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It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ) monomer to aggregated toxic Aβ rich in
β-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβ
in vivo is not well understood. Accumulating evidence suggests that lipid rafts (microdomains) in membranes mainly composed
of sphingolipids (gangliosides and sphingomyelin) and cholesterol play a pivotal role in this process. This paper summarizes the
molecular mechanisms by which Aβ aggregates on membranes containing ganglioside clusters, forming amyloid fibrils. Notably,
the toxicity and physicochemical properties of the fibrils are different from those of Aβ amyloids formed in solution. Furthermore,
differences between Aβ-(1–40) and Aβ-(1–42) in membrane interaction and amyloidogenesis are also emphasized.

1. Introduction

It is widely accepted that the amyloid β-protein (Aβ), which
exists in fibrillar forms as a major component of senile
plaques, is central to the development of Alzheimer’s dis-
ease (AD) [1, 2]. The conversion of soluble, nontoxic Aβ
monomer to aggregated toxic Aβ rich in β-sheet structures
ignites the neurotoxic cascade(s) of Aβ [3]. The mechanism
of the abnormal aggregation of Aβ is not well understood.
The physiological concentration of Aβ in biological fluids
(<10−8 M) [4] is much lower than the concentration (∼
1 μM) above which Aβ-(1–40) spontaneously forms fibrils
[5]. Therefore, there should be mechanisms that facilitate the
abnormal aggregation of Aβ under pathological conditions.
Although clusterin (Apo J) [6] and Zn2+ ions [7] were
reported to facilitate the aggregation of Aβ more than a
decade ago, their aggregation-promoting mechanisms are
yet to be elucidated. In addition to these soluble factors,
Jarrett and Lansbury, Jr. suggested that Aβ fibrillizes via a
nucleation-dependent polymerization mechanism and lipids
could act as heterogeneous seeds for the polymerization [8].
In 1995, Yanagisawa and colleagues discovered a specific
form of Aβ bound to monosialoganglioside GM1 (GM1)
in brains exhibiting early pathological changes of AD and
suggested that the GM1-bound form of Aβ may serve as a
seed for the formation of toxic amyloid aggregates/fibrils [9].

We have been investigating the interaction of Aβ with
ganglioside-containing membranes for a dozen years and
found that not the uniformly distributed but the clustered
gangliosides mediate the formation of amyloid fibrils by Aβ,
the toxicity and physicochemical properties of which are
different from those of Aβ amyloids formed in solution.
This review article summarizes Aβ-ganglioside interaction
in detail, including latest findings that were not covered
in our previous reviews [10, 11]. Especially, differences
between Aβ-(1–40) and Aβ-(1–42) in membrane interaction
and amyloidogenesis are extensively discussed. Furthermore,
a link between Aβ aggregation and lipid metabolism is
emphasized. It will shed light on one of the initiation
processes of AD.

2. Specific Binding of Aβ to Ganglioside Clusters

Early studies indicated that Aβ-(1–40) associates with GM1
in egg yolk phosphatidylcholine (PC) vesicles only when the
GM1 content exceeds 30% [12, 13]. The threshold GM1 con-
tent is lowered in a sphingomyelin (SM)/cholesterol mixture
[13]. These findings suggest that GM1 molecules only in
a specific state can recognize Aβ. To reveal the underlying
mechanism, we systematically investigated the interaction of
dye-labeled-Aβ-(1–40) [14–16] and -Aβ-(1–42) [17] with
membranes of various lipid compositions. The N-termini
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Table 1: Parameters for the binding of DAC-Aβs to GM1/choleste-
rol/SM (1 : 1 : 1) LUVs at 37◦C.

Aβ K (106 M−1)a xmax
b(Aβ/GM1, mol/mol) Ref.

DAC-Aβ-(1–42) 11.1 ± 2.4 0.0361 ± 0.0021 [17]

DAC-Aβ-(1–40) 8.6 ± 3.6 0.0313 ± 0.0041 [16]

DAC-Aβ-(1–28) 0.0184 ± 0.0007 0.0313c [16]
a
Binding constant.

bMaximal value of x (bound Aβ per exofacial GM1, mol/mol).
cAssumed to be the same as that of DAC-Aβ-(1–40).

