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 The relationship between elevated plasma levels of LDL-
cholesterol (LDL-C) and the risk of atherosclerosis has 
been very well established ( 1–3 ). Clinical trials have shown 
that reduction of LDL-C constitutes a primary strategy for 
the prevention and regression of coronary heart disease 
( 4 ). Plasma cholesterol levels are regulated by feedback 
mechanisms including exogenous cholesterol absorption 
through the gastrointestinal tract and endogenous choles-
terol synthesis by various tissues. Several studies have 
shown that the amount of dietary cholesterol absorbed 
also infl uences endogenous cholesterol synthesis ( 5–7 ). 
The newly identifi ed Niemann-Pick C1-like 1 (NPC1L1) 
protein expressed at the apical membrane of enterocytes 
has been shown to play a crucial role in the absorption of 
cholesterol and plant sterol ( 8 ). Several physiological de-
terminants and pharmacological agents modulate choles-
terol homeostasis, including genetic factors, body weight, 
ezetimibe therapy, and 3-hydroxy-3-methylglutaryl CoA 
reductase (HMG-CoAR) inhibitors (statins) therapy, the 
rate-limiting step in the cholesterol biosynthesis pathway 
( 9 ). For instance, obese subjects show an increase in cho-
lesterol synthesis with an associated decrease in cholesterol 
absorption ( 10, 11 ). Ezetimibe therapy has been shown to 
reduce intestinal cholesterol absorption while reciprocally 
elevating synthesis ( 12 ). These fi ndings suggest the pres-
ence of a reciprocal relationship between cholesterol ab-
sorption and synthesis, as a change in one vector results 
in a compensatory and opposing change in the other. Al-
though recent data suggest that statin therapy is associated 
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with a highly sensitive commercial immunoassay (Dade Behring, 
Mississauga, ON, Canada) as described previously ( 19 ). Plasma 
concentrations of lathosterol, a precursor in the biosynthesis of 
cholesterol, and of the plant sterols campesterol and sitosterol, 
used as plasma surrogates of intestinal cholesterol absorption, 
were quantifi ed at Laval University, using a gas chromatography 
method similar to that described previously ( 20 ). Coeffi cients of 
variation ranged between 3.9% and 9.9%. Because non-choles-
terol sterols are transported in plasma by lipoproteins, their con-
centrations have been expressed relative to the concentration of 
total cholesterol to correct for differing numbers of lipoprotein 
acceptor particles. This method for quantifying cholesterol ab-
sorption has been validated relative to that of the continuous iso-
tope feeding method ( 21 ), both in metabolic ( 22 ) and population 
settings ( 23 ). 

 Intestinal biopsies 
 Biopsy samples were obtained from the second portion of the 

duodenum during gastroduodenoscopy. Six biopsy samples were 
collected using multiple sample single-use biopsy forceps and im-
mediately fl ash frozen in liquid nitrogen and stored at  2 80°C 
before RNA extraction. 

 Total RNA extraction 
 Intestinal biopsy tissue samples were homogenized in RLT   

buffer (Qiagen) using a Tissue-Tearor (BioSpec Products, Inc., 
Bartlesville, OK) and a 4.5 mm stainless steel probe. The RNA 
content from homogenized tissue samples were then extracted 
using an RNeasy fi brous tissue mini-kit (Qiagen). Tissue samples 
were also treated with an RNase-free DNase set to eliminate any 
contaminant DNA. Total RNA was then eluted into 100 µl RNase-
free H 2 O and stored at  2 80°C. 

 RNA quantifi cation and quantitative real-time PCR 
 RNA quality was assessed with a 2100 Bioanalyzer (Agilent 

Technologies, Inc.) as previously described ( 24 ). Data calcula-
tion and normalization were performed using the second deriva-
tive and double correction method as described in the study by 
Warrington et al. ( 25 ) and using the reference genes hypoxan-
thine guanine phosphoribosyl transferase 1 ( Hprt1 ), ATP syn-
thase O subunit ( Atp5o ), glucose-6-phosphate dehydrogenase 
( G6PD ), and 18S rRNA. The  Hprt1 ,  Atp5o , and  G6PD  genes have 
been shown to have stable expression levels from embryonic life 
through adulthood in various tissues. mRNA   expression levels 
are expressed as the number of copies/µg total RNA, using a 
standard curve of crossing points versus the logarithm of the 
quantity. The standard curve was established by using known 
amounts of purifi ed PCR products (10, 10 2,  10 3 , 10 4 , 10 5 , and 10 6  
copies) and LightCycler 480 version 1.5 software provided by the 
manufacturer (Roche Inc). 

