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Abstract

The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the
adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was
electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight
ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three
other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20%
HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the
PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was
observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell
spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially
greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to
serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component
substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a
marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic
differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable
substrates for bone regenerative applications.
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Introduction

Bone is the second most transplanted tissue in the body (after blood

transfusions). Autografting of bone is extensively employed in

orthopedic and dental surgeries; however the harvesting of the

patient’s own bone requires a second surgery that can greatly increase

the time and cost for the procedure. Additionally, nonunion at the

repair site is a common problem, and iliac crest harvest can lead to

complications in as many as 20% of patients [1,2,3]. Another

limitation is that the supply of bone material from the iliac crest may

be inadequate when a large amount of graft material is required [4].

For these reasons, there is an immediate need for a biomaterial that

can either substitute for autografted bone or serve as a temporary

matrix that induces regeneration of native bone at implant sites.

It is hypothesized that the most successful biomaterials for bone

repair will be those that mimic the natural extracellular matrix, thereby

minimizing foreign body or fibrotic responses. Mature bone matrix is

composed of 65% mineral and 35% protein. The mineral phase is a

calcium phosphate mixture that is predominantly hydroxyapatite (HA).

The organic phase consists of 90% collagen I fibers, and the remaining

10% is composed of various proteoglycans and other proteins [5].

Many investigators have attempted to model the natural matrix by

producing materials containing HA [6,7,8,9] and/or collagen I

[10,11,12,13], and in vitro studies suggest that these matrices are

usually highly osteoconductive [14,15]. There are currently several

commercial products that utilize collagen in combination with other

molecules, such as growth factors, to stimulate or guide bone

regeneration. However, in order to prevent rapid degradation, these
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collagen-based materials must be cross-linked, which unfortunately has

some disadvantages [16]. First, the use of chemical cross-linking agents,

such as glutaraldehyde, has been shown to produce prolonged toxic

effects [17]. In addition, cross-linking collagen biomaterials greatly

reduces the average pore size, delaying vascularization of the

biomaterial and the tissue in-growth necessary for complete healing

[18]. As an alternative to cross-linking, combining collagen with a

synthetic polymer such as polycaprolactone (PCL) can be used to

improve the mechanical properties. PCL is a semicrystalline, aliphatic

polyester that has a much lower rate of degradation than collagen, and

is useful in a composite scaffold for increasing mechanical strength, and

fine-tuning the rate of resorbability [19,20,21].

Electrospinning is a particularly promising technique for synthe-

sizing biomimetic matrices [22,23,24,25,26]. With this approach,

scaffolds can be produced with nanoscale fibers that mimic the size

and arrangement of native collagen fibers [27]. Additionally,

electrospun scaffolds have a high surface to volume ratio, and

interconnecting pores, which facilitate cell adhesion and formation of

cell-cell junctions. In a prior study we described the synthesis and

characterization of a tri-component electrospun scaffold composed of

PCL, collagen I, and nanoparticulate HA [28]. The average fiber

diameter of the scaffold was 180650 nm, which approximates the

collagen fiber bundle diameter characteristic of the native extracel-

lular matrix of bone [29]. Moreover, a uniform dispersion of

nanoscale HA particles along the fiber length was observed, with only

minor agglomeration. Due to problems with agglomeration, many

groups have alternately explored deposition of an HA layer onto the

surface of electrospun scaffolds. One benefit of electrospinning HA

along with PCL and collagen I is that the presence of HA

nanoparticles throughout the scaffold provides a continuous bone-

like matrix to cells as the scaffold degrades in vivo. In the current

investigation we evaluated mesenchymal stem cell (MSC) responses

to the bone-like tri-component PCL/col/HA scaffolds (50%PCL/

30%col I/20% HA), in direct comparison with three other scaffold

formulations; 100% PCL, 100% collagen I, and a PCL/HA

composite (80%PCL/20%HA).

