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Abstract
Patient-specific abdominal aortic aneurysms (AAAs) are characterized by local curvature changes,
which we assess using a feature-based approach on topologies representative of the AAA outer
wall surface. The application of image segmentation methods yields 3D reconstructed surface
polygons that contain low-quality elements, unrealistic sharp corners, and surface irregularities. To
optimize the quality of the surface topology, an iterative algorithm was developed to perform
interpolation of the AAA geometry, topology refinement, and smoothing. Triangular surface
topologies are generated based on a Delaunay triangulation algorithm, which is adapted for AAA
segmented masks. The boundary of the AAA wall is represented using a signed distance function
prior to triangulation. The irregularities on the surface are minimized by an interpolation scheme
and the initial coarse triangulation is refined by forcing nodes into equilibrium positions. A surface
smoothing algorithm based on a low-pass filter is applied to remove sharp corners. The optimal
number of iterations needed for polygon refinement and smoothing is determined by imposing a
minimum average element quality index with no significant AAA sac volume change. This
framework automatically generates high-quality triangular surface topologies that can be used to
characterize local curvature changes of the AAA wall.
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INTRODUCTION
Abdominal aortic aneurysms (AAAs) are localized dilations of the abdominal artery that
commonly form below the renal arteries. Depending on the size of the aneurysm at the time
of diagnosis, it should either be closely monitored or repaired to prevent rupture. Evaluating
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rupture risk is critically important as aneurysm rupture carries high mortality rates. Two-
hundred thousand new AAA cases are diagnosed each year in the United States and 15,000
people die from AAA rupture each year. AAA rupture is the 13th leading cause of death in
this country and affects 1 in 250 individuals over 50 years of age.22 Currently, a maximum
transverse diameter of 5.5 cm or greater and an expansion rate of 1 cm/year are the standard
for estimating rupture risk and are commonly used thresholds for elective repair. It is a
known fact, however, that basing the clinical management of this disease on maximum
diameter alone is not a reliable measure of individual rupture risk. This is evident by the
small aneurysms that rupture (prior to reaching the critical diameter of 5.5 cm) and the large
aneurysms that do not rupture (at the critical size for which elective repair is recommended)
after they are either diagnosed at an advanced stage of growth or are in patients who are
unfit for repair.

Recent studies reveal that aneurysm diameter is not the sole determinant for rupture and that
biomechanical and biological factors may influence AAA rupture risk. Peak wall stress has
been shown to be a more reliable parameter than maximum diameter for predicting
aneurysm rupture, and the stresses acting on the wall of an aneurysm are highly dependent
on aneurysm shape.26 Wall stress alone is not sufficient to predict rupture risk; regional
estimations of wall strength are also necessary.24 The degeneration of aortic wall connective
tissue causes a significant loss of structural integrity of the aortic wall,3 increasing the risk
of rupture for an individual aneurysm. Moreover, the presence of intraluminal thrombus,
which forms as a result of disturbed blood flow conditions and blood stagnation, has an
effect on aortic wall degeneration.23

Quantifying the shape and size of patient-specific AAAs can be valuable for predicting
individual rupture and operative risks in pre-surgical planning, establishing index thresholds
for patient selection, and for customizing designs of endovascular grafts. Accurate
geometrical characterization requires taking into consideration the 3D complexity of the
shape, tortuosity, and asymmetry of the randomly formed AAA sac. Recent studies have
shown that AAAs with an asymmetric geometry exhibit higher wall stress27 and that
ruptured aneurysms show evidence of more out of plane growth than axial growth.12 A
complex AAA geometry contributes to an equivalently complex wall stress distribution over
the entire AAA, with the highest stresses associated with regions of high curvature. 17 It has
been proposed that geometric parameters may be able to accurately predict wall stress
distributions.4 Mean and maximum centerline curvature were highly correlated with peak
wall stress7 and the location of maximum stress coincided with peaks in Gaussian curvature,
a parameter that indicates the existence of concave and convex regions on the vessel surface.
11 Parameters such as the Gaussian curvature are important since they offer information
unattainable with simple visual inspection: a measure of the degree to which the AAA wall
geometry is irregular. It has also been proposed that the role of AAA geometry should not be
underestimated in wall stress analysis of small AAAs with diameters of 5.0–5.5 cm.6

