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ABSTRACT

Initiation of translation of the full-length messenger
RNA of HIV-1, which generates the viral structural
proteins and enzymes, is cap-dependent but can
also use an internal ribosome entry site (IRES)
located in the 50 untranslated region. Our aim was
to define, through a mutational analysis, regions of
HIV-1 IRES that are important for its activity. A dual-
luciferase reporter construct where the Renilla
luciferase (Rluc) translation is cap-dependent while
the firefly luciferase (Fluc) translation depends on
HIV-1 IRES was used. The Fluc/Rluc ratio was
measured in lysates of Jurkat T cells transfected
with the dual-luciferase plasmid bearing either the
wild-type or a mutated IRES. Deletions or mutations
in three regions decreased the IRES activity but
deletion or mutations of a stem-loop preceding the
primer binding site increased the IRES activity. The
wild-type IRES activity, but not that of an IRES with a
mutated stem-loop, was increased when cells were
treated with agents that induce oxidative stress.
Such stress is known to be caused by HIV-1 infec-
tion and we propose that this stem-loop is involved
in a switch that stimulates the IRES activity in
cells infected with HIV-1, supporting the suggestion
that the IRES activity is up-regulated in the course
of HIV-1 replication cycle.

INTRODUCTION

Initiation of translation of most eukaryotic cellular mes-
senger RNAs (mRNAs) occurs by a cap-dependent mech-
anism that requires ribosomal scanning of their 50UTR.
The 40S ribosomal subunit bearing the initiator tRNA,
Met-tRNAMet

i, interacts with the initiation factors
bound at the cap (m7GpppG) at the 50 end of the

mRNA, and then scans the mRNA in the 50–30 direction
until it encounters an initiation codon in an appropriate
context. The 60S ribosomal subunit joins the 40S subunit
and translation of the mRNA begins (1–3). However,
several groups of viruses and a minority of cellular
mRNAs initiate translation in a cap-independent
manner, using internal ribosome entry sites (IRESes)
(3,4,5–8). IRESes are structured RNA regions that are
able to directly recruit the 40S ribosomal subunit at or
near an initiation codon. This mode of initiation usually
requires the participation of some canonical initiation
factors and of host cell factors called IRES trans-acting
factors (ITAFs). The structure, the molecular mechanism
and the requirement for ITAFs of different IRESes vary
greatly, reflecting their functional diversity (9–11). IRESes
were first discovered in picornaviruses (12,13), and have
since been found in several other groups of viruses,
including retroviruses (14) such as simian immunodefi-
ciency virus (15,16), human immunodeficiency virus type
1 (HIV-1) (17,18), human immunodeficiency virus type 2
(19,20), murine leukemia virus (21,22), Rous sarcoma
virus (23), feline immunodeficiency virus (FIV) (24) and
mouse mammary tumor virus (25).

Translation of HIV-1 full-length mRNA produces the
precursor of structural proteins, Gag (p55), and, through
a programmed �1 ribosomal frameshift (26,27), it
produces the precursor of viral enzymes, Gag-Pol
(p220). This full-length RNA also serves as a genomic
RNA that is encapsidated in viral particles as a dimer.
The HIV-1 full-length mRNA is capped and polyadenyl-
ated, but the long structured 50UTR of this mRNA could
interfere with ribosomal scanning from the cap and
decrease the efficiency of the cap-dependent translation
initiation (28,29). Indeed, the 50UTR of HIV-1 RNA
contains several structural elements that are required for
the replication cycle (30), such as the transactivation
response domain (TAR), the poly(A) hairpin, the primer
binding site (PBS), the dimerization initiation site (DIS),
the major splicing donor site (SD) and the packaging
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signal (c) (see Figure 1A). Various models for the 50UTR
region of HIV-1 full-length RNA encompassing the IRES
have been proposed, based on phylogenetic, chemical
mapping and mutagenesis approaches (31). Among
them, Huthoff and Berkhout (32) had described two
mutually exclusive conformations for the 50UTR of
HIV-1 RNA, the branched multiple hairpin (BMH) and
the long-distance interaction (LDI). Recently, using the
powerful SHAPE (selective 20hydroxyl acylation
analyzed by primer extension) technology, the Weeks
group found that the 50UTR of HIV-1 full-length
mRNA exists inside and outside the virus particles in a
single predominant conformation, which we refer to as the
Weeks conformation (see Figure 1A) (31,33). The BMH
conformation has several similarities with the Weeks con-
formation, but the existence of the LDI conformation,
which has never been detected in infected cells or in viral
particles, has been challenged (31,34).

