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REVIEW

Introduction

Bacteriophage (phage) are considered ubiquitous and estimated 
to be the most abundant biological entities on earth.1,2 Phages 
are viruses that specifically infect bacteria. They were first dis-
covered in the pre-antibiotic era by d’Herelle in 1917,3 although 
their antibacterial behavior was previously described by Hankin 
in 1896,4 and Twort in 1915.5,6 Since the commercialization of 
antibiotics in the 1940s phage therapy has been largely neglected 
in the west until recently with growing concerns for the increas-
ing prevalence of multi-antibiotic resistant so called “superbugs” 
including methicillin-resistant Staphylococcus aureus (MRSA) and 
the scarcity of new antibiotics.7,8 Over millions of years phage have 
evolved to develop two methods to release their progeny from host 
bacterial cells. Filamentous phage are released through bacterial 
cell walls without causing cell death9 whereas non-filamentous 
phage use specific lysins to either inhibit the synthesis of pepti-
doglycan (single stranded RNA or DNA phage encoded enzymes) 
or hydrolyze the peptidoglycan using a holin-endolysin system 
(double stranded DNA phage encoded enzymes).10 Lysins accu-
mulate in the cytosol during the late stage of the lytic cycle and 
hydrolyse the peptidoglycan in the bacterial cell wall thus releasing 
mature phage progeny.11 Lysins usually don’t have signal sequences 
and so are dependent on a second protein called a holin to reach 

their substrate.12 At a genetically determined time in the terminal 
stage of the lytic cycle, holins form pores in the inner membrane 
of the infected cell resulting in access of lysin to the peptidogly-
can causing rapid cell lysis.13 For phage, both the holin and lysin 
are essential for host cell lysis using this system. However, when 
lysins are used as recombinant enzymes and applied exogenously 
to Gram-positive bacteria they cause rapid lysis as no membrane is 
present to inhibit their access to the cell wall.14,15 It is this potent 
ability to rapidly lyse pathogenic Gram-positive cells upon direct 
contact with peptidoglycan “lysis from without” that has laid the 
foundation for exploiting lysins as powerful novel antibacterials. 
In the case of Gram-negative bacteria, the outer membrane pre-
vents access of exogenous lysins to the cell wall peptidoglycan and 
therefore, their exploitation as antibacterials is limited. It was in 
2001 that a phage lysin was first shown to successfully prevent and 
eliminate a bacterial infection in vivo.16 Unlike antibiotics, phage 
lysins can be used to selectively target specific pathogenic bacte-
ria without effecting surrounding commensal microflora: they are 
reported to have a narrow host range similar to that of their phage 
rendering them generally either species17-19 or genus specific,20,21 
although, in at least one case there is evidence that lysins can target 
more than a single genus.22

There is currently an ever-growing concern over the global 
spread of antibiotic resistance among human and animal pathogens 
and the need for novel effective antibacterials (like phage lysins) to 
combat them is well recognised.23,24 MRSA is now the most com-
monly reported antibiotic resistant bacterium in clinical settings25 
and there is also a significant level of resistance emerging within the 
genus of Enterococcus, Pneumococcus and Streptococcus.23 This 
review will focus on the nature of phage lysins and their diverse 
applications including: the control and treatment of pathogens on 
mucosal surfaces and in systemic infection, there potential in diag-
nostics and detection, biodefense, elimination of food pathogens 
and control of phytopathogens.