Mechanical analysis requires the accurate quantification of 3D anatomic structures since the
surface geometry can have a direct impact on their mechanical behavior in health and
disease.19 A recent study described the derivation of a set of global indices for the size and
shape of cerebral aneurysms for assessment of their rupture potential and choosing the
appropriate clinical treatment modality.8,15 It was reported that quantified shape was more
effective than size in discriminating between ruptured and non-ruptured cerebral aneurysms.

We previously reported on a novel, semi-automatic vessel segmentation algorithm
(VESSEG v.1.0.2, Carnegie Mellon University) used to analyze the CT images of a pilot
subject population and estimate local measures of wall thickness.18 Patient-specific 3D
models of nine electively repaired AAAs were constructed from the segmented data and
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characterized quantitatively by calculating 28 size and shape indices and regional variations
in aortic wall thickness.9 In this study, we describe an automated method to generate outer
wall surface topologies from AAA segmented images. The framework described herein is
simple to use, yields polygons of high quality, and can also generate unstructured volume
meshes. The surface topologies can be used to quantify geometric indices that could be
construed as potential predictors of AAA rupture risk. An application of the surface polygon
generation framework is presented with a population subset of ten ruptured and ten
unruptured AAA datasets for which polygon-dependent shape and curvature-based indices
are quantified.

IMAGE PROCESSING AND SURFACE TOPOLOGY GENERATION METHODS
Segmentation Algorithm

The segmentation methods used in this study are described in detail in Shum et al.18 In brief,
three different algorithms form the basis of the segmentation and wall thickness detection
tools applied for this study. The lumen segmentation is performed via the intensity gradient
that exists between the lumen and surrounding structures. The outer wall contour can be
determined either manually or automatically. In the manual method, the image is reduced to
a small region containing the aorta and an array of contours, or isolines, are provided to the
user for manual selection. In the automatic method, the outer wall is detected by using
intensity thresholding and additional control rules to ensure that the segmentation of the
slice is discarded when no possible boundaries can be created. The threshold is changed
accordingly to attempt a new segmentation. The inner wall is detected by training a neural
network to recognize regions where the inner wall could reside.

Polygon Generation and Refinement
The polygon generation algorithm described by Persson and Strang13 was modified to
produce high-quality triangular surface topologies using the outer wall contour of the
segmented AAA. From the segmentation algorithm, the outer wall contours are exported as
a set of point clouds to generate an initial tetrahedral volume mesh using a signed distance
function. A boundary box containing a uniformly distributed set of nodes and a signed
distance function yield the initial aneurysm topology by rejecting nodes positioned outside
the outer wall contours. A coarse mesh is generated from the remaining nodes using a
restricted Delaunay triangulation scheme. A force displacement function is used iteratively
to move the nodes to an equilibrium position with a uniform length between each node by
updating the nodal positions. This causes a repulsive force between nodes that spreads them
across the aneurysm geometry and refines the mesh. From the volume mesh, the external
triangular faces of the tetrahedrals are extracted to generate an initial, coarse surface
topology.

The initial surface topology contains low-quality elements, unrealistic sharp corners, and
surface irregularities that result from the slice spacing between images and from the image
segmentation method. To address this, the point clouds of the outer wall contours are
converted to cylindrical coordinates and linearly interpolated between the slices to generate
additional wall points. The new sets of points are then converted back to Cartesian
coordinates and binary masks are created to approximate a signed distance function. The
region within the mask is assigned a negative value while the region outside is assigned a
positive value. This approximated signed distance function in conjunction with the boundary
box is used to reject nodes located outside the boundary, or those nodes with a positive
value.