of Aβs were labeled with the 7-diethylaminocoumarin-3-
carbonyl group (DAC-Aβ). DAC-Aβ is useful for fluoro-
metrically monitoring protein-lipid interactions, because
a significant blue shift and an enhancement in intensity
are induced by a change in polarity upon membrane
binding. DAC-Aβs do not bind to major membrane lipids,
including electrically neutral PC, SM, cholesterol, negatively
charged phosphatidylserine, and phosphatidylglycerol under
physiological conditions. On the other hand, the proteins
exhibit similar high affinity (binding constant ∼107 M−1)
for raft-like membranes composed of GM1, cholesterol, and
SM [14, 15]. DAC-Aβ-(1–28) also has a weak affinity for
the membrane [16]. Binding parameters are summarized
in Table 1. DAC-Aβ-(1–40) also binds to other gangliosides
(GD1a, GD1b, GT1b, and asialo GM1) and lactosyl ceramide
in raft-like membranes with higher affinity for lipids having
larger sugar chains [15, 16]. We have proposed that Aβs
specifically bind to ganglioside clusters because a GM1
cluster is formed in GM1/SM/cholesterol membranes but
not in GM1/PC membranes. The clustering is facilitated by
cholesterol [14].

3. Fibrillization by Aβ on Ganglioside Clusters

Aβ-(1–40) bound to ganglioside clusters assumes different
conformations depending on the protein density on the
membrane. Circular dichroism measurements revealed that
the protein forms an α-helix-rich structure at lower protein-
to-ganglioside ratios (≤0.025) whereas it changes its confor-
mation to a β-sheet-rich structure at higher ratios (≥0.05)
[14, 15]. Aβ-(1–42) also undergoes similar conformational
changes [17]. Only the β-sheet form facilitates amyloidogen-
esis by Aβ-(1–40) [15, 18–20].

Despite very similar initial protein-ganglioside interac-
tion, that is, the binding behavior and the α-helix-to-β-
sheet conformational change, a large difference was observed
in amyloidogenic activity (amount of amyloids formed
under certain conditions) between Aβ-(1–40) and Aβ-(1–
42) [17]. Aβs were incubated with GM1/cholesterol/SM
liposomes at a Aβ-to-GM1 ratio of 5, and the aggregation
of Aβ was monitored as an increase in fluorescence of the
amyloid-specific dye thioflavin-T (Th-T) (Figure 1). Aβ-(1–
42) formed amyloids without a lag time at 5 μM. In contrast,
Aβ-(1–40) at 5 μM did not form amyloids, at least not in
12 h. At a 10-fold higher concentration, Aβ-(1–40) started
to aggregate after a lag time of ∼2 h. The effectiveness of Aβ-
(1–42) in fibrillogenesis is at least partly due to the fragility
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Figure 1: Aβ aggregation in the presence of raft-like liposomes.
Aβs (5 μM or 50 μM) were incubated with GM1/cholesterol/SM
(1 : 1 : 1) small unilamellar vesicles at a GM1-to-Aβ ratio of 5 at
37◦C without agitation, and the aggregation was monitored by the
Th-T assay. Symbols: circles, 5 μM Aβ-(1–42); squares, 5 μM Aβ-(1–
40); triangles, 50 μM Aβ-(1–40). Data taken from [17].

of fibrils, because the fragmentation greatly facilitates fibril
growth [21] (see also Section 5). Other factors, such as
the rapid formation of seeds and/or elongation, may also
contribute to the difference.

Cell experiments also support the above mechanism of
Aβ-ganglioside interaction [22, 23]. Aβ-(1–42) was incu-
bated with neuronal rat pheochromocytoma PC12 cells.
Amyloids and gangliosides were detected by the amyloid-
specific dye Congo red and the fluorescent-labeled cholera
toxin B subunit, respectively. Amyloids were selectively
formed on ganglioside-rich domains (Figure 2(a)). Deple-
tion of cholesterol, either by methyl-β-cyclodextrin or
the cholesterol synthesis inhibitor compactin, suppressed
the accumulation of Aβ. The amyloidogenic activity of
Aβ-(1–42) was again more than 10-fold that of Aβ-(1–
40) on human SH-SY5Y neuroblastoma cells expressing
gangliosides (Figure 2(b)). When cells were incubated with
5 μM Aβ-(1–42), Congo red-positive spots appeared later
at 24 h and became prominent with time. In contrast,
when cells were incubated with 5 μM Aβ-(1–40), no fibrils
were detected even after 72 h. Incubation with a 10-fold
higher concentration of the protein, however, resulted in the
appearance of Congo red-positive spots at 48 h.