Lysin Structure

In general, lysins studied to date display a two domain modular 
structure.26,27 This comprises an N-terminal catalytic domain and 
a C-terminal cell wall binding domain.14,28,29 The former is cat-
egorized into four different groups depending on cleavage sites  
(Fig. 1). The four are (a) N-acetylmuramidases (lysozymes) and 
(b) N-acetyl-β-D-glucosaminidases (glycosidases), which hydro-
lyze the β-1-4 glycosidic bond in the sugar moiety of the cell wall 
(c) N-acetylmuramoyl-L-alanine amidases, which cleave the amide 
bond connecting the sugar and peptide moieties of the bacterial 
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cell wall (d) L-alanoyl-D-glutamate endopeptidases and interpep-
tide bridge-specific endopeptidases, which attack the peptide moi-
ety of the cell wall peptidoglycan (See Fig. 1).14,30,31 Lysins typically 
comprise of one of these four muralytic abilities in addition to a 
cell wall binding domain.10 However a number of lysins have been 
reported comprising of two catalytic domains including those of 
Staphylococcus aureus (LysK, Phi11 and MV-L) where endopepti-
dase activity is a common feature.20,32,33 Of all lysins reported to 
date, the streptococcal phage lysin PlyC is particularly unique as 
it displays a multimeric modular structure consisting of two dis-
tinct gene products designated PlyCA (50-kDa heavy chain) and 
PlyCB (8-kDa light chain).34

The C-terminal binding domain of the majority of lysins is 
responsible for attaching the enzyme to its specific substrate in 
the bacterial cell wall via non-covalent binding of carbohydrate 
ligands.29 A recent study on the crystal structure of the pneu-
mococcal phage lysin Cpl-1 in free and choline-bound states 
suggested that the choline-binding domain assists in the cor-
rect positioning of the N-terminal catalytic domain.35 While it 
appears that the C-terminal domain is necessary for lytic activity 
of some endolysins,19,29,36 this is not always the case. A number of 
enzymes have shown increased lytic activity upon removal of the 
binding domain.37-39 For example, when LysK was truncated to its 
N-terminal endopeptidase domain, CHAP (cysteine/histidine-de-
pendant amidohyrolase/peptidase), it had a two-fold higher lytic 
activity than the native enzyme.39 It is possible that the C-terminal 
binding domain in the native enzyme may be limiting the potential 
activity of the N-terminal lytic domain by only allowing it to con-
figure and function when bound to its target in the cell wall.39,40 In 
contrast to lysins against Gram-positive pathogens, the enzymes 
associated with Gram-negative phages are often globular single 
module enzymes10,41 as in the T7 lysin (lysozyme).42 In a recently-

reported two-domain lysin KZ144 from a Pseudomonas phage, 
the substrate-binding activity was located at the N-terminus.41 In 
recent years, research on a number of lysins has led to the elucida-
tion of their crystal structure as in the case of T7 lysin,42 T4 lysin,43 
CpL-1,35 PlyL,40 PlyPSA44 and PlyB.45 The diversity of enzymz-
tic activities with phage lysins and their association with distinct 
modules make it possible to engineer novel lysins with various 
combinations of binding and catalytic domains,46-49 increasing 
their antibacterial and therapeutic potential.

Critical Properties of Lysins as Potential  
Therapeutics

If these recombinant enzymes are to fulfill their potential as anti-
bacterials a number of important factors have to be investigated 
such as drug toxicity, immunogenicity, efficacy, resistance and 
synergy. To date a number of in vitro and in vivo trials have been 
carried out on various lysins to assess these parameters.

Toxicity. Bacteriophages are the most abundant life forms 
on the planet and have co-evolved with bacteria over millions of 
years, as they do not infect mammalian cells,50 lysins should not 
present a potential toxic threat to humans and animals. To date 
this theory has been supported by successful preclinical treatment 
of systemic infections with lysin in mouse models, where no signs 
of toxicity have been noted.16,51-53 Therapeutic lysin treatment, be 
it topical, systemic or intravenous is thus far observed to have no 
harmful, abnormal or irritant side-effects in pre-clinical trials in 
vivo.14

Immunogenicity. As lysins are proteins, they are capable of 
stimulating an immune response when administered mucosally 
or systemically.31 This response could potentially decrease lysin 
activity. In vitro and in vivo trials have been conducted to explore 