A uniform edge length distribution was used to allocate the initial point cloud with a length
equal to the pixel size. Using a non-linear distribution where the point clouds are denser at
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highly tortuous regions and coarser at less tortuous regions might be more effective for
generating tetrahedral meshes for finite element analysis (FEA). However, we evaluated the
effect of the initial point cloud density against the average element quality index and found
that densities in which the point clouds are distributed with a length equal to the pixel size
gave the highest average element quality (Qave > 0.75).

The average element quality index, Qave, is calculated after each iteration of refinement.
Element quality is defined as:

(1)

where r is the radius of the largest circle inscribed in a triangle and hmax is the length of the
longest edge of a triangle. An equilateral triangle would yield a Qave = 1.

Polygon Smoothing
After the refinement process, a surface smoothing algorithm based on Taubin’s low-pass
filter method21 is applied to remove sharp corners. The implemented algorithm is linear in
space and time, and produces no shrinkage of the surface topology. Moreover, the topology
is not distorted because the low-pass filter preserves low-curvature components (the
underlying shape of the aneurysm) while it attenuates high-curvature components (sharp
peaks).

For each iteration of smoothing, a new nodal position is calculated by performing two
consecutive weighted averaging steps: one with a positive scaling factor, λ, and the other
with a negative scaling factor, μ. For each scaling factor, we obtain the set of elements that
each node vi is adjacent to (neighboring nodes, i*). The new position of each node is
updated using the following formula:

(2)

where c is either the λ or μ scaling factor and vj is the neighbor of node vi for j ∈ i*.

A smooth surface, xN, is produced by iteratively applying a low-pass filter to the original
surface signal, x, such that

(3)

(4)

where f(K) is the transfer function of the low-pass filter and N is the number of iterations. It
can be observed that f(K)N ≈ 1 for low frequencies and f(K)N ≈ 0 for high frequencies. In the
transition band, the rate of decrease of this function is determined by the number of
iterations N and the scaling factor λ in the transfer function equation (4). The transfer
function decreases faster with larger N or λ. Since the function mimics a typical low-pass
filter, by applying Eq. (4) the high-curvature components can be removed while the low-
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curvature components remain unchanged. The polygon generation, refinement, and
smoothing steps of the framework are illustrated in Fig. 1.

Implementation of the Algorithms
The optimal number of iterations needed for polygon refinement and smoothing is
determined by calculating an acceptable Qave (≥0.75) with minimal AAA sac volume
change (≤1.5%). Polygon refinement ends when the surface polygon reaches a maximum
Qave with no improvement after 15 consecutive iterations. We determined that a nodal
distance equivalent to the interpolated slice spacing resulted in the highest Qave. However,
an interpolated slice spacing less than the original CT slice spacing greatly increased the
computational time. To achieve the maximum Qave without compromising on computational
time, the interpolated slice spacing was set equal the pixel size of the CT images. For
datasets where the pixel size exceeded 0.8 mm, a slice spacing of 0.75 mm was used as a
default for the interpolation step to yield a high Qave.

CASE STUDY APPLICATION METHODS: TOPOLOGY-BASED AAA
GEOMETRY QUANTIFICATION
Subjects and Image Data

The study population consists of 20 human subjects with AAAs; 10 ruptured (“R”) and 10
unruptured (“U”) datasets. Noteworthy is that the term “ruptured” is used in the context of
this investigation to designate those aneurysms that were detected as ruptured in the last CT
exam prior to emergent intervention, as well as those that ruptured within a month after the
last CT exam and prior to the intervention. Abdominal DICOM images were acquired using
contrast enhanced CT with the following imaging parameters: (i) scan matrix size = 512 ×
512; (ii) average pixel size = 0.8874 mm (0.7031–1 mm); (iii) pixel intensity = 0–2000; and
(iv) median slice thickness = 3.0 mm (1–10 mm).