4. Properties of Aβ Fibrils Formed on
Ganglioside Clusters

The Aβ fibrils formed on ganglioside clusters (Mem-fibrils)
are not identical to those formed in solution (Sol-fibrils)
in terms of physicochemical properties and cytotoxicity
[20]. Transmission electron micrographs indicate that Mem-
fibrils are typical nonbranched fibrils (12.0 ± 0.7 nm, width)
whereas Sol-fibrils are thinner fibrils or protofilaments
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Figure 2: Aβ aggregation on living neuronal cells. (a) Aβ-(1–42) (10 μM) was incubated with PC12 cells for 24 h at 37◦C. The distribution
of GM1 was detected by using the cholera toxin B subunit conjugated with Alexa Fluor 647 dye (CTX-B, left). Amyloids were visualized by
the amyloid-specific dye Congo red (middle). The merging of the two images shows that amyloids were formed in the vicinity of GM1-rich
domains of cell membranes (right). Data taken from [10]. (B) Ganglioside-expressing SH-SY5Y cells were incubated with 5 μM Aβ-(1–42)
(top), 5 μM Aβ-(1–40) (middle), or 50 μM Aβ-(1–40) (bottom) for 0.5, 18, 24, 48, or 72 h, and the formation of amyloids was detected with
Congo red. The conditions under which cell death was observed are framed in green. Data taken from [17].

(6.7 ± 1.3 nm, width), and the protofilaments associate
laterally and twist into rope-like fibrils (14.5 ± 0.9 nm,
width). The surface hydrophobicity of Mem-fibrils as esti-
mated by the binding of 1-anilinonaphthalene-8-sulfonate
(ANS) is larger than that of Sol-fibrils (Figure 3(a)), therefore
Mem-fibrils exhibit significantly stronger binding to cell
membranes than Sol-fibrils (Figure 3(b)). Consequently,
Mem-fibrils are cytotoxic whereas Sol-fibrils are much less
toxic (Figure 3(c)). Recently, a correlation between ANS-
binding and cytotoxicity was reported for various amyloid
species [24].

The structure of Mem-fibrils is suggested to be different
from that of Sol-fibrils, in which the cross-β unit is a double-
layered structure, with in-resister parallel β-sheets formed by
residues 12–24 and 30–40 [25]. The amide I spectrum of the
former shows, in addition to a major peak around 1630 cm−1

characteristic of a β-sheet, a weak peak at 1695 cm−1 whereas
that of the latter shows a peak around 1660 cm−1 [26].

5. Mechanism of Cytotoxicity by Aβ Fibrils
Formed on Ganglioside Clusters

The mechanisms of Aβ-induced cytotoxicity have been
controversial. Aβ fibrils were reported to trigger functional

disorder in neuronal cells and cell death [27–31] whereas
soluble Aβ oligomers have been proposed to play a pivotal
role in the onset of AD [6, 28, 32–39]. To obtain an insight
into the cytotoxic mechanism of Aβ, we established a
multistaining visualization method using unlabeled Aβs and
antibodies [17] in contrast to conventional methods using
fluorophore-labeled proteins [23, 40]. The accumulation
of Aβ, the formation of amyloid fibrils, the formation of
oligomers, and cell viability were visualized using the Aβ
monoclonal antibody 6E10, the amyloid-staining dye Congo
red [22], the antioligomer antibody A11 [34], and calcein
acetoxymethyl, respectively. Cell death was detected after the
significant accumulation of fibrils (Figure 2(b)) and no A11-
positive spot was detected, suggesting that fibril-induced
physicochemical stress, such as the induction of a negative
curvature [13] or membrane deformation upon fibril
growth [41], leads to cytotoxicity. A11-positive oligomers
were not formed in the fibrillization with GM1-containing
liposomes either [20]. It should be noted, however, that at
certain GM1 contents GM1-liposomes generate toxic soluble
Aβ-(1–40) oligomers [42]. For both Aβs, similar levels of
fibrils were required for cytotoxicity (Figure 2(b)), indicating
that the fibrils possess comparable intrinsic toxicity. The
fibrillization process and cytotoxicity can be effectively
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Figure 3: Comparison between Mem-fibrils and Sol-fibrils. Data taken from [20]. (a) Fluorescence spectra of ANS (5.0 μM) in PBS were
measured in the absence or presence of Mem-fibrils and Sol-fibrils of Aβ-(1–40) (2.5 μM) with an excitation wavelength of 350 nm. The
binding of the dye to a hydrophobic surface results in an enhancement in fluorescence intensity. (b) Aβ-(1–40) fibrils (25 μM) were incubated
with NGF-differentiated PC12 cells for 30 min. Binding of Aβ-(1–40) fibrils to cells was evaluated by fluorescence intensity of Congo red
per cell (mean ± S.E.; n ∼ 100, ∗P < .001). (c) Aβ-(1–40) fibrils (25 μM) were incubated with NGF-differentiated PC12 cells for 24 h.
Aβ cytotoxicity was estimated with fluorescence intensity of the live cell marker calcein (mean ± S.E.; n = 6; ∗P < .001 against vehicle
treatment).
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Figure 4: Visualization of amyloid fibrils formed on cell membranes using TIRFM. SH-SY5Y cells were treated with 50 μM Aβ-(1–40) ((a),
(b)) or 5 μM Aβ-(1–42) ((c), (d)) for 48 h. Amyloid fibrils were stained with 20 μM Congo red. (a) and (c) are DIC images, while (b) and (d)
are TIRF images. Data taken from [17].