Figure 1. Typical peptidoglycan structure of Gram-positive bacteria, showing lysin cleavage sites. The cleavage sites are indicated: (1) N-acetylmuramidases; 
(2) N-acetyl-β-D-glucosaminidases; (3) N-acetylmuramoyl-L-alanine amidases; (4) L-alanoyl-D-glutamate endopeptidases and interpeptide bridge-specific 
endopeptidases.  Abbreviations: GlcNAc (N-acetyl glucosamine), MurNAc (N-acetyl muramic acid).
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synergy.60 Synergy has also been demonstrated between lysins and 
antibiotics in vitro.33,62,63 Two pneumococcal enzymes, Cpl-1 and 
LytA have been used in synergy with a number of antibiotics includ-
ing penicillin, gentamicin, cefotaxime and moxifloxacin. In the 
majority of cases, there was enhanced activity where an antibiotic 
was combined with one or other of the enzymes.62,63 The staphy-
lococcal lysin MV-L showed enhanced activity against the VISA 
strain Mu50 when used in combination with glycopeptide antibiot-
ics vancomycin or teicoplanin.33 While these studies have only been 
done in vitro, it is clear that the approach of combining lysins with 
antibiotics generally gives rise to increased antibacterial activity.

Applications of Lysins

Numerous successful pre-clinical trials have revealed the ability of 
lysins to prevent pathogenic colonization of the mucosa,16,17,52,53,55,64 
the first being in 2001.16 The potential use of lysins as antibacte-
rials against systemic diseases has also been demonstrated since 
then by a number of other studies.20,51,52 While antibiotics often 
kill bacteria indiscriminately, lysins possess high specificity per-
mitting the normal commensal microflora to be left undisturbed. 
Moreover, antibiotics such as penicillin and cephalosporin func-
tion by inhibiting peptidoglycan synthesis, thereby lysing only 
dividing cells. Lysins on the other hand destroy the peptidoglycan 
directly, killing both growing and non-growing cells.65

Lysins against Different Pathogenic Bacteria

Streptococci. The pneumococcal lysins Cpl-1 and Pal have 
been used successfully in pre-clinical trials in the elimination of 
antibiotic-resistant S. pneumoniae, the causative agent of pneu-
monia, acute otitis media (AOM), septicemia, bronchitis and 
meningitis.51,52,66 A 2,000 mg dose of Cpl-1 when used intrave-
nously in a mouse model one hour after infection reduced pneumo-
coccal titres from a median of log

10
 4.70 CFU/ml to undetectable 

levels (<log
10

 2.00 CFU/ml) after 15 minutes. Compared to the 
lysin-treated mice, only a 20% survival rate was seen in untreated 
mice.52 The Cpl-1 lysin has also been introduced by intraperito-
neal injection to mice.67 100% of Cpl-1-treated mice survived 
fatal pneumonia and showed rapid recovery when treatment had 
been initiated at 24 hours post infection. Cpl-1 prevented bac-
teremia, systemic hypertension and reduced pulmonary bacte-
rial counts.67 In murine models of infection, Cpl-1 was shown 
to eliminate and prevent acquired otitis media, endocarditis and 
bacterial meningitis.55,57,68

The Pal lysin was also used successfully to eliminate pneu-
mococcal colonization of the nasopharynx in mice. This was 
achieved with a single dose of the enzyme and no recolonisation 
was observed.17 These studies show that Cpl-1 and Pal lysins have 
excellent potential in the prevention, control and treatment of 
mucosal and systemic pneumococcal infection.

PlyC lysin from the streptococcal bacteriophage C
1
 has been 

found to be active against groups A, C and E streptococci. Group 
A streptococci (GAS) such as S. pyogenes is a common cause of 
pharyngitis and rheumatic fever.16 In one time-course assay, where 
cell death of streptococci equated to a spectrophotometric loss 

this. When rabbit hyperimmune serum was raised against the 
pneumococccal lysin Cpl-1, it was found that lytic activity in 
vitro was slowed but not blocked.52 Similar results were seen with 
B. anthracis and S. pyogenes lysins.54 In vivo analysis showed that 
in five out of six cases, mice that received three intravenous doses 
of Cpl-1 tested positive for Immunoglobulin G (IgG) against 
the enzyme but this only had a moderate inhibitory effect on 
activity.52