Size, Shape, and Curvature Indices
Nine indices were calculated to quantify the size, shape, and curvature of each AAA model,
as described by Martufi et al.9 We computed three 3D size indices: AAA volume (V),
surface area (S), and intra-luminal thrombus volume (VILT), and two 3D shape indices based
on V and S: the isoperimetric ratio (IPR) and non-fusiform index (NFI). In addition, we also
calculated four second-order curvature-based indices: area-averaged Gaussian and Mean
curvatures (GAA and MAA) and the L2-norms of these curvatures (GLN and MLN). All
indices are calculated for the 20 AAA geometries using the framework described herein.
The reader is referred to the “Appendix” for a complete mathematical description of the
indices used in this feature-based approach of geometry quantification.

Wall Thickness
As described in Shum et al.18 72 pointwise estimations of wall thickness are calculated for
each cross section in a CT image stack, yielding the average thickness per cross section. We
define wall thickness as the shortest distance between a point on the inner wall contour and
another point on the outer wall contour. Computing the shortest distance between the two
sets of points and multiplying by the pixel dimension yields a wall thickness estimate. The
average wall thickness of the aneurysm sac (tw,ave) was calculated based on the mean of the
average cross-sectional wall thicknesses.

Statistical Analysis
The indices were calculated for the two population subgroups: unruptured aneurysms (n1 =
10) and ruptured aneurysms (n2 = 10). A multivariate analysis of variance (MANOVA)
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using the rupture status as a factor was performed for all indices as dependent variables to
determine statistical significance (α = 0.05). Box and Whisker plots and ROC curves were
generated for all the statistically significant indices. The area under the curve (AUC), which
quantifies the predictability of each index, was calculated in addition to the cut-off value for
each index that results in the highest Youden index. The Youden index is given as J =
max(sensitivity + specificity − 1) and it corresponds to the point on the ROC curve that
provides the highest accuracy. Sensitivity, or the true positive rate, and specificity, or the
true negative rate, are calculated as the percentage of instances classified correctly for the
given cut-off value.

Sensitivity to Random Noise
Due to inter-user variability in the segmentation process, which we quantified in our
previous work,18 uncertainty errors exist in the nodal positions of the surface topology. A
topology sensitivity analysis was performed by perturbing the surface triangles with random
noise to mimic the inter-user variability in yielding different AAA geometries. Random
noises were added to the nodal positions of the original topology of one AAA model,
namely U8. Multiple noisy surface topologies were created at ten different noise amplitudes
(in the 0.1–1.0 mm range). At each noise amplitude, 27 random generations of the topology
were created yielding 270 topology variants of aneurysm U8. The topology-dependent
geometric indices were calculated using the 270 noisy topologies and compared to the
original, noise-free indices. The percent error at each noise amplitude and the 95%
confidence intervals were calculated using the noise-free model as a reference standard.

RESULTS
A validation study was completed generating three idealized fusiform aneurysms of random
dimensions using SolidWorks (Dassault Systèmes SolidWorks Corp., Concord, MA, USA).
The volumes and surface areas were computed with this software and compared to those
calculated with the corresponding surface topologies of five mesh densities for each of the
fusiform shapes. This comparison revealed average relative percent errors ranging from 0.02
to 0.68% for these two geometric indices.

Table 1 shows the final average quality element index after smoothing for the study
population, as well as the number of elements (Nelements) and nodes (Nnodes), volume prior
to and after smoothing (Vinital and Vfinal, respectively), and number of iterations needed for
polygon refinement (Nrefine) and smoothing (Nsmooth). The surface topology generation
metrics averaged for the 20 AAA models are Qave = 0.77 (range: 0.75–0.78), Nelements =
87,546 (26,205 to 178,146), Nnodes = 42,931 (12,679 to 87,576), Vinitial = 256.80 cm3

(24.79–638.52 cm3), Vfinal = 260.54 cm3 (35.31–644.56 cm3), Nrefine = 238 (50–300), and
Nsmooth = 292 (12–863). The code written for this framework was run on 64-bit Windows
workstations with up to 16 Gb RAM; the median CPU time required to obtain a surface
topology [steps illustrated in Figs. 1e to 1o] was 17 min.