 NPC1L1 protein analysis in duodenal biopsy samples 
 Duodenal tissue samples were homogenized, and total protein 

from each sample was subjected to SDS-PAGE and analyzed by 
Western blotting ( 8 ) with code 1801 polyclonal anti-NPC1L1 an-
tibodies ( 26 ). NPC1L1 signal was normalized with the enterocyte-
specifi c marker, villin ( 8 ). 

 Measurement of plasma PCSK9 
 Plasma PCSK9 was measured by ELISA using a polyclonal anti-

body against human PCSK9 ( 27 ). 

 Statistical analysis 
 Nonparametric Wilcoxon matched pair analyses were used 

to compare the effects of atorvastatin on the lipid/lipoprotein 

with a rise in intestinal cholesterol absorption ( 13 ), the 
impact of HMG-CoAR inhibitors on cholesterol absorp-
tion and the molecular mechanisms underlying this effect 
has not been fully characterized. Therefore, the primary 
objective of the present study was to gain further insight 
into this key physiological process by examining the im-
pact of a 12-week regimen of atorvastatin therapy, 40 mg/
day, on intestinal expression of the sterol transporter 
NPC1L1 in subjects with mixed hyperlipidemia. Fur-
thermore, we examined the impact of atorvastatin ther-
apy on intestinal expression   of the key gene products 
involved in cholesterol metabolism, such as ATP-binding 
cassette transporter 5 (ABCG5) and ABCG8, HMG-CoAR, 
LDL receptor, sterol regulatory element binding tran-
scription factor 2 (SREBP-2), hepatocyte nuclear factor 
4  a  (HNF-4 a ), proprotein convertase subtilisin kexin-9 
(PCSK9), and microsomal triglyceride transfer protein 
(MTTP). Gene expression studies were undertaken us-
ing a human duodenal biopsy model, which we have re-
cently developed. 

 MATERIALS AND METHODS 

 Subjects 
 Twenty-three men with plasma LDL-C levels above the 50th 

percentile for their age were recruited from the Quebec City area 
to participate in the study ( 14 ). One subject had to be withdrawn 
from analyses because of poor RNA quality. Subjects were ex-
cluded if they had persistent elevation of serum transaminases; 
monogenic hyperlipidemia such as familial hypercholester-
olemia; plasma triglyceride (TG) levels >4.5 mmol/l; a recent his-
tory of alcohol or drug abuse; diabetes mellitus; or a history of 
cancer. Furthermore, all participants were unrelated at the fi rst 
and second degree. All eligible subjects had to be withdrawn 
from lipid-lowering medications for at least 6 weeks before the 
beginning of the study. The study consisted of a 1 week screening 
period and a 4 week placebo run-in period, followed by two con-
secutive 12 week double-blind treatment periods with atorvasta-
tin, 40 mg/day, or placebo in random order. Fasting blood 
samples and duodenal biopsies were performed following each 
phase of treatment. Participants were instructed to take one cap-
sule at the time of their evening meal. Compliance was assessed 
by pill counting. Participants were asked not to change their di-
etary habits or use of alcohol and level of physical exercise during 
the study. The research protocol was approved by the Laval Uni-
versity Medical Center ethical review committee, and written in-
formed consent was obtained from each subject. 

 Characterization of plasma lipids and lipoproteins 
 Twelve hour fasting venous blood samples were obtained from 

an antecubital vein and collected in Vacutainer tubes containing 
EDTA (0.1%, fi nal concentration) at the end of each phase of 
treatment. Plasma was separated from blood cells by centrifuga-
tion at 3,000 rpm for 10 min at 4°C. Plasma cholesterol and 
TG concentrations were determined with an Analyzer RA-1000 
(Technicon Instruments Corporation, Tarrytown, NY), as previ-
ously described ( 15 ). The LDL-C level was also calculated accord-
ing to the equation described by Friedewald et al. ( 16 ): [LDL-C]   = 
[total cholesterol]  2  [HDL-C]  2  [TG]/2.2, and HDL-cholesterol 
was measured as previously described ( 17 ). Plasma   apolipopro-
tein B-48 (apoB-48) was assessed by ELISA (Shibayagi Co., Japan) 
( 18 ). C-reactive protein (CRP) concentrations were measured 
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trated in   Fig. 1  .  Twenty-two of 22 participants showed 
changes in LDL-C, lathosterol, and sitosterol levels in the 
same direction, while atorvastatin-induced changes in 
plasma TG and apoB-48 were negative in 18 and 15 sub-
jects, respectively. 