In a study with the Listeria-specific lysins, Ply118 and Ply500, 
it was demonstrated that the affinity of the C-terminal binding 
domain for its target in the cell wall is in the nanomolar range, 
similar to the binding affinity of an IgG molecule for its antigen.29 
Fischetti’s group showed that increased cytokine production could 
also result from using phage lysin in the treatment of systemic 
infection.55 This inflammatory effect is likely dependant on the 
amount of lysin delivered in the treatment and may be reduced 
with regulated smaller doses of enzyme.31,55 Immunogenicity of 
lysins in systemic infection treatment can further be reduced by 
PEGylation where the protein is conjugated to polyethylene glycol 
(PEG), reducing antibody binding, as shown with lysostaphin.56 
This also causes a slight reduction in lysin activity but it is com-
pensated for by greatly improved pharmacokinetics.56 While it is 
clear that lysins can illicit an immune response, this does not neu-
tralize their activity or prevent their use as antibacterials in the 
treatment of systemic infections.

Resistance. The occurrence of lysin-resistant bacteria is unlikely 
since phage have naturally evolved with their bacterial hosts over 
millions of years to produce these enzymes that are essential for 
the release of progeny phage. It has been suggested that lysins 
evolved to target specific molecules in the host peptidoglycan that 
are essential for bacterial viability.14,31 This is supported by the 
fact that choline, the cell wall receptor for pneumococcal lysin is 
essential for cell viability.30,57 Similarly polyrhamnose, the cell wall 
receptor for Group A streptococcal lysin is also important for cell 
viability.58,59 Repeated exposure of Streptococcus pneumoniae and 
Bacillus cereus to low concentrations of lysin Pal and PlyG respec-
tively on agar plates and in liquid culture did not result in the 
emergence of resistant mutants even after numerous cycles.17,18 The 
polysaccharide capsule of S. pneumoniae associated with increased 
virulence of the bacterial cell did not inhibit lysin activity.17 A sus-
ceptible B. cereus isolate was demonstrated to develop up to 1,000 
to 10,000-fold increases in antibiotic resistance upon mutagenesis 
with methanesulfonic acid ethyl ester while remaining sensitive 
to PlyG lysin, where no resistant mutants were found.18 While 
this approach has not been tested on all the available lysins, it is 
unlikely that the outcome would be different. In addition the use 
of lysins with two catalytic domains, each with different peptido-
glycan specificity, may further reduce the likelihood of resistant 
strains emerging.31,60

Synergy. Studies have demonstrated that some lysins can work 
in synergy with others or with certain antibiotics both in vitro and 
in vivo.51,60,61 When Cpl-1 (lysozyme/muramidase) and Pal (ami-
dase) were used in combination, the bacteremic titre was reduced 
to a greater extent than by either lysin alone in a murine sepsis 
model.51,61 In another recent in vitro study, the staphylococcal bac-
teriophage lysin LysK and lysostaphin demonstrated antibacterial 
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bacteria can become invasive and cause nosocomial infections 
such as endocarditis, bacteremia and urinary tract infections.25 
The majority of these infections are caused by E. faecalis and E. 
faecium, both of which tend to be resistant to antibiotics includ-
ing vancomycin, making these infections extremely difficult to 
eradicate.25 The E. faecalis phage lysin PlyV12 showed strong lytic 
activity in vitro against a variety of clinical and laboratory strains 
including VRE (Vancomycin-Resistant Enterococcus). The lysin 
also showed activity against Staphylococcus and Groups A, B and 
C streptococci making it one of the first lysins showing a broad 
lytic spectrum outside the host range of its parent phage.76 This 
is likely due to a peptidoglycan feature which is common to the 
genera examined.76

Bacillus anthracis. B. anthracis is associated with bio-warfare 
and is thus classed as a category A biological weapon.77,78 Two 
recombinant lysins, PlyG and PlyPH are active against this 
pathogen.18,78 Since B. anthracis is highly toxic to humans, a B. 
cereus strain lacking the B. anthracis virulence plasmid was util-
ised for in vivo studies. In one experiment, PlyG was injected into 
mice 15 minutes after they were infected with 1 x 106 CFU of an 
antibiotic resistant B. cereus strain resulting in a 76.9% survival 
rate compared to the 100% death rate of infected control mice 
within 5 hours.18 PlyPH, is a putative lysin which was shown to 
be effective against B. anthracis in; in vitro and in vivo studies.78 
These lysins have the potential for exploitation for detection and 
treatment of B. anthracis infections.