Translation studies in reticulocyte lysates showed
that Gag (and implicitly Gag-Pol) can be expressed both
by cap- and IRES-dependent modes but that the
cap-dependent mode is predominant (35). The full-length
mRNA of HIV-1 group M subtype B, the group and
type that predominates in infected patients of the
Western World, contains an IRES in its 50UTR (18).

This IRES generates Gag (p55), initiating translation at
the same initiation codon as the classical cap-dependent
initiation. Another IRES was also found in the Gag
coding sequence (17,20), which generates, in addition to
Gag, a shorter isoform of Gag (p40). Brasey et al. (18),
using deletion mutants, delimited the boundaries of HIV-1
50UTR IRES from nucleotides (nt) 104 to 336. They also
showed that the portion encompassing nt 104–289 has an
IRES activity very near that of the 104–336 segment. The
104–289 segment is present in all the RNA transcripts
from HIV-1, suggesting that all these transcripts could
be translated by an IRES-dependent mechanism in
addition to the classical cap-dependent mechanism [see
also ref. (29)]. This is supported by recent studies from
Charnay et al. (36), showing that the mRNA coding for
Tat can be translated by an IRES-dependent mechanism.
Two proteins were found to modulate the activity of the
50UTR IRES of HIV-1: the human embryonic-lethal
abnormal vision (ELAV)-like protein HuR down-
regulates this IRES efficiency (37), whereas the heterogen-
ous nuclear ribonucleoprotein (hnRNP) A1 up-regulates
its efficiency (38). Interestingly, it was shown that infection
with HIV-1 promotes relocalization of hnRNP A1 in
the cytoplasm and enhances its expression, which then
increases HIV-1 50UTR IRES activity. It was also

Figure 1. The 50UTR of HIV-1 RNA that encompasses the IRES. (A) Representation of the Weeks conformation of the 50UTR region of HIV-1
full-length RNA. This representation is adapted from Wilkinson et al. (31). The regulatory motifs are indicated: the TAR structure (nt 1–57), the
polyadenylation signal [poly(A)], the primer binding site (PBS), the dimerization initiation site (DIS), the major splice donor site (SD) and the
packaging signal (c) (nt 312–325). The AUG initiator codon is boxed. (B) Representation of the dual-luciferase reporter, plasmid
pFRT-dual-IRES-HIV. This plasmid contains the Rluc and the Fluc coding sequences, under control of a CMV and a T7 promoter, and separated
by the 50UTR region of HIV-1 full-length RNA (nt 1–369 based on pLAI). Translation of Rluc is cap-dependent while translation of Fluc depends
on the 50UTR IRES of HI1 RNA. The initiator codon for the Fluc coding sequence is within the 50UTR IRES. An oligonucleotide coding for a
peptide linker was inserted between the 30 nt from the Gag coding sequence that are present in the construct and the beginning of the Fluc coding
sequence. (C) Effect of RNA interference against Rluc on the expression of Rluc and Fluc. Jurkat T cells were cotransfected with the dual-luciferase
reporter and either pBS-U6-RLi that expresses a shRNA targeting Rluc or pBS-U6-ApaI that expresses a control shRNA. Jurkat T cells lysates were
assayed for Fluc and Rluc activities 48 h post-transfection and these activities were normalized for the protein content. A value of 100% is ascribed
to the Rluc and Fluc activity with the control plasmid. Results are the mean±SEM of three independent experiments.
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observed that the La autoantigen binds to the 50UTR of
HIV-1 full-length RNA (39,40) although a direct effect of
La on the HIV-1 50UTR IRES activity as an ITAF
remains to be proven.
Although the use of the 50UTR IRES of HIV-1 during

viral infection is still questioned, several studies support
the suggestion that this IRES benefits the virus during its
replication in infected cells. The 50UTR IRES is activated
in cell extracts that were blocked in the G2/M phase of the
cell cycle, a phase where cap-dependent translation is
decreased (18). The IRES-dependent translation of
HIV-1 full-length mRNA could be useful to ensure viral
replication when the viral protein Vpr induces G2 cell
cycle arrest (41,42). Recently, Castello et al. (43) showed
that HIV-1 protease cleaves the canonical initiation
factors eIF4GI and PABP, which inhibits cap-dependent
translation in HeLa extracts, but not translation of HIV-1
full-length mRNA. Stimulation of a viral IRES by viral
infection has also been described for FIV whose RNA
contains a dormant IRES that is activated by FIV infec-
tion and by cellular stress (24). It is well-known that
infection of HIV-1 causes oxidative and endoplasmic re-
ticulum stresses (44–47) and such stresses could influence
the activity of the HIV-1 IRES.
In this study, we investigated the activity of the 50UTR