Materials and Methods

Preparation of electrospun scaffolds
Four types of scaffolds were produced by electrospinning as

described previously [28]: (1) 100% PCL, (2) 80wt% PCL +20wt%

HA, (3) 50wt% PCL +30wt% collagen I +20wt% HA, and (4) 100%

collagen I. Solutions were made by adding hexafluoroisopropanol

(HFP, Sigma-Aldrich) to each mixture such that the

solid weight was 7.5% of the total solution weight. PCL

(MW = 110,000 Da) was purchased from Birmingham Polymers,

lyophilized calf skin collagen I was from MP Biomedicals, and HA

nanoparticles (10–50 nm particle size) were synthesized as described

[28]. The solutions were magnetically stirred at room temperature

for 1 h before loading into disposable syringes. Voltages between 15

and 25 kV were applied using a high-voltage power supply (Gamma

High Voltage Research, Ormond Beach, FL). Higher voltages were

found to be necessary in order to effectively spin the collagen-based

mixtures without fiber beading. The grounded aluminum collection

foil was located 12 cm from the tip of the electrically charged 27-

gauge needle. A syringe pump was used to feed polymer solution

into the needle at a feed rate of 2 mL/h. The resulting samples were

randomly arranged fibers deposited as a sheet with estimated

thickness between 50 and 100 mm. No chemical or radiation-

induced cross-linking of PCL or collagen fibers was performed.

Following electrospinning, samples were placed under vacuum for

48 hours to remove the residual HFP solvent. To quantify residual

HFP, a 25 mg sample of each scaffold was dissolved in 1 mL of

deuterated chloroform (Cambridge Isotope, Andover, MA). 19F

NMR data were collected on a Bruker DRX400 spectrometer at

ambient temperature with the following parameters: 30u pulse width,

64 scans, 100 ppm spectral width, 4.6 second recycle time. A 1.0 Hz

line broadening was applied before the Fourier transform. The results

were compared to a standard of 10 ppm HFP in d-chloroform, and it

was found that following the 48-hour vacuuming step, the amount of

HFP was below the limit of detection (,1 ppm).

Tensile testing of scaffolds
The bulk tensile properties of each scaffold formulation were

determined under wet and dry conditions. The scaffolds were

cut into rectangular strips (50 mm66 mm). The thickness of the

fibrous specimen was measured at 3 different positions and the

average thickness was taken to calculate the cross sectional area

of the specimen. Each sample (n = 5 specimens) was loaded into

the tensile testing fixture of a dynamic mechanical analyzer

(DMA, TA Instruments Inc., DE) and subjected to a load of

18N in the ramp force mode [30]. A ramp force of 0.1 N/mm

was applied. Displacement was measured with an optical

encoder. The stress vs. strain curve was generated and the

elastic modulus was determined from the initial 10% strain at

the linear regime for each specimen. The stress at maximum

from the stress vs. strain curve was taken as the tensile strength

of the specimen. The data were reported as average value 6

standard deviation.

Isolation and culture of MSCs
Human MSCs were isolated from bone marrow donations, as

previously described [31]. Briefly, cells were pelleted by centrifu-

gation, resuspended in Dulbecco’s Modified Eagle Medium

(DMEM), and then applied to a Histopaque-1077 column (Sigma,

St. Louis, MO). A density gradient was generated by centrifuga-

tion at 500 g for 30 min. Cells from the DMEM/Histopaque

interface were extracted with a syringe and seeded onto tissue

culture dishes and cultured in DMEM containing 10% fetal

bovine serum. For fluorescent live cell imaging studies, lentivirus-

transduced human MSCs constitutively-expressing green fluores-

cent protein (GFP) were provided by the Tulane Center for Gene

Therapy (New Orleans, LA). The GFP-MSCs were selected for

stable GFP expression by the vendor. The protocols for isolation

and propagation of MSCs were approved by the Univ. of Alabama

Institutional Review Board, which determined that our studies

qualified for the ‘‘No Human Subjects’’ designation and therefore

did not require informed consent (approval # N060810001).

Scanning Electron Microscopy (SEM) analysis of MSC
morphology

MSCs grown on scaffolds for 24 h were fixed in 2.5%

glutaraldehyde and then dried in a gradient of ethanol in water,

followed by a gradient of hexamethyldisilazane (HMDS) in

ethanol. SEM imaging was performed on a Philips 515 SEM

with an accelerating voltage of 15 kV.