Clostridium. C. difficile is a major cause of nosocomial-associ-
ated diarrhoea and colitis. It usually presents itself as a secondary 
infection where it proliferates in the gastro-intestinal (GI) tract 
after the normal commensal flora has become unbalanced due to 
antibiotic therapy.79,80 CD27L is a lysin identified from the C. dif-
ficile phage CD27,80 and was capable of lysing diverse strains of 
C. difficile. Importantly the lysin did not negatively effect other 
commensal gut flora normally present in the GI tract, including 
non pathogenic Clostridium-like Firmicutes. The lysin demon-
strated a broad pH range (pH 4.5–pH 8.3) and was expressed 
in a Lactococcus lactis strain which could potentially be used as a 
delivery system to the site of infection in the GI tract where the 
lysin should remain functional.80

Ply3626 is a lysin with activity against C. perfringens which can 
cause necrotic enteritis, gas gangrene and food poisoning.81-83 This 
enzyme may be exploited as an anti-bacterial for the treatment of 
C. perfringens infection in humans. In addition it has been pro-
posed as a bio-control agent in poultry and in food as discussed 
below.82

Further Applications of Phage Lysins

Veterinary and food applications. Lysins may not only be applied 
and developed to treat human infections. They also have an appli-
cation in the veterinary sector. This would benefit the animal 
and in some cases also prevent the spread of zoonotic disease or 
transmission of a pathogen into food. Bovine mastitis is the most 
common cause of death in adult dairy cows and the cause of sig-
nificant annual economic losses worldwide.84 Its presence can also 
lead to food contamination particularly in the context of raw milk 

in turbidity, 10 ng of PlyC completely eliminated a culture of 
~107 GAS in 5 seconds. This enzyme was also able to successfully 
prevent and eliminate upper respiratory colonisation of mice by 
GAS.16 Mice were orally and nasally administered GAS premixed 
with either buffer or lysin. 24 hours post treatment, none of the 
lysin treated mice were colonised compared to 100% of the con-
trol mice. Up to one week later, only a single colony of GAS from 
20 swabs was detected in the lysin-treated mice.16

PlyGBS is another well-studied recombinant streptococcal lysin 
and is active against group A, B, C, G and L streptococci.64 It has 
been developed as a prophylactic for Group B streptococcal (GBS) 
vaginal colonization in pregnant women before infant delivery and 
also for use as a decontaminant to eliminate GBS from new-borns. 
This would potentially reduce the rate of neonatal meningitis and 
sepsis.64 Mice models were successfully used to demonstrate that a 
single dose of PlyGBS could cause a 3 log

10
 reduction in cell titre 

in mice that had been vaginally challenged with GBS. Optimum 
pH of PlyGBS (~pH 5.0) is within the range normally found in 
the human vaginal tract, and the enzyme did not show activity 
against vaginal commensal flora such as Lactobacillus acidophilus 
which play a role in defence against pathogens.64 In another study, 
DNA mutagenesis techniques were used to produce PlyGBS 
mutants with up to 28-fold better activity against GBS than the 
wild-type enzyme.69