IRES of HIV-1, using site-directed mutagenesis. We also
investigated the effect of various stress conditions on this
IRES activity. We found that deleting an unstructured
region downstream of the PBS (nt 202–217), mutating
3 nt (nt 240–242) in a 4-nt bulge in the DIS hairpin or
mutating a stretch of four A (nt 302–305) in loop I down-
stream of the SD hairpin, decrease the IRES activity. In
contrast, deleting or mutating a stem-loop upstream of the
PBS (nt 134–178) increases the IRES activity. A similar
increase is observed when the activity of the wild-type
IRES is assessed in cells treated with agents that induce
oxidative stress. The relationship between the mutational
analysis and the IRES activity is discussed. A model is
proposed to account for the effect of the 134–178 stem-
loop on the IRES activity in relationship with the
oxidative stress caused by infection with HIV-1.

MATERIALS AND METHODS

Plasmid construction

To measure the IRES activity in the 50UTR of HIV-1
group M subtype B full-length mRNA, we used a
dual-luciferase reporter, pFRT-dual-IRES-HIV. This
plasmid is derived from pcDNA5FRT (Invitrogen)
where the KpnI and BamHI restriction sites of the
original polycloning site were deleted to facilitate subse-
quent cloning of mutant IRESes. Our reporter pFRT-
dual-IRES-HIV contains the 50UTR region of HIV-1
originating from pLAI, a vector expressing a molecular
clone of HIV-1 group M subtype B proviral DNA (48),
inserted between the coding sequences of the Renilla
luciferase (Rluc) and the firefly luciferase (Fluc).
Expression of these genes is under control of a CMV
promoter followed by a T7 promoter. The corresponding
mRNA contains both the Rluc and the Fluc coding

sequences. Rluc translation is cap-dependent and Fluc
translation depends on HIV-1 50UTR IRES. The initiator
codon for Fluc expression is within the IRES and the
context of the AUG (30 nt from the Gag precursor) was
included in our constructs. Since the presence of these
additional amino acids could affect Fluc activity, a
sequence coding for a peptide linker (GGGGSGGGGS)
was inserted by PCR before the Fluc coding sequence. The
mutant IRESes were made by PCR amplification with
four primers (49). Mutants were named according to the
position where the mutation/deletion starts in the 50UTR
of HIV-1 full-length mRNA according to pLAI. The
details and the primers used for all these cloning experi-
ments are found in the Supplementary Materials and
Methods section.

Jurkat T cells transfection

Jurkat T cells (CD4+T cells) were maintained in RPMI
1640 medium (Gibco) supplemented with 10% (v/v) FBS
(Wisent). All transfections were made by electroporation,
using the NeonTM transfection system (Invitrogen)
according to the manufacturer’s instructions. The condi-
tions for electroporation were one pulse of 1150V for
40ms. Transfections were performed in 24-well plates
containing 1.5� 105 Jurkat T cells in 1ml of complete
medium without antibiotics. Briefly, 1 mg of DNA was
mixed with 1.5� 105 Jurkat T cells in 10 ml of R buffer
supplied by the manufacturer. For assays with shRNA,
co-transfections with shRNA-encoding plasmids were
performed in 6-well plates containing 2.0� 106 Jurkat
T cells in 5ml of complete medium without antibiotics.
Two micrograms of dual-luciferase reporter were mixed
with 2 mg of the plasmid encoding either control shRNA
(pBS-U6-ApaI) or shRNA targeting Rluc (pBS-U6-RLi),
a gift from Ivan Shatsky. Each mix was added to 2.0� 106

Jurkat T cells in 100 ml of R buffer. Transfections for treat-
ments with chemical agents were performed in 6-well
plates containing 2ml of complete medium without
antibiotics. Four mg of dual-luciferase reporter were
mixed with 1.0� 106 Jurkat T cells in 10 ml of R buffer.
Twenty-four hours post-transfection, transfected cells
were pooled and splitted in 24-well plates (500ml per
well) and the chemical agents (H2O2 at final concentra-
tions of 5 and 10 mM, TBHQ at final concentrations of
150 and 300 nM, thapsigargin at a final concentration of
450 nM and DFX at final concentrations of 250 and
500 mM; control: DMSO 0.25%) were added in a final
volume of 1ml per well for 4–8 h, as indicated in the
legend to Figure 3.