 Intestinal mRNA levels 

 As shown in   Table 2  ,  studies of gene product expression 
revealed that atorvastatin signifi cantly increased intestinal 
mRNA levels of HMG-CoAR (+59.4%;  P  < 0.0001), LDL 
receptor (+52.2%;  P  = 0.0007), acetyl-CoA acetyltrans-
ferase-2 (ACAT-2) (+64.5%;  P  < 0.0001), SREBP-2 (+44.4%; 
 P  < 0.0001), and HNF-4 a  (+13.4%;  P  = 0.02). Intestinal 
mRNA expression levels of PCSK9 (+186.6%;  P  < 0.0001) 
and NPC1L1 (+18.7%,  P =0.03) were also signifi cantly in-
creased by atorvastatin. On the other hand, atorvastatin 
decreased mRNA expression levels of ABCG5 and ABCG8 
by  2 14.0% ( P  = 0.04) and  2 13.6% ( P  = 0.06), respectively. 
Finally, treatment with atorvastatin had no signifi cant im-
pact on mRNA levels of apoB-48, fatty acid binding pro-
tein-2 (FABP-2), fatty acid transporter protein-4 (FATP-4), 
MTTP, and SREBP-1c. As shown in   Fig. 2  ,  the atorvastatin-
induced changes in mRNA levels of HMG-CoAR, LDL re-
ceptor, and SREBP-2 were positive in at least 19 of 22 
participants, while 14 participants exhibited changes in 
NPC1L1 and ABCG5/8 expression in the same direction. 

 As shown in   Fig. 3  ,  changes in intestinal mRNA levels of 
ABCG5 were signifi cantly correlated with changes in 
mRNA levels of ABCG8, while changes in HNF-4 a  expres-
sion were highly and positively correlated with changes in 
mRNA levels of SREBP-2.   Fig. 4    shows positive correlations 
between changes in SREBP-2 mRNA levels and concurrent 
changes in mRNA levels of HMG-CoAR ( r  = 0.45;  P  = 0.04), 
LDL receptor ( r  = 0.59;  P  = 0.004), and NPC1L1 ( r  = 0.65; 
 P  = 0.0007). In addition, positive correlations were also ob-
served between changes in HNF-4 a  mRNA levels and con-
current changes in mRNA levels of HMG-CoAR ( r  = 0.45; 

profi le and on mRNA expression. Spearman correlation coeffi -
cients were determined to assess the signifi cance of associations. 
Differences were considered signifi cant at a  P  value of  < 0.05. All 
analyses were performed using JMP statistical software (version 
8.0.1; SAS Institute, Cary, NC). 

 RESULTS 

 Characteristics of subjects 
 Participants’ mean ± SD age, body mass index, and waist 

circumference were 38.1 ± 9.8 years, 29.0 ± 4.0 kg/m 2 , and 
100.1 ± 12.1 cm, respectively. Subjects maintained their 
weight throughout the study. One subject had to be with-
drawn from the analyses because of poor RNA quality. 
  Table   1  shows the lipid/lipoprotein profi les of the 22 sub-
jects following a 12-week treatment with atorvastatin and 
placebo. Atorvastatin, 40 mg/day, signifi cantly reduced 
levels of plasma cholesterol ( 2 36.8%;  P  < 0.0001), LDL-C 
( 2 50.0%;  P  < 0.0001), TG ( 2 28.7%;  P  = 0.0004), and 
apoB-48 ( 2 24.2%;  P  = 0.04) but had no signifi cant effect 
on plasma HDL-C concentrations and CRP levels. The im-
pact of atorvastatin on plasma surrogates of cholesterol 
absorption (campesterol and sitosterol) and on synthesis 
(lathosterol) was also assessed. Compared with placebo, 
atorvastatin signifi cantly increased plasma campesterol 
(+64.7%;  P  < 0.0001) and sitosterol (+69.7%;  P  < 0.0001) 
and was associated with a signifi cant reduction in plasma 
lathosterol ( 2 75.7%;  P  < 0.0001). The lathosterol/campes-
terol and lathosterol/sitosterol ratios, representing in-
dexes of cholesterol homeostasis, were signifi cantly 
reduced following therapy with atorvastatin. Atorvastatin 
signifi cantly increased plasma levels of PCSK9 (+37.6%; 
 P  < 0.0001), a binding protein enhancing the degradation 
of the LDL receptor in endosomes/lysosomes ( 28 ). Inter-
individual variability in responses of plasma LDL-C, TG, 
apoB-48, plasma PCSK9, lathosterol, and sitosterol is illus-