Live cell imaging of GFP-labeled MSCs
Scaffolds were placed into sterile 24-well CellCrownTM inserts

(Scaffdex, Tampere, Finland) to prevent sample floating or

deformation. The effective area of the scaffold when placed in a

24-well CellCrownTM is 0.8 cm2. Scaffolds were sterilized in 70%

EtOH prior to cell seeding. GFP-labeled MSCs were seeded at a

density of 9,000 cells/cm2 (,7,500 cells/scaffold) and cultured in

growth media (DMEM containing 4.5 g/L glucose, supplemented

with 10% fetal bovine serum) at 37uC, exchanging media every 2–

MSC Responses to Bone-Mimetic Electrospun Matrices
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3 days. Visualization of the GFP-expressing cells was performed

using a Nikon 80i stereomicroscope.

MSC Proliferation on electrospun scaffolds
Scaffolds were placed into sterile 48-well CellCrownTM inserts as

described above. The effective area of the scaffold when placed in a

48-well CellCrownTM is 0.4 cm2. MSCs were seeded at a density of

10,000 cells/cm2 and cultured in growth media at 37uC, exchanging

media every 2–3 days. At time points of 1 and 4 days, a modified

MTS assay (Promega, Madison, WI) was performed to calculate

relative cellular proliferation rates. After incubation in media

containing MTS reagents, scaffolds were removed from the

CellCrownTM and washed in PBS. The scaffolds were then boiled

in 1% TX-100 lysis buffer to ensure MTS product was removed from

the scaffolds and cells. The supernatant was then read for absorbance

at 490 nm on a BioTek Synergy 2 microplate reader. Experiments

were performed three separate times, with each independent

experiment performed in duplicate, and values were normalized to

cell proliferation on PCL scaffolds at day one. Error bars indicate

Standard Error of the Mean. Statistical analysis between groups was

performed using an unpaired student t-test. Differences were

considered significant for probability values less than 0.05.

Protein adsorption on scaffolds
Scaffolds were either coated overnight with FBS, or placed into rat

tibial defects for 30 minutes as previously reported [32]. For the tibial

implants, male Sprague-Dawley rats were anesthetized with a 4%

isoflurane/oxygen mixture. Under a sterile field, a 1 mm round

defect was made in the proximal right tibia, and a scaffold was

inserted. After 30 minutes, the scaffolds were retrieved and washed

extensively to remove loosely bound proteins. Proteins remaining on

the FBS-coated, or tibial-implanted, scaffolds were solubilized in

boiling sodium dodecyl sulfate (SDS)-buffer (50 mM Tris, 2% SDS,

5% b-mercaptoethanol) for 30 minutes, with constant agitation. The

supernatants were collected and stored at 280uC. Desorbed proteins

were resolved on a 7% polyacrylamide gel. Proteins were transferred

to a polyvinyldifluoride (PVDF) membrane, and exposed to

antibodies for fibronectin (Chemicon AB1954, 1:1000), or vitronectin

(Abcam MAB 1945, 1:2500); followed by an HRP-conjugated

secondary antibody (Amersham Life Sciences, NA934V, 1:5000, and

NA931V, 1:2500). Proteins were detected using chemiluminescence

reagents (Amersham Life Sciences or Millipore).

Experiments involving male Sprague-Dawley rats were carried

out in strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health. The protocol was approved by the

Institutional Animal Care and Use Committee at the University

of Alabama at Birmingham (approval #091107667). Surgeries

were performed under isoflurane anesthesia, and all efforts were

made to minimize suffering. Two independent runs of this

experiment were performed with one animal per scaffold for each

run. Western blot images are representative of both runs.

Immunocytochemical staining for phosphorylated Focal
Adhesion Kinase

Scaffold solutions were electrospun onto cover slips in order to

create a coating of electrospun nanofibers. Coated cover slips were

placed into low-adhesion wells of a 24-well plate and sterilized with

70% EtOH. MSCs were seeded onto substrates at a density of

800 cells/cm2 and allowed to adhere for 5 hours. After this time

point, cells were fixed in 4% formaldehyde and permeabilized in a

0.1% TX-100 solution. Immunostaining was performed using

primary rabbit antibodies against phosphorylated Focal Adhesion

Kinase (pFAK Y397, Invitrogen 44-624G, 1:400 dilution); followed

by an Alexa Fluor 568 conjugated secondary anti-rabbit antibody

(Invitrogen A10042, 1:400, dilution). Cells were counterstained with

DAPI (Invitrogen 1:20,000) in order to show cell nuclei.