Jurkat T cells harvesting and luciferase assays

Transfected Jurkat T cells were harvested 24 h post-
transfection, centrifuged at 200 g for 5min, washed with
PBS and lysed in 100 ml of Cell Passive Lysis Buffer
(Promega). Cell lysates were frozen at �80�C until being
used. Prior to luciferase assays, cell lysates were thawed
and centrifuged 2min at 1300 g to remove cell debris. The
Fluc and the Rluc activities were assayed using a
Dual-Luciferase Reporter Assay System kit (Promega).
The IRES activity was monitored as a Fluc/Rluc ratio
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where the Fluc activity is the readout for IRES-dependent
translation while Rluc expression depends upon
cap-dependent translation. Fluc and Rluc activities were
measured as relative light units with a TriathlerTM

multilabel tester (Hidex Oy). One-way ANOVA with
Bonferroni’s multiple comparison test was performed
using GraphPad Prism version 5.00 for Mac OS X.

Metabolic labeling

Briefly, Jurkat T cells were transfected with pFRT-
dual-IRES-HIV and were incubated with different stress-
inducing agents for the appropriate amount of time, as
described above. The medium was replaced with a
methionine-free medium supplemented with 10%
dialyzed FBS for 30min, [35S]methionine (150–225mCi/ml;
1Ci=37GBq) (Perkin-Elmer) was next added to the
medium, and the cells were incubated for 15min. Cells
were collected by centrifugation, washed two times and
lysed in RIPA buffer (50mM Tris-HCl, pH 7.5, 150mM
NaCl, 1.0% Nonidet P-40, 0.5% sodium deoxycholate,
0.1% SDS). Radiolabeled proteins were isolated by tri-
chloroacetic acid precipitation on Whatman 3 MM
paper. The amount of radioactivity was determined by
scintillation counting, and the counts were normalized to
protein concentration, which had been determined, using
the DC Protein Assay (Bio-Rad).

Sequence alignment

Ninety-seven 50UTR regions of HIV-1 group M subtype B
sequences were obtained for the 134–178 stem-loop, 129
50UTR regions of HIV-1 group M subtype B sequences
were obtained for the 202–217 region, 142 50UTR regions
of HIV-1 group M subtype B sequences were obtained for
the 240–242 bulge and 149 50UTR regions of HIV-1 group
M subtype B sequences were obtained for the 302-305
segment. These sequences were aligned, using the HIV
sequence database (QuickAlign) of the Los Alamos
National Laboratory available at the following URL :
http://www.hiv.lanl.gov/.

RESULTS

The IRES located in the 50UTR of HIV-1 RNA is
functional in Jurkat T cells

To perform a mutational analysis of the IRES located in
the 50UTR of HIV-1 full-length mRNA, a standard
dual-luciferase reporter system was used (Figure 1B),
where the Rluc translation is cap-dependent whereas the
Fluc translation depends on the HIV-1 50UTR IRES. This
reporter was similar to the reporter described by Brasey
et al. (18), who demonstrated the existence of the HIV-1
50UTR IRES. The intercistronic region contains the
complete 50UTR, including the TAR and poly(A)
stem-loops. It is well known that the presence of a thermo-
dynamically stable stem-loop such as TAR interferes with
readthrough, ribosomal scanning and reinitiation that
could occur after Rluc termination of translation
(36,50). Moreover, the Rluc coding sequence is terminated
by three stop codons, which ensures efficient termination

of translation. The initiation codon for Fluc is located
within the HIV-1 50UTR IRES. The 30 nt of HIV-1
RNA that follow this initiator codon and encode the
beginning of the sequence of HIV-1 Gag were included
in our construct, in order to maintain the integrity of
the IRES. A sequence coding for a peptide linker was
added between these 30 nt and the beginning of the Fluc
coding sequence to avoid any interference of HIV-1
50UTR with Fluc folding and activity. Jurkat T cells, a
CD4+ T-cell line, were co-transfected with the dual-
luciferase reporter and a reporter coding for a shRNA
targeting the Rluc coding sequence (51). In the presence
of a shRNA targeting Rluc, but not of a control shRNA,
Rluc and Fluc expressions were decreased proportionally
by �50%, confirming that Fluc is not expressed from a
cryptic promoter or by spurious splicing (Figure 1C).
The HIV-1 50UTR IRES activity had been previously
studied in HeLa cells (18,38). We worked with Jurkat
T cells since they are closely related to the natural target
cells of HIV-1. We observed here that the HIV-1 IRES is
functional in Jurkat T cells, being �5-fold more active
than a control construct where the 50UTR was inserted
in the opposite direction between the Rluc and Fluc
coding sequences, and than a control construct where
there is no IRES between the Rluc and Fluc coding
sequences (data not shown). However, HIV-1 50UTR
IRES is weakly active, being �5-fold less efficient than
the well-characterized HCV IRES (data not shown), an
IRES known to be very active in a variety of cell lines (52).