 TABLE 1. Lipid/lipoprotein profi les for study subjects   

Characteristic

Mean ± SD expression level after treatment with 

% of change  P Placebo Atorvastatin

Age (years) 38.1 ± 9.8 38.1 ± 9.8
Body mass index ( kg/m 2 ) 29.0 ± 4.0 29.0 ± 4.0
Waist circumference (cm) 100.1 ± 12.1 100.1 ± 12.1
Plasma-cholesterol (mmol/l) 5.72 ± 0.95 3.61 ± 0.48  2 36.8 <0.0001
Triglycerides (mmol/l) 1.57 ± 0.81 1.12 ± 0.54  2 28.7 0.0004
LDL-cholesterol (mmol/l) 3.86 ± 0.84 1.93 ± 0.45  2 50.0 <0.0001
HDL-cholesterol (mmol/l) 1.14 ± 0.24 1.17 ± 0.24 +2.6 0.15
Plasma apolipoprotein B-48 (ng/ml) 9571 ± 5450 7252 ± 5876  2 24.2 0.04
C-reactive protein (mg/l) 2.50 ± 2.20 2.24 ± 2.18  2 10.4 0.31
PCSK9 (ng/ml) 62.8 ± 13.4 86.4 ± 22.7 +37.6 <0.0001
Plasma lathosterol 231.4 ± 110.5 56.3 ± 22.3  2 75.7 <0.0001
Plasma campesterol 157.7 ± 73.6 259.8 ± 83.9 +64.7 <0.0001
Plasma sitosterol 158.6 ± 72.0 269.1 ± 80.6 +69.7 <0.0001
Lathosterol/campesterol ratio 1.94 ± 1.37 0.25 ± 0.15  2 87.1 <0.0001
Lathosterol/sitosterol ratio 1.95 ± 1.44 0.23 ± 0.11  2 88.4 <0.0001

Table shows lipid/lipoprotein profi les and surrogate markers of cholesterol synthesis and absorption from 22 
subjects following 12-week treatment with atorvastatin, 40 mg/day.  P  values are the difference between baseline and 
treatment values. PCSK9, proprotein convertase subtilisin kexin-9.
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intestinal biopsy samples was increased by +33.5%, but this 
difference did not reach statistical signifi cance due to a 
large variability in protein measurements. In addition, no 
signifi cant correlation was observed between changes in 
NPC1L1 protein levels and changes in mRNA levels of 
NPC1L1 (data not shown). 

 P  = 0.03), LDL receptor ( r  = 0.57;  P =0.005), and NPC1L1 
( r  = 0.66;  P =0.0008). 

 Intestinal protein levels of NPC1L1 
 Following treatment with atorvastatin, subjects’ mean 

percentage of changes in NPC1L1 protein expression in 

  Fig.   1.  Individual responses (placebo vs. atorvastatin treatment) of the 22 participants. Data for (A) plasma LDL-C, (B) TG, (C) apoB-48, 
(D) PCSK9, (E) lathosterol, and (F) sitosterol are shown along with means ± SD (gray symbols). The proportion of participants’ responses 
moving in the same direction following atorvastatin is also provided for each variable.   

 TABLE 2. Intestinal gene mRNA expression levels 

Gene

Mean no. of copies ± SD/100,000 copies of  Atp5o  
control gene following 

% of change  P Placebo Atorvastatin

 ABCG5 15,393 ± 4,959 13,241 ± 7,004  2 14.0 0.04
 ABCG8 2,959 ± 1,160 2,558 ± 1208  2 13.6 0.06
 ACAT-2 1,756 ± 454 2,888 ± 889 +64.5 <0.0001
ApoB gene 66,611 ± 30,686 75,654 ± 32,739 +13.6 0.1
 FABP-2 21,250 ± 6,649 22,043 ± 7,126 +3.7 NS
 FATP-4 12,475 ± 2,021 12,943 ± 2,125 +3.8 NS
 HMG-CoAR 2,866 ± 639 4,568 ± 952 +59.4 <0.0001
 HNF-4  a 9,558 ± 2,269 10,841 ± 2,402 +13.4 0.02
 LDL receptor 3,915 ± 2,293 5,959 ± 1875 +52.2 0.0007
 MTTP 134,810 ± 34,405 136,137 ± 34,707 +1.0 NS
 NPC1L1 9,376 ± 2,781 11,127 ± 2,919 +18.7 0.03
 PCSK9 238 ± 174 682 ± 298 +186.6 <0.0001
 SREBP-1c 3,951 ± 1,000 3,806 ± 987  2 3.7 NS
 SREBP-2 2,215 ± 533 3,199 ± 745 +44.4 <0.0001