Results and Discussion

Tensile properties of electrospun composites
One of the benefits in mixing PCL with collagen I is that it

allows tuning of scaffold tensile strength. This is important in light

of recent evidence demonstrating that cells exhibit poor adhesion

and survival on matrices that lack sufficient stiffness [33,34].

Accordingly, we tested the mechanical properties of the four

electrospun formulations. The tensile properties of the scaffolds

under both dry and wet conditions are given in Table 1. Dry

properties provide information regarding durability in surgical

handling, whereas wet properties represent the physiological

condition experienced by cells. As shown in Table 1, the wet

modulus of the PCL, PCL/HA and PCL/col/HA substrates

ranged from 13.4–8.4 MPa, and the wet tensile strength was 6.5–

2.6 MPa. Notably, the hydrated scaffolds composed of 100%

collagen I were markedly more fragile; in fact, scaffolds broke

apart immediately upon applying force, therefore values could not

be recorded. Similar findings have been reported by Shields et al.,

claiming that electrospinning of collagen disrupts the natural

intermolecular cross-linking of collagen which in turn leads to

dissolution of the scaffolds when placed in aqueous solutions [35].

In comparison, blending collagen I with PCL (as represented by

the PCL/col/HA scaffolds) significantly increased scaffold strength

relative to scaffolds composed of collagen I alone, thus providing a

useful alternative to chemical cross-linking of collagen fibers.

MSCs adhere and spread on scaffolds composed of PCL,
PCL/HA and PCL/col/HA, but not col I

As a first step toward evaluating scaffold cytocompatibility,

human MSCs were seeded onto the substrates, and evaluated

24 hrs later for attachment and spreading using scanning electron

microscopy (SEM). As shown in Fig. 1A, cells were able to adhere

and spread on scaffolds composed of PCL, PCL/HA, and PCL/

col/HA, however, MSCs on col scaffolds remained very rounded,

suggesting poor cell adhesion. While there are several factors that

could account for the lack of cell spreading on col, one possibility

was that some inhibitory factor may have been released from the

col scaffolds. To test this hypothesis, electrospun col scaffolds

(without cells) were incubated in culture media at 37uC to allow for

the potential release of soluble factors into the media, and after

24 hours, the media was collected. MSCs were then suspended

into this media and seeded onto PCL scaffolds. After 24 hours of

adhesion to PCL scaffolds (while in conditioned media from col

scaffolds), SEM images were collected (Fig. 1B). These results

showed extensive cell spreading, indicating that the poor response

of MSCs to the electrospun col scaffolds was not due to any

cytotoxic factors released from the substrate.

Growth of MSCs on scaffolds
In order to assess cell responses to the scaffolds over more

extended culture periods, GFP-expressing MSCs were seeded onto

the scaffolds and subjected to live cell imaging at varying time

points. The value of this approach is that real-time changes in cell

morphology and survival can be monitored on the same samples

over the course of their culture, and in addition, using a low

magnification allows simultaneous visualization of nearly the entire

scaffold surface. Thus, live cell imaging experiments reduce the

chance of bias associated with fixing cells at designated time points

MSC Responses to Bone-Mimetic Electrospun Matrices
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and then selecting individual representative fields for study. At 7 h

following the seeding of GFP-expressing MSCs, adherent cells

were apparent on all four of the scaffold formulations (Fig. 2A).

The cells adopted a slightly spread morphology on the PCL, PCL/

HA and col scaffolds, however spreading was noticeably more

extensive on the PCL/col/HA scaffolds at 7 h (see Fig. 2B),

suggesting that the tri-component scaffolds provided cells with

unique cues that influenced cytoskeletal reorganization. At 24 h,

the cells were spread on PCL, PCL/HA and PCL/col/HA

scaffolds, and more cells were apparent on the PCL/HA and

PCL/col/HA scaffolds as compared with PCL alone. In contrast,

only a few very rounded cells, and some cell aggregates, were

observed on the col scaffolds at this time point, consistent with the

SEM images shown in Fig. 1. At one week following seeding, cells

had survived on PCL, PCL/HA and PCL/col/HA scaffolds,

although again there appeared to be greater numbers of cells on

PCL/HA and PCL/col/HA substrates as compared with PCL. In

fact cells were confluent on the PCL/col/HA scaffolds, suggesting

that an increased level of proliferation occurred on these

substrates. In marked contrast, no cells were apparent on the col

scaffolds at one week, reflecting poor survival.