Deleting two different regions has an opposite effect on
the HIV-1 50UTR IRES activity

We investigated which are the regions of the 50UTR
of HIV-1 that are important for the IRES activity.
Two deletion mutants were constructed. In mutant
M1.�loop202–217, 16 nt in the unstructured loop
portion following the PBS were deleted while in mutant
M2.�SL134–178, the irregular stem-loop encompassing
nt 134–178, which has no known function to date, was
deleted. The IRES activity was decreased to 39±6% of
the wild-type IRES activity with M1.�loop202–217, but
increased to 160±8% with M2.�SL134–178 (Figure 2A).
These results suggest that the region encompassing nt
202–217 contains a positive determinant of the 50UTR
IRES activity. In contrast, the 134–178 stem-loop acts as
a negative determinant of this IRES activity and was
named IRENE (for IRES negative element). Both
regions are highly conserved among group M subtype B
natural variants (see Supplementary Results section and
Supplementary Figures S1A and B).

Disruption of the upper portion of IRENE stimulates the
HIV-1 50UTR IRES activity

To further investigate which portions of IRENE are
involved in the control of HIV-1 50UTR IRES activity,
different mutations were made (described in Figure 2B
and C). IRENE is formed by two stems separated by a
3A internal bulge on one side and a C bulge on the other
side. The upper stem is itself interrupted by an AG bulge.
We first disrupted either the lower stem (M3.stem134) or
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the upper stem (M4.stem143). We also made two mutants
of the upper stem, M5.stem143up and M6.stem143bot,
where either the top or the bottom part of the upper
stem was disrupted, (see details in Figure 2). Finally, we
deleted the 7-pyrimidine loop that caps this stem-loop
(M7.�loop151) or substituted the pyrimidines of this
capping loop with purines (M8.loop151). Mutating the
lower stem of IRENE did not influence the IRES
activity (see M3.stem134) while disruption of the upper
stem increased the IRES activity, as seen with
M4.stem143 (200±15%) (Figure 2B). An increase was
also observed, although to a lesser extent, when only the

top part of the upper stem was disrupted (M5.stem143up,
142±7%), an effect similar to that obtained with
M2.�SL134–178. Deleting or substituting the capping
loop (M7.�loop151 and M8.loop151) had no effect.
Therefore, our results suggest that the negative determin-
ant for the 50UTR IRES activity seems to be located in the
upper part of IRENE, but that the capping loop is not
involved in this effect. We also investigated whether the
3A bulge that separates the upper from the lower stem in
IRENE has an effect on the 50UTR IRES activity. The 3A
were substituted with either 3C, 3G or 3U. It was found
that when the bulge is made of pyrimidines, the IRES

Figure 2. HIV-1 50UTR IRES activity is modulated by two RNA regions. (A) Two deletion mutations, represented in the Weeks conformation, were
made in HIV-1 50UTR IRES and their effect on the IRES activity is shown. (B) Mutations of the upper part of the stem-loop 134–178, named
IRENE, increase the IRES activity. The mutations are indicated in boxes. Note that this figure describes the mutations that were introduced but not
the structure adopted by the mutant stem-loops (see Figure 5). (C) Replacement of the 3A bulge of IRENE by 3C or 3U but not by 3G increases the
IRES efficiency. The IRES activities for the mutants were assessed in lysates from Jurkat T cells transfected with the corresponding dual-luciferase
plasmids. The Fluc/Rluc ratio obtained with the wild-type pFRT-dual-IRES-HIV (WT) was arbitrarily set at 100%. Results are the mean±SEM of
six independent experiments. The asterisk indicates mutants that were significantly different from WT (P< 0.05).
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efficiency is significantly higher (M9.CCC: 147±5% and
M11.UUU: 139±5%) than when the bulge is formed by
purines (WT with the 3A bulge: 100±8% and
M10.GGG: 114±7%) (Figure 2C). Sequence alignment
showed that IRENE is highly conserved in group M
subtype B natural variants as mentioned in the above
section. Most of the differences are located in the upper
7-pyrimidine loop, which does not influence the IRES
activity. Twenty-one of the 97 variants analyzed have mu-
tations in the upper stem, but only five of these mutations
disrupt a base-pair. The 3A bulge is conserved in all these
variants except three (see details in Supplementary Results
section and Supplementary Figure S1A).

