuropsychophar-
macology 1998;19(5):345-53.

Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S,
de Montigny C, et al. Differences between males and females in
rates of serotonin synthesis in human brain. Proc Natl Acad Sci
U S A 1997;94(10):5308-13.

Leyton M, Diksic M, Benkelfat C. Brain regional alpha-[11C]
methyl-L-tryptophan trapping correlates with post-mortem tissue
serotonin content and [11C]5-hydroxytryptophan accumulation.
Int J Neuropsychopharmacol 2005;8(4):633—4.

Nishizawa S, Leyton M, Okazawa H, Benkelfat C, Mzengeza S,
Diksic M. Validation of a less-invasive method for measurement
of serotonin synthesis rate with alpha-[11C]methyl-tryptophan. J
Cereb Blood Flow Metab 1998;18(10):1121-9.

Tanke MA, Alserda E, Doornbos B, van der Most PJ, Goeman
K, Postema F, et al. Low tryptophan diet increases stress-
sensitivity, but does not affect habituation in rats. Neurochem Int
2008;52(1-2):272-81.

Van der Does AJ. The effects of tryptophan depletion on mood
and psychiatric symptoms. J Affect Disord 2001;64(2-3):107—
19.

Jans LA, Riedel WJ, Markus CR, Blokland A. Serotonergic
vulnerability and depression: assumptions, experimental evi-
dence and implications. Mol Psychiatry 2007;12(6):522—43.
Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani
HT. Human brain serotonin synthesis capacity measured in
vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 1998;28
(1):33-43.

Davis JN, Carlsson A, MacMillan V, Siesjo BK. Brain
tryptophan hydroxylation: dependence on arterial oxygen ten-
sion. Science 1973;182(107):72-4.

@ Springer

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Nishikawa M, Kumakura Y, Young SN, Fiset P, Vogelzangs N,
Leyton M, et al. Increasing blood oxygen increases an index of
5-HT synthesis in human brain as measured using alpha-[(11)C]
methyl-L-tryptophan and positron emission tomography. Neuro-
chem Int 2005;47(8):556—64.

Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N,
Mzengeza S, et al. Measurement of brain regional alpha-[11C]
methyl-L-tryptophan trapping as a measure of serotonin synthe-
sis in medication-free patients with major depression. Arch Gen
Psychiatry 2004;61(6):556—63.

Drevets WC. Neuroimaging and neuropathological studies of
depression: implications for the cognitive-emotional features of
mood disorders. Curr Opin Neurobiol 2001;11(2):240-9.
Berney A, Nishikawa M, Benkelfat C, Debonnel G, Gobbi G,
Diksic M. An index of 5-HT synthesis changes during early
antidepressant treatment: alpha-[11C]methyl-L-tryptophan PET
study. Neurochem Int 2008;52(4-5):701-8.

Artigas F, Perez V, Alvarez E. Pindolol induces a rapid
improvement of depressed patients treated with serotonin
reuptake inhibitors. Arch Gen Psychiatry 1994;51(3):248—
51.

Lejeune F, Millan MJ. Pindolol excites dopaminergic and
adrenergic neurons, and inhibits serotonergic neurons, by
activation of 5-HTI1A receptors. Eur J Neurosci 2000;12
(9):3265-75.

Cremers TI, Wiersma LJ, Bosker FJ, Den Boer JA, West-
erink BH, Wikstrom HV. Is the beneficial antidepressant
effect of coadministration of pindolol really due to somato-
dendritic autoreceptor antagonism? Biol Psychiatry 2001;50
(1):13-21.

Frey BN, Rosa-Neto P, Lubarsky S, Diksic M. Correlation
between serotonin synthesis and 5-HT1A receptor binding in the
living human brain: a combined alpha-[11C]MT and [18F]MPPF
positron emission tomography study. Neuroimage 2008;42
(2):850-17.

Batista CE, Juhasz C, Muzik O, Kupsky WIJ, Barger G, Chugani
HT, et al. Imaging correlates of differential expression of
indoleamine 2,3-dioxygenase in human brain tumors. Mol
Imaging Biol 2009;11(6):460-6.

Hartvig P, Bergstrom M, Antoni G, Langstrom B. Positron
emission tomography and brain monoamine neurotransmission —
entries for study of drug interactions. Curr Pharm Des 2002;8
(16):1417-34.

Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ,
Vanghillewe K, et al. Improved staging of patients with carcinoid
and islet cell tumors with 18F-dihydroxy-phenyl-alanine and
11C-5-hydroxy-tryptophan positron emission tomography. J Clin
Oncol 2008;26(9):1489-95.

Orlefors H, Sundin A, Lu L, Oberg K, Langstrom B, Eriksson B, et
al. Carbidopa pretreatment improves image interpretation and
visualisation of carcinoid tumours with 11C-5-hydroxytryptophan
positron emission tomography. Eur J Nucl Med Mol Imaging
2006;33(1):60-5.

Bombardieri E, Maccauro M, De Deckere E, Savelli G, Chiti A.
Nuclear medicine imaging of neuroendocrine tumours. Ann
Oncol 2001;12 Suppl 2:S51-61.