The topology sensitivity analysis (Fig. 2) reveals that GLN, S, NFI, and IPR have the highest
percent errors, and as the noise amplitude increases, the percent error increases
exponentially. All indices exhibited errors less than 3.4%, even at the highest noise
amplitude of 1.0 mm. Among the curvature-based indices, GAA had the smallest error,
which is less than 0.8% across all noise levels, and GLN had the largest error: 1.8% at a
noise amplitude of 1.0 mm. NFI and IPR have similar error distributions since they are both
calculated as a function of S and V. When compared to the pixel size of the original CT
images (0.742 mm), the maximum noise amplitude due to CT resolution is 0.371 mm. At a
noise amplitude of 0.371 mm, all topology-dependent indices yielded errors less than 0.3%,
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indicating that the geometry quantification approach is almost unaltered by the appearance
of random noise in the original topology.

The mean and standard of deviation for each index were calculated for two population
subgroups: ruptured (“R”) and unruptured (“U”) aneurysm datasets (Table 2). From the
MANOVA, the statistically significant indices were V (p < 0.0001), S (p < 0.0001), GLN (p
< 0.0001), MLN (p < 0.0001), VILT (p = 0.001), GAA (p = 0.002), and tw,ave (p = 0.002).
Box and Whisker plots were generated for these seven indices to visualize their distribution
between the two subgroups, as shown in Fig. 3. Based on ROC curve analysis (Fig. 4), the
indices with the highest prediction accuracy were VILT and V with AUCs of 97%,
sensitivities of 100%, and specificities of 80% for VILT = 28.54 cm3 and V = 111.58 cm3.

DISCUSSION
Recent studies show that wall stress may be a better indicator for aneurysm rupture risk
assessment than AAA maximum diameter. Fillinger et al.5 showed the feasibility of using
FEA for patient-specific wall stress calculations and reported statistically significant
differences in peak stress for ruptured/symptomatic AAAs (46.8 N/cm2) in comparison with
those electively repaired (38.1 N/cm2). Another study reports that the site of rupture and the
peak wall stress were correlated and that ruptured AAAs had significantly higher peak wall
stress than non-ruptured AAAs.25

A factor of significant importance in AAA rupture risk prediction is the non-uniformity of
the aortic wall thickness. Di Martino et al.2 using a laser micrometer, measured the thickness
of AAA wall specimens obtained fresh from operating room patients undergoing surgical
repair. A significant difference was found in wall thickness between ruptured (3.6 ± 0.3 mm)
and electively repaired (2.5 ± 0.1 mm) aneurysms, as well as an inverse correlation between
wall thickness and local tissue strength. In an autopsy study, Raghavan et al.14 analyzed the
tissue properties of three un-ruptured and one ruptured AAA revealing that all aneurysms
had considerable regional variation in wall thickness and a significant reduction in wall
thickness near the rupture site. Similarly, Mower et al.10 demonstrated that wall thickness is
a major parameter influencing wall stress distribution, rather than aneurysm maximum
diameter alone.