Oxidative stress increases the activity of wild-type HIV-1
50UTR IRES, but not that of the M4.stem143 mutant

We investigated whether the activity of the 50UTR IRES
could be altered by a treatment with chemical agents
causing a variety of stresses. We used hydrogen peroxide
(H2O2) and tert-butylhydroquinone (TBHQ) to induce
oxidative stress, thapsigargin to induce an endoplasmic
reticulum (ER) stress and deferoxamine (DFX), which is
a hypoxia mimetic (Figure 3). We exposed to these agents
either the wild-type IRES or the M4.stem143 mutant,
where IRENE is altered and whose activity was increased
compared to the wild-type. It is known that a treatment
with these stress-inducing agents causes a decrease in
cap-dependent initiation (53). This was verified in our
assays, using a [35S]methionine labeling and it was
observed that global translation, that reflects cap-
dependent translation, was decreased by �2-fold under
the different stress conditions investigated (Figure 3A).
We measured the Fluc/RLuc ratio under these conditions.
Rluc cannot be used to assess transient changes in
cap-dependent initiation (54) because of its stability
(half-life superior to 50 h) and its activity remained un-
changed when the cells were exposed to the various
stresses (see Figure 3B). We observed that wild-type
HIV-1 IRES activity, but not that of the M4.stem143
mutant, was increased �2-fold in presence of H2O2 and
TBHQ, which induce oxidative stress. No change in the
IRES activity was seen with agents that induce either an
ER stress or hypoxia. These results therefore suggest that
the effect of mutating IRENE can be reproduced by an
exposure of the wild-type IRES to oxidative stress.

The HIV-1 50UTR IRES activity is decreased by
mutations located in the DIS hairpin or in loop I
downstream of the SD hairpin

To further characterize the regulation of the HIV-1
50UTR IRES activity, we also investigated substitution
mutations that were found by Abbink et al. (55) to influ-
ence the BMH-LDI switch (see Introduction section)
(Figure 4). Two of the six mutations investigated,
M12.DIS240 and M16.loopI302, influenced the 50UTR
IRES activity, decreasing its value to �60% of wild-type
efficiency. These mutations consisted, respectively, of a
substitution of three purines with pyrimidines in a 4-nt
bulge in the bottom part of the DIS hairpin and in a
substitution of four A with pyrimidines in the beginning

of loop I, downstream of the SD hairpin. When the
purines directly opposite to the 4-nt bulge in the DIS
hairpin were substituted with pyrimidines (M13.DIS278),
when the two purines located at the end of loop I were

Figure 3. HIV-1 50UTR IRES activity is increased in presence of agents
that induce oxidative stress. Jurkat T cells were exposed to different agents
[DMSO: control (6 h), H2O2: hydrogen peroxide (4 h), thaps: thapsigargin
(6 h), TBHQ: tert-butylhydroquinone (6 h) andDFX: deferoxamine (8 h)].
(A) The cap-dependent translation is decreased following exposure to the
different agents, as shown by metabolic labeling with [35S]methionine and
measurement of the radioactivity incorporated into trichloroacetic
acid-precipitable material. Radioactive counts were normalized for total
protein content. A value of 100% was arbitrarily ascribed to the control
sample (DMSO). (B) The activity of WT and M4.stem143 mutant IRES
was assessed in cell lysates as described in the legend to Figure 2. Results
show the Fluc/Rluc ratio and the Fluc and Rluc activities. A value of
100% was arbitrarily ascribed to WT. Results are the mean±SEM of
three independent experiments. The asterisk indicates the treatments that
significantly increase the activity of the WT IRES (P< 0.05). The activity
of the mutant IRES was not significantly altered by exposure to the
different agents.
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substituted with pyrimidines (M17.loopI310) or when the
SD hairpin was mutated (M14.SD296 and M15.SD293),
there was no effect on the IRES activity. It was also
observed that, in M15.SD293, the sequence of the
splicing donor site in the 50UTR of HIV-1 RNA is
mutated, but the expression of Fluc in this construct is
not affected (data not shown), in line with the fact that
Fluc expression results from a genuine IRES activity and
not from a splicing event (see above). The 4-nt bulge in the
DIS hairpin is highly conserved, but the A stretch in loop I
shows some variability among natural variants of HIV-1
group M subtype B (see Supplementary Results section
and Supplementary Figure S1C and D).
M12 was shown by Abbink et al. (55) to favor the BMH