Neels OC, Koopmans KP, Jager PL, Vercauteren L, van Waarde
A, Doorduin J, et al. Manipulation of [11C]-5-hydroxytrypto-
phan and 6-[18F]fluoro-3,4-dihydroxy-L-phenylalanine accumu-
lation in neuroendocrine tumor cells. Cancer Res 2008;68
(17):7183-90.

Hartvig P, Lindner KJ, Tedroff J, Andersson Y, Bjurling P,
Langstrom B. Brain kinetics of 11 C-labelled L-tryptophan and
5-hydroxy-L-tryptophan in the rhesus monkey. A study using
positron emission tomography. J Neural Transm Gen
Sect 1992;88(1):1-10.



Eur J Nucl Med Mol Imaging (2011) 38:576-591

591

101.

102.

103.

104.

105.

106.

Lindner KJ, Hartvig P, Bjurling P, Fasth KJ, Westerberg G,
Langstrom B. Determination of 5-hydroxy-L-[beta-11Cl]trypto-
phan and its in vivo-formed radiolabeled metabolites in brain
tissue using high performance liquid chromatography: a study
supporting radiotracer kinetics obtained with positron emission
tomography. Nucl Med Biol 1997;24(8):733-8.

Hartvig P, Lindner KJ, Bjurling P, Laengstrom B, Tedroff J.
Pyridoxine effect on synthesis rate of serotonin in the monkey
brain measured with positron emission tomography. J Neural
Transm Gen Sect 1995;102(2):91-7.

Hartvig P, Tedroff J, Lindner KJ, Bjurling P, Chang CW, Tsukada
H, et al. Positron emission tomographic studies on aromatic L-
amino acid decarboxylase activity in vivo for L-dopa and 5-
hydroxy-L-tryptophan in the monkey brain. J Neural Transm
Gen Sect 1993;94(2):127-35.

Arai R, Karasawa N, Nagatsu T, Nagatsu 1. Exogenous L-5-
hydroxytryptophan is decarboxylated in neurons of the sub-
stantia nigra pars compacta and locus coeruleus of the rat. Brain
Res 1995;669(1):145-9.

Lundquist P, Blomquist G, Hartvig P, Hagberg GE, Torstenson
R, Hammarlund-Udenaes M, et al. Validation studies on the 5-
hydroxy-L-[beta-11C]-tryptophan/PET method for probing the
decarboxylase step in serotonin synthesis. Synapse 2006;59
(8):521-31.

Lundquist P, Hartvig P, Blomquist G, Hammarlund-Udenaes
M, Léngstrom B. 5-Hydroxy-L-[beta-(11)C]tryptophan versus
alpha-[(11)C]methyl-L-tryptophan for positron emission to-

107.

108.

109.

110.

111.

112.

mography imaging of serotonin synthesis capacity in the
rhesus monkey brain. J Cereb Blood Flow Metab 2007;27
(4):821-30.

Agren H, Reibring L, Hartvig P, Tedroftf J, Bjurling P, Homfeldt K,
et al. Low brain uptake of L-[11C]5-hydroxytryptophan in major
depression: a positron emission tomography study on patients and
healthy volunteers. Acta Psychiatr Scand 1991;83(6):449-55.
Eriksson O, Wall A, Marteinsdottir 1, Agren H, Hartvig P,
Blomqvist G, et al. Mood changes correlate to changes in brain
serotonin precursor trapping in women with premenstrual
dysphoria. Psychiatry Res 2006;146(2):107-16.

Hagberg GE, Torstenson R, Marteinsdottir I, Fredrikson M,
Langstrom B, Blomqvist G. Kinetic compartment modeling of
[11C]-5-hydroxy-L-tryptophan for positron emission tomogra-
phy assessment of serotonin synthesis in human brain. J Cereb
Blood Flow Metab 2002;22(11):1352-66.

Neels OC, Jager PL, Koopmans KP, Eriks E, de Vries EGE, Kema
IP, et al. Development of a reliable remote-controlled synthesis of
beta-[C-11]-5-hydroxy-L-tryptophan on a Zymark robotic system.
J Labelled Comp Radiopharm 2006;49(10):889-95.

Agren H, Reibring L. PET studies of presynaptic monoamine
metabolism in depressed patients and healthy volunteers.
Pharmacopsychiatry 1994;27(1):2—6.

Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS. The effect
of oral 5-HTP administration on 5-HTP and 5-HT immunoreac-
tivity in monoaminergic brain regions of rats. J] Chem Neuroanat
2004;27(2):129-38.

@ Springer



	Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications
	Abstract
	Introduction
	Conventional methods: measuring 5-HT and its metabolites in platelets and CSF
	Recent technologies: radiopharmaceuticals for measuring serotonin synthesis
	α-[11C]methyltryptophan
	Preclinical data
	Clinical data

	[11C]5-HTP
	Neuroendocrine tumour imaging
	Preclinical data
	Clinical data


	Discussion
	Conclusion

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