This study demonstrates that seven of the ten reported indices, namely V, S, GLN, MLN,
VILT, GAA, and tw,ave, were statistically significant with all except GAA being larger for the
ruptured aneurysms (Fig. 3). Ruptured aneurysms generally tend to be larger than non-
ruptured aneurysms, which could explain the strong relationship between the three size
indices (V, VILT,, and S) and rupture. Also, the non-ruptured aneurysms chosen in this study
were smaller in size than the ruptured AAAs with respect to the maximum diameter (Dmax,U
= 40.31 ± 5.78 mm, Dmax,R = 78.44 ± 13.16 mm, p < 0.0001). Based on the ROC curve
analysis, V, VILT, and S, in addition to being the most statistically significant indices, also
had the highest AUC. All the ruptured aneurysms had V > 111.58 cm3, VILT > 28.54 cm3,
and S > 73.74 cm2, indicating that, in general, they were larger in size. Eighty percent of the
non-ruptured aneurysms had V ≤ 111.58 cm3, VILT ≤ 28.54 cm3, and S ≤ 73.74 cm2.
However, the curvature indices have similar significance levels and AUC as V and S,
whereas GLN and GAA are able to classify the non-ruptured aneurysms better, giving 90%
specificity for GLN > 1.9601 and GAA ≤ 0.00013 mm−1. Previous reports show that peak
wall stress is localized near the aorta–aneurysm inflection point where the aneurysm
curvature changes.5 Moreover, the maximum stress being located at the posterior wall seems
to coincide with peaks in the Gaussian curvature.11
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From ROC curve analysis, tw,ave had an AUC = 88% and sensitivity = 100% and specificity
= 80% for tw,ave ≥ 1.488 mm. These results, in addition to the Box and Whisker plots, show
that the average wall thickness of the aneurysm sac is larger for ruptured aneurysms (p =
0.002), with all ruptured AAAs having tw,ave ≥ 1.488 mm and 80% of the non-ruptured
aneurysms having tw,ave < 1.488 mm. Previous studies2,18 also report that ruptured
aneurysms have thicker walls than non-ruptured aneurysms, though clinically relevant
thresholds of wall thickness as they relate to AAA rupture potential have not been
established elsewhere.

In the proposed framework, we defined two metrics to evaluate the quality of the polygons
and determined the optimal number of iterations needed to achieve satisfactory smoothing,
while avoiding oversmoothing. However, inter-user variability in the segmentation method
could lead to the reconstruction of different AAA geometries, thereby yielding dissimilar
index quantifications. We attempt to account for this variability in our topology sensitivity
analysis by introducing randomly generated topologies of the same AAA dataset. Our
analysis shows that when the maximum noise amplitude due to CT resolution is evaluated,
the maximum error in the prediction of the topology-dependent geometric indices is 0.3%,
indicating that the noise introduced to the polygons does not affect the indices significantly.
The surface topologies generated with the proposed framework are dense and of high
average element quality, which likely contributes to suppressing the errors resulting from
user-dependent segmentation variability or noise.

The reliability of the geometry quantification approach relies on the accuracy of the
segmentation algorithm. We have previously addressed the limitations of the algorithm and
quantified VESSEG’s inter-user variability and reproducibility measures.18 In addition to
these, the feature-based approach tends to reduce the geometric characterization to a
relatively small number of indices. Without a priori knowledge of the exact discriminator of
AAA rupture risk, a preconceived set of indices may omit important information necessary
for evaluating size and shape differences between two population groups. The size
difference between the two groups is also a limiting factor as it is difficult to interpret the
differences in the geometric parameters between these two groups of aneurysms. Another
limitation of the study is that the use of area-averaged curvatures may lead to the exclusion
of local changes in curvature in the statistical comparison of the population subgroups. A
direct comparison of the spatial distributions of the Gaussian and mean curvatures could be
performed although this would likely consist of a qualitative analysis. Conversely,
computing the root mean square curvature, which was first described by Ateshian et al.1 and
also used to characterize heart valves,16,19 can provide a measure of surface flatness. To this
end, additional geometric indices should be defined to describe both the global and local
curvature characterizations along the aneurysm surface, as well as geometric quantities
associated with surface deformation, changes in curvature and strain, as described by Smith
et al.20

CONCLUSIONS
The objectives of this study were to develop a framework for the automatic generation of
AAA outer wall surface topologies and apply it to compute a set of indices that accurately
describe the aneurysm geometry. Based on Delaunay triangulation, node-based interpolation
for polygon refinement, and volume-preserving smoothing algorithms, the proposed
framework can automatically generate the surface polygons from masks resulting from a
prior image segmentation step. While yielding a minimum average quality index of 0.75 and
a maximum reduction in aneurysmal sac volume of 1.5%, the surface topologies can be used
for geometric characterization of AAA size, shape, and local curvature. The sensitivity of
the geometric indices due to human intervention in the image segmentation step revealed
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index prediction errors of up to 0.3% at the maximum noise amplitude due to medical image
resolution. Applying the framework to a pilot population study comprised of ten ruptured
and unruptured AAA datasets yielded seven statistically significant indices that discriminate
between the two groups. These are AAA volume, ILT volume, and surface area (size
indices), aneurysm sac averaged wall thickness, and the area-averaged Gaussian curvature
and L2 norms of the Gaussian and mean curvatures (curvature-based indices). Future work
would involve statistical analysis of aneurysms that are size matched. In addition, a larger
population study is required to confirm the significance of this feature-based approach in
individualized predictions of rupture-risk assessment.