Staphylococcus aureus and MRSA. S. aureus is responsible for 
a number of infections ranging from skin infections to fatal sepsis, 
endocarditis, septicemia, meningitis and bovine mastitis in dairy 
herds.7,70 MRSA is the most important cause of antibiotic resis-
tant healthcare-associated infection worldwide which may result 
in prolonged hospital stay and higher mortality rates.25 With 
the increasing prevalence of MRSA and increasing incidence of 
Community-Acquired MRSA, there is an urgent need for an 
effective anti-staphylococcal agent.71,72 LysK lysin from staphylo-
coccal phage K has been reported to be active against nine species 
of Staphylococcus from both human and bovine sources, includ-
ing MRSA and VRSA.20,39,60 Another staphylococcal lysin, LysH5, 
was reported to eliminate S. aureus growing in milk, which had 
been present at 106 CFU/ml.73 A third lysin, Phi11, was active 
against live mastitis-causing Coagulase-negative Staphylococcus.74 
This enzyme was also shown to eliminate S. aureus biofilms, which 
is very clinically relevant given the infection problems associated 
with biofilm formation on medical devices.75

The first staphylococcal lysin to be tested in vivo in a mouse 
infection model is MV-L from the phage MR11.33 In one experi-
ment, this was administered intranasally 60 hours post infection 
with 2 x 109 MRSA cells in each nasal cavity. Six hours after lysin 
treatment, complete elimination of the bacteria was achieved in 
one of nine mice treated. The remaining mice had much lower 
bacterial titres in their nasal cavities compared to control mice. In 
a second experiment, mice treated intraperitoneally with MV-L 
at 0 minutes and 30 minutes after being challenged with MRSA 
survived up to 60 days post infection.33 Although an immune 
response to this lysin was evident, it did not block lytic activity.33

Enterococci. Enterococci are commonly part of the resident 
microflora of the lower intestinal tract in mammals. However, 
under circumstances where the natural flora is disturbed, the 
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In one experiment, PlyC remained fully active in a horse stable 
environment. It was active against >20 clinical isolates of S. equi, 
and on a per-weight basis was 1,000 times more active than the 
common oxidising chemical Virkon-S, a widely used disinfectant 
in the livestock industry for disease prevention and control.89 
Typically 1 g of PlyC was able to sterilize a 108 CFU/ml culture of 
S. equi in 30 mins.89

Lysins also have a potential role to play in the food industry as 
can be seen with Ply3626. This enzyme has shown lytic activity 
against several strains of C. perfringens, which is a common cause 
of food poisoning and leads to economic losses in poultry produc-
tion.82 It has been proposed that Ply3626 may be exploited as a 
control for this pathogen in poultry intestines, as a bio- preservative 
in raw poultry products and as a bio-control agent to be added 
directly to food or feed.82

Ply511 is a Listeria bacteriophage lysin; cloned in, produced 
and secreted by L. lactis to create dairy starter cultures with bio-
preservation properties against pathogenic Listeria monocytogenes. 
The lysin caused rapid lysis of this pathogen when secreted from 

cheeses.73,74,85 The Ply700 enzyme has shown lytic activity against 
mastitis causing streptococci in cows’ milk, and another lysin, 
LysH5, has shown lytic activity against prevalent mastitis causing 
staphylococci, albeit in pasteurised milk.73,85

A recent study revealed that a recombinant phage lysin LySMP 
has a broad lytic spectrum against the increasingly antibiotic-
 resistant swine pathogen Streptococcus suis, which can cause condi-
tions such as endocarditis and septicemia in pigs and is also an 
important zoonotic agent for humans.86,87 Mortality can approach 
20% in pigs carrying S. suis, in the absence of treatment.88

The recombinant phage lysin PlyC has been developed as an 
enzyme disinfectant against Streptococcus equi, the causative agent 
of equine strangles in horses.89 Serious complications occur in 
20% of infected horses, and an overall mortality rate as high as 
8% occurs on farms where infection is endemic.89,90 The lysin was 
assessed for its ability to help control S. equi spread and trans-
mission in horse stalls and barns and was shown to be superior 
to chemical disinfectants which can be toxic, easily inactivated, 
environmentally unfriendly and have a broad bacteriocidal range. 