blocked by small compounds, such as nordihydroguaiaretic
acid and rifampicin [19].

The morphology of amyloid fibrils formed on cell mem-
branes was visualized by total internal reflection fluorescence
microscopy (TIRFM) [17]. TIRFM effectively reduces the

background fluorescence and therefore is suitable for observ-
ing the cell surface. Fibrils were stained with Congo red.
Relatively long fibrillar structures were detected around the
cell membrane for Aβ-(1–40) whereas relatively short fibrils
were coassembled in the case of Aβ-(1–42) (Figure 4). The
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Figure 5: A model for the formation of toxic amyloid fibrils by
amyloid β-protein on ganglioside clusters. Aβ is essentially soluble,
and takes an unordered structure in solution. Once ganglioside
clusters are generated, Aβ binds to the clusters, forming an α-
helix-rich structure at lower protein-to-ganglioside ratios whereas
the protein changes its conformation to a β-sheet at higher ratios.
The β-sheet form facilitates the fibrillization of Aβ, leading to
cytotoxicity. The amyloidogenic activity of Aβ-(1–42) is more than
10-fold that of Aβ-(1–40). Amyloid fibrils formed in solution are
much less toxic.

latter observation suggests that Aβ-(1–42) fibrils are more
readily fragmented. The fragmentation greatly facilitates
fibril growth because fibrils grow only at their ends [21].

6. Concluding Remarks

Based on the above observations, we propose a novel
model for Aβ-membrane interaction as a mechanism for
the abnormal aggregation of the protein (Figure 5). Aβ
specifically binds to a ganglioside cluster, the formation of
which is facilitated by cholesterol. The cluster can be formed
also by late endocytic dysfunction [43]. The Aβ undergoes
a conformational transition from an α-helix-rich structure
to a β-sheet-rich one with increasing protein density on
the membrane. The β-sheet form serves as a seed for the
formation of amyloid fibrils, which are more toxic than
and have different structures from those formed in solution.
Depending on ganglioside contents in the membrane, toxic
soluble oligomers may also be generated. The amyloidogenic
activity of Aβ-(1–42) is more than 10-fold that of Aβ-(1–40),
although the initial interaction with gangliosides is similar
between the two proteins.

This model can explain roles of various risk factors in
the pathogenesis of AD, especially from a viewpoint of lipid
metabolism. Both the aging and the apolipoprotein E4 allele
are strong risk factors for developing AD [44]. The amount

of cholesterol in the exofacial leaflets of the synaptic plasma
membrane increases in aged [45] as well as apolipoprotein
E4-knock-in [46] mice. GM1 clustering occurs at presynaptic
neuritic terminals in mouse brains in an age-dependent
manner [47]. Diet-induced hypercholesterolemia accelerates
the amyloid pathology in a transgenic mouse model [48].
A link between cholesterol, Aβ, and AD has been reported
[49, 50]. Human AD brains also show abnormality in lipid
metabolism in accordance with our model [51, 52]. That
is, significant increase in GM1 was reported in Aβ-positive
nerve terminals from the AD cortex [51], and lipid rafts
from the frontal cortex and the temporal cortex of AD brains
were also found to contain a higher concentration of GM1
compared to an age-matched control [52]. It should be noted
that, in addition to these modulations of Aβ aggregation by
lipids, Aβ also in turn regulates lipid metabolism [53].

The 10-fold higher amyloidogenic activity of Aβ-(1–42)
is in accordance with the facts (1) that genetic mutations in
the presenilins causing early-onset AD increase the level of
Aβ-(1–42) [54] and (2) that the protein is the major species
in diffuse plaques, the earliest stage in the deposition of Aβ
[55].

In conclusion, in addition to other biochemical cascades,
a complex purely physicochemical cascade linked to lipid
metabolism (Figure 5) appears to be also involved in the
process of Aβ aggregation. Inhibition of one of these steps
would be a promising strategy for AD therapy.
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