The reason for the lack of cell attachment and survival on col

scaffolds is not currently understood. We speculate that this

response may be due to the low substrate tensile properties when

hydrated. Others have also reported the very low mechanical

properties of non-cross-linked electrospun collagen when placed in

an aqueous solution, such as cell culture media [18,35,36]. A

burgeoning literature is revealing that substrate stiffness has a

dramatic effect on cell survival and differentiation status [37]. For

example, it has been reported that tactile sensing of substrate

stiffness by cells feeds back on cell adhesion and cytoskeletal

organization [33,38], and in addition, substrates that are too

elastic can cause cell apoptosis [38]. The most common method of

increasing the mechanical properties of collagen biomaterials is to

use chemical cross-linking agents [16,17,35,36,39,40,41]. Howev-

er, residual cross-linking agent in the biomaterial has been shown

to be cytotoxic [16] and it has been reported that chemical cross-

links created by glutaraldehyde, the most common cross-linking

agent, can degrade and release cytotoxic aldehydes into the

environment [42,43]. Additionally, Haydarkhan-Hagvall et al.

reported that cross-linking of electrospun scaffolds drastically

reduces the porosity of the scaffolds, which negatively impacted

cell seeding [18]. As an alternative approach to cross-linking, the

incorporation of a synthetic polymer to electrospun collagen

scaffolds can be used to increase the mechanical properties [18].

Our results clearly show that scaffolds incorporating both PCL

and col stimulate greater cell spreading and survival as compared

with either PCL or col alone. Elucidating the exact mechanism

underlying this result will require future studies, however col

substrates were not studied further in the current investigation due

to the poor mechanical properties and unfavorable cell responses.

Cells exhibit greater proliferation on tri-component
scaffolds

To quantify the proliferation of MSCs adherent to the

scaffolds, an MTS assay was performed (Fig. 3). At 1 day

following cell seeding, greater numbers of cells were observed on

PCL/col/HA and PCL/HA scaffolds as compared to PCL alone

Table 1. Tensile Properties of dry and hydrated scaffolds.

SCAFFOLD TENSILE STRENGTH (MPa) TENSILE MODULUS (MPa) TENSILE STRAIN (%)

Dry Wet Dry Wet Dry Wet

PCL 6.560.74 6.4660.34 14.6360.85 13.3761.40 73.9663.5 87.3563.20

PCL/HA 3.9960.31 3.0360.98 9.1461.15 9.2361.88 93.8268.3 51.4864.2

PCL/col/HA 4.6760.82 2.6260.92 13.9364.94 8.3860.29 70.6467.98 75.3615.69

col 1.4660.35 --- 18.2663.14 --- 20.065.0 ---

Values represent the average 6 standard deviation calculated in the linear portion at 10% strain. The hydrated collagen scaffolds have very low mechanical properties
and could not be measured by this technique.
doi:10.1371/journal.pone.0016813.t001

Figure 1. SEM images of MSCs cultured on nanofibrous
scaffolds for 24 hours. A) Cell spreading was observed on PCL,
PCL/HA, and PCL/col/HA scaffolds, but not on 100% collagen I (col). B)
Col scaffolds (without cells) were incubated in culture media for 24 hrs
to allow the potential release of soluble factors, and then the solution
was collected. MSCs were suspended into this conditioned media,
seeded onto PCL scaffolds, and allowed adhere in the media for 24 h.
Under these conditions cell spreading was extensive, suggesting that
lack of cell spreading on col substrates was not due to any soluble
factors released from these scaffolds.
doi:10.1371/journal.pone.0016813.g001

MSC Responses to Bone-Mimetic Electrospun Matrices
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(p,.05), consistent with better cell adhesion to these substrates.

