
 Mini-review

Chimerism 1:1, 36-38; July/August/September 2010; © 2010 Landes Bioscience

36	 Chimerism	V olume 1 Issue 1

Recently, much attention has been paid to the beneficial, tolerizing 
effects of exposure of the developing offspring to non-inherited 
maternal antigens (NIMA). This beneficial effect is most evi-
dent in settings of solid organ transplantation, wherein grafts 
expressing NIMA are more readily accepted than non-NIMA-
containing grafts.1-4 An additional benefit is observed with bone 
marrow transplantation in which grafts from donors exposed to 
NIMA in early life cause a less severe graft-vs-host disease in sib-
ling recipients expressing that NIMA.5-7 Exposure to NIMA may 
be a relatively common event in fetal and neonatal life,8-14 a devel-
opmental time period associated with susceptibility to tolerance 
induction. Factors that may contribute to this tolerizing NIMA 
effect include the development of regulatory T cell activity or 
clonal deletion in the offspring, the level and type of maternal 
microchimerism, the genetic backgrounds of mother and off-
spring and gender differences.15,16

In spite of the wealth of information pointing to a positive, 
tolerizing outcome to NIMA exposure, there are observa-
tions indicating that priming may be a rarer but alternate out-
come. CTL17 and antibody priming18 to maternal antigens 
as well as acute rejection of NIMA-bearing grafts1 have been 
described in humans. In the mouse, poorer graft survival and/
or enhanced adaptive immune responses to NIMA have been 
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Fetal and/or perinatal exposure to noninherited maternal 
antigens (NIMA) has been reported to induce NIMA-
specific tolerance. This tolerant state is highly beneficial in 
transplantation settings; enhanced graft acceptance has 
been observed when transplanted tissues express NIMA. 
Reduction in severe graft-vs-host disease has also been noted 
when bone marrow grafts originate from donors exposed to 
NIMA in early life. However, there is emerging evidence that 
exposure to NIMA can alternatively lead to specific priming. 
The processes regulating tolerance versus priming to NIMA 
are poorly understood and probably multifactorial. Based on 
studies in both humans and mice, we propose that both the 
quality and the quantity of NIMA exposure will be found to be 
key determinants of these opposing outcomes.
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demonstrated.4,19-21 At first blush, the observation that early life 
exposure can lead to priming seems to fly in the face of the pre-
vailing dogma that fetal and neonatal animals are highly sus-
ceptible to the induction of tolerance. However, one of the most 
striking findings in the recent past is that full-fledged priming 
of adaptive immune responses can occur in both human and 
murine neonates and even in utero.22 Therefore, it is actually not 
surprising that robust priming to NIMA can occur during gesta-
tion and/or perinatally.

An important question that arises from these observations is 
why NIMA-specific tolerance develops in some individuals, while 
priming occurs in others. Although there are clearly many possi-
ble explanations, we propose that the quantity of NIMA exposure 
may influence whether tolerance or priming occurs. Tolerance 
may arise in response to relatively high doses of NIMA from per-
sistent exposure throughout development. Breastmilk contains 
both immune cells and soluble HLA molecules;23-25 therefore, 
high doses of NIMA could be attained through a combination 
of exposure to NIMA in utero and during breastfeeding after 
birth. Such chronic exposure may then lead to the development 
of tolerance-inducing processes. Several studies support this idea, 
demonstrating that chronic exposure to antigen can lead to the 
development of functional Tregs, both in vitro and in vivo.26-28  
On the other hand, priming to NIMA may occur in response to 
lower, more transient doses of NIMA, such as that occurring in 
utero only. The idea that low level NIMA exposure may lead to 
the absence of tolerance or even primed responses is supported by 
studies in both humans and mice. In humans, cord blood cells 
have been reported to develop NIMA-specific cytotoxic responses 
in vitro,29,30 demonstrating a lack of tolerance after in utero expo-
sure alone. Breastfeeding was found to be required, together with 
in utero NIMA exposure, to specifically downregulate CTL allo-
reactive responses to NIMA29 as well as to improve the survival 
and function of kidney allografts from sibling31 and maternal32 
donors. Similarly, although some level of tolerance was observed 
upon oral exposure only,33 maximal tolerizing effects have been 
reported only with the combination of in utero and breast milk 
exposure to NIMA in mice.3,33 In humans, priming to NIMA 
has been reported in newborns; Goulmy and colleagues17 demon-
strated the pre-existence of NIMA-specific cytotoxic cells in cord 
blood—i.e., priming following prenatal exposure only. Moreover, 
a recent study from van Rood et al.34 indicated that cord cells may 
exhibit primed responses to NIMA in vivo; cord blood trans-
plants in NIMA-matched versus non-NIMA matched recipients 
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cells tolerized while mature dendritic cells (DC) primed neonatal 
animals. Further, in a model system that mimics early neonatal 
development, exposure to inoculum containing mature donor T 
cells induced tolerance to skin grafts, while grafts lacking T cells 
did not.36 Most of the available evidence suggests that maternal 
immune cells of many types can be found in the offspring.8,10,33 
Therefore, exposure to maternal populations that contain mature 
DC may induce priming, while those that lack them may generate 
tolerance. Likewise, maternal populations that include T cells may 
tolerize, while their absence may lead to priming. Alternatively, 
the type of maternal chimerism that is stably maintained after the 
initial exposure may also influence whether tolerance or priming 
is achieved. In support of this, Anderson and colleagues37 have 
shown that the presence of T cells alone may not be sufficient 
to induce tolerance; mice exhibiting persistent unilineage donor 
T-cell chimerism failed to develop tolerance whereas those with 
long-term multilineage chimerism were tolerant.

In summary, although tolerance to NIMA is the desired 
outcome in transplantation settings, the importance of priming 
against NIMA should not be overlooked. Overall, the challenge 
of exploiting NIMA exposure for successful transplantation relies 
on understanding how tolerance versus priming is achieved. We 
believe that both the quantity and quality of NIMA exposure 
will be found to play important roles in this outcome.

showed lower leukemia relapse rates, suggesting that the NIMA-
matched transplanted cells mounted an anti-leukemic response. 
In addition, our studies in the mouse provide compelling evi-
dence that low level NIMA exposure may lead to priming. Using 
an allogeneic transfer system that mimics the natural exposure to 
NIMA, we have found that, while large doses of NIMA-like anti-
gens lead to CTL non-responsiveness, small doses induce specific 
CTL priming.19,20 Small numbers of maternal cells may be insuf-
ficient for stable chimerism, thereby failing to support sustained 
Treg function and leading to priming instead. Indeed, as recently 
documented by McCune and colleagues,8 human fetal cells can 
develop substantial anti-NIMA responses. Alternatively, small 
numbers of cells may lead to selective microchimerism, which, 
as discussed in the next section, may more likely induce priming 
rather than tolerance.

In addition to the level, we propose that the type of NIMA 
exposure may also be instrumental in deciding the balance of 
tolerance versus priming. There are several ways that the quality 
of NIMA exposure may be important. First, the type of cell(s) 
that the fetus and/or neonate is initially exposed to may influence 
the direction of the resulting NIMA-specific response. Indeed, 
there are several studies that have shown that exposure to differ-
ent cell subsets can induce the development of either tolerance 
or priming. Matzinger and colleagues35 showed that whole spleen 
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