The surface topologies could also be used in FEA to obtain regional mappings of wall stress.
Due to the inability to measure wall thickness non-invasively, a uniform thickness of 1.5
mm is typically assumed in current AAA FE modeling work. Other authors have also used
idealized aneurysm shapes in their attempt to characterize aneurysm geometry. However,
realistic AAAs have complex, tortuous, and asymmetric shapes with local changes in
surface curvature and regional variations in wall thickness. It is evident that an accurate
characterization of the aneurysmal sac shape and its wall thickness distribution need to be
accounted for in the assessment of AAA rupture risk. Geometry quantification of AAAs can
be used to establish correlations with peak wall stress predictions obtained with FEA and
discriminate aneurysm populations as a means for rupture risk assessment. While this study
does not provide direct insight into the possible clinical use of such correlations, we believe
that it provides the foundation necessary for future efforts in that direction.

APPENDIX
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3-D shape indices.

Nomenclature Name Equation

IPR Isoperimetric ratio

NFI Non-fusiform index
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Second-order curvature-based indices (calculation described in detail in Martufi et al.9)

Nomenclature Name Equation

GAA Area averaged Gaussian curvature

MAA Area averaged Mean curvature

GLN L2 norm of the Gaussian curvature

MLN L2 norm of the Mean curvature
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FIGURE 1.
Flowchart for calculation of geometric parameters: (a) Load DICOM CT image; (b) vessel
segmentation program; (c) segmented image; (d) point clouds generated from outer wall
points; (e)–(g) interpolation; (h)–(j) uniformly distribute points; (k) generate coarse
topology; (l) polygon refinement; (m, n) polygon smoothing; (o) final topology generated;
(p)–(r) quantification of geometric indices and wall thickness.
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FIGURE 2.
Percent error and 95% confidence intervals for the topology-dependent indices: (a) GAA,
MAA, and MLN; (b) GLN, S, IPR, and NFI; and (c) V for different noise amplitudes.
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FIGURE 3.
Box and Whisker plots of the seven statistically significant indices.
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FIGURE 4.
ROC curves for the seven statistically significant indices and computed AUC (%),
sensitivity, specificity, and cut-off values.
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TABLE 2

Mean ± standard deviation, p-values, and AUC for all geometric indices for groups U (unruptured) and R
(ruptured).

Index Group U Group R p-Value AUC

3D size indices

  V (cm3) 100.32 ± 52.81 421.57 ± 192.40 <0.0001 0.97

  S (cm2) 64.33 ± 28.25 154.93 ± 50.61 <0.0001 0.95

  VILT (cm3) 20.06 ± 7.63 226.90 ± 168.90   0.001 0.97

3D shape indices (non-dimensional)

  NFI 0.62 ± 0.08 0.58 ± 0.04   0.167 0.69

  IPR 3.04 ± 0.33 2.83 ± 0.15   0.095 0.725

Second-order curvature-based indices

  GAA (mm−1) 0.00133 ± 0.00003 0.00119 ± 0.00011   0.002 0.95

  MAA (mm−1) 0.01338 ± 0.00084 0.01391 ± 0.00070   0.162 0.69

  GLN (non-dim) 1.47 ± 0.64 3.26 ± 1.08 <0.0001 0.94

  MLN (non-dim) 0.1215 ± 0.0290 0.1963 ± 0.0344 <0.0001 0.955

Wall thickness index (mm)

  tw,ave 1.45 ± 0.26 1.82 ± 0.16   0.002 0.88
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