At day four, the cell number on PCL/col/HA scaffolds was

significantly higher than either PCL or PCL/HA, suggesting that

the PCL/col/HA surfaces supported the highest rate of

proliferation. MTS is a very common method for monitoring

cell proliferation, and is useful because it specifically detects

viable cells, in contrast to many other labeling protocols that do

not discriminate between live and dead cells. Although it is

possible for MTS readings to be influenced by changes in cellular

metabolic activity, the MTS results shown in Fig. 3 are in

excellent agreement with the GFP-labeled cell imaging studies,

which are not influenced by metabolic activity and show that cells

are confluent on PCL/col/HA, but not PCL or PCL/HA,

scaffolds at 7 days following seeding (Fig. 2).

Figure 2. Live cell imaging of GFP-expressing MSCs seeded onto electrospun scaffolds. A) Cells were seeded onto scaffolds and imaged
over varying time points. Panels a–c: PCL scaffolds; panels d–f: PCL/HA scaffolds; panels g–i: PCL/col/HA scaffolds and panels j–l: col scaffolds. Scale
bar = 100 mm. B) Higher magnification images of GFP-expressing MSCs at seven hours on electrospun scaffolds (panels m–p).
doi:10.1371/journal.pone.0016813.g002

Figure 3. MTS assay quantifying cell proliferation on electrospun scaffolds of PCL, PCL/HA or PCL/col/HA. At day one, cell number was
significantly higher on PCL/HA and PCL/col/HA scaffolds in comparison to PCL. By day four, PCL/HA was still significantly higher than PCL, and PCL/
col/HA was significantly higher than PCL/HA and PCL. In addition, cell number on PCL/col/HA was significantly higher on day four than day one. An
* denotes p,0.05
doi:10.1371/journal.pone.0016813.g003

MSC Responses to Bone-Mimetic Electrospun Matrices
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The quantitative MTS assays lend support for the hypothesis

that the addition of col and HA in electrospun scaffolds provides a

favorable matrix for MSC attachment and growth. Other groups

have seen similar benefits when including collagen or HA in

nanofibrous biomaterials. For example, Lee et al. reported

significant increases in cellular proliferation of osteoblasts grown

on PCL/collagen I electrospun scaffolds compared to PCL alone

[44]. Likewise, the addition of HA in PCL electrospun scaffolds by

Chuenjitkuntaworn et al. leads to significantly higher levels of

primary bone cell growth compared to scaffolds of PCL alone

[45]. One of the advances provided by the current study is that

both col and HA were incorporated into polymeric electrospun

scaffolds, and as previously reported, we were able to minimize

agglomeration of the HA particles, thus achieving excellent

dispersion of nanoscale HA crystals that approximate the size of

native bone HA crystals [28].

Tri-component scaffolds adsorb greater amounts of
adhesion molecules

The adsorption of bioactive proteins within the tissue

microenvironment to the biomaterial surface is known to influence

cell/material interactions. This is especially important upon

implantation of a biomaterial in a patient, where it is immediately

coated with blood and other bodily fluids that contain large

amounts of pro-adhesive proteins. Given that HA is known to have

a high capacity for protein adsorption, we hypothesized that the

incorporation of HA into the scaffolds would increase the amounts

of fibronectin (FN) and vitronectin (VN) adsorbed from serum in

the media, which in turn would be expected to stimulate integrin-

dependent behaviors such as cell adhesion and survival. To test

this hypothesis, we monitored the amount of FN and VN bound to

the scaffolds following incubation in fetal bovine serum (FBS).

Protein adsorption was assessed by Western blot analysis of

proteins that were desorbed by incubation in boiling SDS buffer.

As shown in Fig. 4A, the PCL/HA scaffolds adsorbed greater

amounts of FN and VN from FBS than PCL alone, as expected.

However, markedly greater protein adsorption was apparent on

PCL/col/HA scaffolds when compared with either of the other

two formulations, indicating that the inclusion of collagen I into

the scaffolds increased protein adsorption beyond that observed

with HA. This is likely due to the fact that col is known to have

specific binding interactions with both FN and VN [46,47]. The

enhanced adsorption of FN and VN from serum may have

contributed to the increased cell adhesion and proliferation

observed on tri-component scaffolds (Figs. 2 and 3).