conformation whereas M16 favored the LDI conform-
ation. Both mutants had a similar effect on the IRES
activity, which does not support an involvement of the
proposed BMH-LDI switch in the IRES activity.
Abbink et al. had already observed that such a switch
did not influence translation of the HIV-1 full-length

mRNA, using conditions where cap-dependent translation
predominates. Our results indicate that this putative
switch has also no impact on the IRES activity but they
reveal two additional regions that can influence HIV-1
IRES activity.

DISCUSSION

Our aim was to obtain insights into the regulation of the
activity of the IRES located in the 50UTR of HIV-1
full-length mRNA through a mutational analysis. In this
study, we describe RNA regions important for the activity
of the HIV-1 50UTR IRES. We found three positive
determinants (nt 202–217, 240–242 and 302–305) whose
presence increases the IRES activity �2-fold and one
negative determinant, a stem-loop encompassing nt
134–178 called IRENE, which decreases the IRES
activity �2-fold. We also found that oxidative stress
increases the wild-type IRES activity �2-fold but not
that of the M4.stem143 mutant IRES with a mutated
IRENE, whose activity is �2-fold that of the wildtype.
This is the first study showing that oxidative stress
activates the 50UTR IRES of HIV-1.

Deleting the 202–217 portion of the PBS loop or
mutating the 240–242 bulge of the DIS hairpin or the
302–305 portion of loop I could remove the binding site
for an unknown cellular factor whose binding stimulates
the IRES activity, or could result in a conformational
change that promotes a less active IRES conformation.
The mutated/deleted nt in all these three mutants are
very reactive according to Wilkinson et al. (31), which
implies that they are well exposed and free to interact
with a factor. We observed that mutating the nt
opposite to the 240–242 bulge in the DIS hairpin or
mutating the last 2 nt of loop I did not change the IRES
activity. This suggests that the decrease in the IRES
activity obtained when nt 240–242 or 302–305 are
mutated rather results from an effect localized to a well-
defined region of the IRES than from a conformational
change in the DIS hairpin or in loop I. It thus favors the
possibility that nt 240–242 and 302–305 could be parts of
the binding site for an ITAF. For the mutant with the
deleted PBS loop, both a conformational change and
the loss of the binding site for an ITAF could influence
the IRES activity.

The effect of IRENE on the IRES activity is more
complex. Our results show that the IRES activity is
weaker in the presence of IRENE than in its absence,
but that mutations in the upper stem of IRENE increase
the IRES activity. Moreover, inducing oxidative stress
increases the activity of the wild-type IRES but not that
of the M4.stem143 mutant, which is more active than the
wild-type. Figure 5 shows the secondary structure of wild-
type and mutated IRENE, determined by the standard
mfold algorithm. The secondary structure of IRENE is
quasi-identical in the different structures that were
proposed for the 50UTR of HIV-1 full-length RNA (31)
and the structure of IRENE determined by mfold is iden-
tical to that found in the Weeks conformation that we
used throughout this study. The structure of IRENE for

Figure 4. HIV-1 50UTR IRES activity is decreased when nt 240–242 or
302–305 are mutated. The mutants studied here were previously found
by Abbink et al. (55) to favor the BMH or the LDI conformation
of the HIV-1 50UTR (see the text). Mutations (boxes) or a deletion
(filled triangle) are represented in the Weeks conformation and the
conformation they favor is indicated. The WT and mutant IRES
efficiencies were assessed in lysates from Jurkat T cells as described
in the legend to Figure 2.
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the M3.stem134, M6.stem143bot, M7.�loop151 and
M8.loop151 mutants is very similar to that of the
wild-type (Figure 5A and C), conserving the same orien-
tation of the bend induced by the 3A bulge separating
IRENE in two parts. These four mutants have an IRES
activity comparable to that of the wild-type IRES and it
could be suggested that the wild-type IRES and these
mutants adopt a weakly active conformation, which
could be stabilized by the binding of a negative factor.
As to the mutants with an increased IRES activity due
to either the deletion or a mutation in the upper stem of
IRENE (M2.�SL134-178, M4.stem143, M5.stem143up),
they have a different conformation for IRENE, but this
is consistent with the fact that a variety of IRES structures
can recognize the ribosome (3). Finally, substituting the