Table 1. Recombinant phage lysins targeting pathogenic bacteria

Lysin, Origin Activity Murine sepsis challenge* Reference

Ply118, L. monocytogenes Φ A118 amidase - 91

Ply511, L. monocytogenes Φ A511 amidase - 91

Ply500, L. monocytogenes Φ A500 endopeptidase - 29

Pal, S. pneumoniae Φ Dp-1 amidase, endopeptidase + (nasopharynx, oropharynx. intraperitoneal) 17, 51

Cpl-1, S. pneumoniae Φ Cpl-1 muramidase + (intraperitoneal, nasopharynx, mucosa,  
bloodstream, aortic valve)

51–53, 55

PlyGBS, GBS Φ NCTC 11261 muramidase, endopeptidase + (vagina, oropharynx) 64

PlyC, S. pyogenes Φ C1
amidase + (oral mucosa, nasal mucosa) 16, 89

GBS lysin, S. agalactiae Φ B30 muramidase, endopeptidase - 99

LambdaSa1 prophage lysin, S. agalactiae LambdaSa1 
prophage, 

glycosidase - 100

LambdaSa2 prophage lysin, S. agalactiae LambdaSa2 
prophage

glycosidase, endopeptidase - 100

Ply700, S. uberis (ATCC 700407) prophage amidase - 85

LySMP, S. suis Φ SMP glycosidase, endopeptidase - 87

PlyG, B. anthracis Φ γ amidase + (intraperitoneal) 18

PlyPH, B. anthracis Ames prophage amidase + (intraperitoneal) 18, 78

PlyB, B. anthracis Φ Bcp1 muramidase - 45

Lys16, S. aureus Φ P68 endopeptidase - 101

LysK, S. aureus Φ K amidase, endopeptidase - 20

Phi11 lysin, S. aureus Φ11 amidase, endopeptidase - 74, 75

MV-L, S. aureus Φ MR11 amidase, endopeptidase + (nasal cavity, intraperitoneal) 33

LysH5, S. aureus Φ H5 amidase, endopeptidase - 73

LysWMY, S. Warneri M Φ WMY amidase, endopeptidase - 102

Ply3626, C. perfringens Φ 3626 amidase - 82

CD27 lysin, C. difficile Φ CD27 amidase - 80

PlyV12, E. faecalis Φ 1 amidase - 76

Av-1 lysin, A. naeslundi Φ Av-1 putative amidase/muramidase - 103

LysgaY, L. gasseri Φ gaY muramidase - 104

* +, Tested in vivo in murine sepsis model, with site of challenge; -, Not tested in vivo in murine sepsis model.
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separation of bacterial cells from contaminated food. This novel 
immobilisation and separation technique enabled the recovery of 
more than 90% of the L. monocytogenes cells present.97

The lysin, Ply118, has also been developed as a molecular 
biology tool. Loessner et al.15 demonstrated that it could be used 
for fast, efficient and gentle recovery of DNA, RNA, or native 
intracellular proteins from small scale Listeria cultures. Similarly, 
the multimeric phage lysin PlyC has proven to be superior to 
mutanolysin in efficiently digesting the cell wall of S. pyogenes 
for proteome-based studies of cell wall-anchored proteins in 
GAS.98

Additional Lysins

Along with the lysins targeting the Gram-positive pathogens 
discussed above, a number of similar enzymes99-104 which also 
have potential to eliminate Gram-positive pathogens including 
Streptococcus, Staphylococcus, Actinomyces, Micrococcus and 
Enterococcus are under investigation in different laboratories. 
These are also included in Table 1. In the case of the Av-1 lysin 
against the oral bacteria Actinomyces naeslundii, its precise catalytic 
activity is yet to be published.103

Conclusion

Lysins have enormous potential as effective antibacterials in the 
fight against infectious disease where multi-drug-resistance is 
prevalent. As bacteriophages are considered the most abundant 
biological entities on earth, they are a rich natural source of these 
enzymes. Bio-informatic and proteomic studies are likely to lead 
to new opportunities for domain swapping, construction of chi-
meras and the production of specifically engineered designer lysins 
with diverse applications.
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