The adsorption of FN and VN has clinical relevance since

implanted biomaterials are immediately exposed to the patient’s

bodily fluids. Once FN and VN are adsorbed onto a biomaterial,

they provide adhesive ligands for MSCs that infiltrate into the

wound site. It is well established that FN and VN promote

integrin-dependent cell adhesion, survival and proliferation [48]

and these molecules have also been implicated in osteoblastic

differentiation [14,15,49]. To evaluate protein adsorption in a bona

fide implant site, scaffolds were implanted into rat tibiae for 30

minutes to allow endogenous protein adsorption from the bone

microenvironment. As shown in Fig. 4B, substantially greater

amounts of FN and VN were bound to the retrieved tri-

component scaffolds. Collectively these results suggest that in

vivo, tri-component scaffolds will provide a surface rich in

integrin-binding proteins, such as col, FN, and VN, that in turn

can direct binding of osteogenic cells to the material surface.

Tri-component scaffolds promote the phosphorylation
and activation of Focal Adhesion Kinase

Anchorage-dependent cells, such as MSCs, rely on the binding of

integrins to ligands in order to promote cell survival through

downstream signaling cascades. Upon integrin attachment to

proteins within the extracellular matrix, one of the early

intracellular events to occur is the autophosphorylation of FAK

[50]. Activation of FAK, a protein tyrosine kinase, initiates

numerous signal transduction pathways that ultimately lead to

increased MSC survival and proliferation [15,51]. To evaluate the

capacity of the matrices to induce integrin-associated signaling,

MSCs were seeded onto PCL, PCL/HA, or PCL/col/HA scaffolds,

and then immunostained for phosphorylated FAK. Cells were also

counterstained with DAPI to show cell nuclei. It was apparent that

cells seeded on tri-component scaffolds showed markedly increased

levels of pFAK, as well as greater cell spreading, as compared with

PCL or PCL/HA (Figure 5). Some weak and diffuse cytosolic pFAK

staining was evident for cells on PCL/HA scaffolds, but not on PCL.

The limited activation of pFAK observed on cells attached to PCL/

HA scaffolds may be due to the HA in the scaffolds adsorbing pro-

adhesive proteins such as FN and VN from the FBS in the media, as

shown previously (Figure 4). As with collagen I, integrin binding to

FN and VN induces FAK phosphorylation [52]. Of note, it was

observed that the pFAK staining pattern for cells adherent to PCL/

col/HA was more punctate than the classic focal adhesion-type

staining observed with cells adherent to FBS-coated glass cover slips

(Figure 5). These results are consistent with other studies reporting

punctate pFAK staining for cells grown in 3-dimensional matrices

such as collagen gels [53], rather than 2D tissue culture substrates.

The higher levels of FAK phosphorylation observed in cells

adherent to PCL/col/HA suggest stronger activation of integrin-

dependent signaling cascades, which in turn are important for cell

survival and osteoblastic differentiation of MSCs. For example,

multiple investigators have shown that the phosphorylation of FAK

upon integrin binding leads to activation of the osteogenic

transcription factor, Runx2/Cbfa-1, as well as enhanced expression

of other osteoblastic markers [52,54]. Future studies will be focused

Figure 4. Adsorption of FN and VN by electrospun scaffolds.
Scaffolds were coated with fetal bovine serum (A), or implanted into rat
tibial osteotomies for 30 min (B). Scaffolds were then washed to remove
loosely bound proteins, and proteins were subsequently desorbed by
incubation in boiling SDS-containing solution. The amounts of FN and
VN were evaluated by Western blot.
doi:10.1371/journal.pone.0016813.g004
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on examining the capacity of tri-component matrices to induce

osteoblastic differentiation of MSCs and in vivo bone regeneration.

Conclusion
The results presented in this study suggest that tri-component,

bone-mimetic, PCL/col/HA scaffolds blend the advantageous

mechanical properties of PCL with the favorable biochemical cues

provided by the native bone molecules, collagen I and HA. As

compared with scaffolds composed of col I, PCL or PCL/HA, tri-

component scaffolds supported better cell adhesion, spreading,

proliferation and FAK activation. Tri-component scaffolds also

adsorbed greater amounts of fibronectin and vitronectin from both

serum and the bone microenvironment, thus providing additional

ligands for cell surface integrins. Taken together, results from the

current study suggest that tri-component PCL/col/HA matrices

have high potential to serve as excellent supports for endogenous

reparative cells that infiltrate into the implant site, as well as

promising substrates for the delivery of exogenously-expanded

stem cells.
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