3A bulge with 3G in IRENE did not change the IRES
activity while replacing the 3A with pyrimidines increased
the IRES activity �1.5-fold (see Figure 2C). These 3A are
poorly reactive according to Wilkinson et al. (31) and
could thus be involved in RNA–RNA contacts with
other parts of the IRES, which could contribute to a
weakly active conformation of the IRES. Such contacts
would be maintained when the 3A are replaced by 3G but
not by pyrimidines.
As mentioned in the ‘Introduction’ section, HIV-1

IRES is activated during viral infection (38). Oxidative
stress, one of the pleiotropic effects caused by HIV infec-
tion, increases the activity of the wild-type IRES but not
of the M4.stem143 mutant. Since the effect of oxidative
stress is not additive to that of the M4 mutation, this result

Figure 5. The structure of IRENE influences the activity of HIV-1 50UTR IRES. (A) The secondary structure (boxed) of WT IRENE. The presence
of the 3A bulge causes a bend between the upper and the lower parts of this stem-loop. (B) In the absence of IRENE (M2.�SL134–178), the IRES
activity is increased 1.5-fold. (C) With the M3.stem134, M6.stem143bot, M7.�loop151 and M8.loop151 mutants, the IRES activity is unchanged and
the secondary structure of IRENE (boxed) is very similar to that of WT. (D) In the M4.stem143 mutant, the structure of IRENE is drastically
changed and the IRES activity is increased 2-fold. (E) The M5.stem143up mutation moderately changes the structure of IRENE (boxed),
and the IRES activity is increased 1.5-fold. The secondary structure of WT or mutant IRENE was predicted by the mfold algorithm (version 3.2;
http://frontend.bioinfo.rpi.edu/applications/mfold/cgi-bin/rna-form1.cgi) (60,61).
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strongly suggests that oxidative stress increases the IRES
activity via an effect on IRENE. A model can be proposed
to describe the role of IRENE and oxidative stress in the
increase in HIV-1 IRES activity, which is illustrated in
Figure 6. The IRES could initially adopt a weakly active
conformation that is stabilized by the binding of a repres-
sor cellular protein to IRENE, as suggested above. In the
course of the viral infection, a decrease in global protein
synthesis would decrease the level of repressor. This could
make IRENE available for interacting with a stimulatory
ITAF that could act as a chaperone and help the IRES to
adopt a more active conformation, such as that we artifi-
cially induced by mutating the upper stem of IRENE
(Figure 5D). The ITAF could be a cellular protein
which would be relocalized in the cytoplasm or whose
expression would be induced by oxidative stress following
viral infection. This hypothetical model thus suggests that
IRENE controls the IRES activity through the conform-
ation it adopts. Although this model is attractive, it is
presently speculative and relies strongly on the structures
of IRENE obtained with the folding algorithm. Further
study of the effect of IRENE on HIV-1 IRES activity
requires a characterization of the proteins that interact
with this structure.
It could be argued that the effect of mutating IRENE or

inducing oxidative stress is modest. It is however worth
recalling that an increase of �2-fold in the IRES activity
of the foot-and-mouth disease virus was related to its
hypervirulence in BHK (baby hamster kidney) �21 cells
(56) and that an increase of �2-fold in the IRES activity

of c-myc-RNA was linked to the occurrence of multiple
myeloma (57). Also, microRNAs have powerful physio-
logical effects although their effects on translation of
individual targets are often moderate, being in the range
of 1.5–2-fold (58,59).

In conclusion, our results suggest that the control of the
HIV-1 50UTR IRES activity is a complex event that likely
combines conformational changes and the effect of
cellular repressors and activators that bind to this IRES.
Our results identified IRENE, a stem-loop that could play
a role in the activation of this IRES upon viral infection in
response to oxidative stress. More work is needed to
understand the mechanism of stimulation of HIV-1
IRES by oxidative stress via IRENE and the regulation
of this IRES during the virus replication cycle. The
IRES-dependent translation of HIV-1 full-length mRNA
must be tightly regulated during viral infection so as to
favor viral replication. It will be important to characterize
when this IRES is activated and utilized during the virus
replication cycle and to identify the proteins which are
involved in this utilization.
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