NS, not signifi cant; ABCG5/8, ATP binding cassette; ACAT-2, acetyl-CoA acetyltransferase 2; FABP-2, fatty acid 
binding protein 2; FATP-4, fatty acid transporter protein 4; HMG-CoAR, 3-hydroxyl-3-methylglutaryl-CoA reductase; 
HNF-4 a , hepatocyte nuclear factor-4 a ; MTTP, microsomal triglyceride transfer protein; NPC1L1, Niemann-Pick 
C1-like 1; PCSK9, proprotein convertase subtilisin kexin-9; SREBP-1c and -2, sterol regulatory element binding 
transcription factors 1c and 2.
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surrogates of cholesterol absorption. Finally, treatment 
with atorvastatin upregulated intestinal mRNA levels 
of NPC1L1 (+19%), HMG-CoAR (+59%), LDL receptor 
(52%), ACAT-2 (+65%), SREBP-2 (+44%), HNF-4 a  
(+13%), and PCSK9 (+187%) and reduced ABCG5/8 
expression by 14%. 

 The homeostasis of circulating cholesterol levels is mod-
ulated primarily by cholesterol absorption and synthesis 
( 29, 30 ). Several factors have been shown to infl uence 

 DISCUSSION 

 In the present study, the 12-week treatment with atorvas-
tatin, 40 mg/day, resulted in a signifi cant reduction in lev-
els of plasma cholesterol ( 2 37%), TG ( 2 29%), LDL-C 
( 2 50%), and apolB-48 ( 2 24%). Furthermore, atorvasta-
tin signifi cantly decreased plasma lathosterol ( 2 76%), a 
marker of cholesterol synthesis, and signifi cantly increased 
plasma campesterol (+65%) and sitosterol (+70%), two 

  Fig.   2.  Individual responses (placebo vs. atorvastatin treatment) of the 22 participants. Data for the expression of (A) HMG-CoAR, (B) 
LDL receptor, (C) SREBP-2, (D) NPC1L1, (E) ABCG5, and (F) ABCG8 are shown along with means ± SD (gray symbols). The proportion 
of participants’ responses moving in the same direction following atorvastatin is also provided for each variable.   

  Fig.   3.  Correlation between changes in intestinal ABCG5 and ABCG8 mRNA expression (A) and correla-
tion between changes in HNF-4 a  and changes in intestinal SREBP-2 mRNA expression (B) following treat-
ment with atorvastatin, 40 mg/day, versus placebo.   
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terol depletion within the enterocyte, consistent with tran-
scriptional regulation by sterols via sterol-regulated 
elements within the NPC1L1 promoter ( 8 ). 

 The present study demonstrated a signifi cant increase 
in intestinal mRNA expression of the LDL receptor follow-
ing treatment with atorvastatin. Previous kinetic studies 
have already suggested an increased fractional catabolic 
rate of LDL apoB-100 following statin therapy, an effect 
most likely mediated by activation of the LDL receptor 
gene expression ( 36, 37 ). Our data are consistent with re-
sults from previous animal and human studies showing an 
increase in the LDL receptor gene expression following 
statin therapy ( 38–41 ). Under physiological conditions, 
HMG-CoAR and LDL receptor mRNAs were closely coreg-
ulated, probably because of their common transcriptional 
activation by SREBP-2 and HNF-4 a  ( 42–44 ). Indeed, 
changes in intestinal mRNA levels of SREBP-2 and HNF-
4 a  were positively correlated with intestinal mRNA levels 
of the LDL receptor and HMG-CoAR, providing a mecha-
nism for the increased expression of both of these sterol-
responsive gene products. 

 PCSK9 is expressed mainly in the liver, small intestine, 
and kidney ( 45 ) and is thought to accelerate the degra-
dation of LDL receptor in endosomes/lysosomes ( 46 ). 
Recent studies have demonstrated that PCSK9 mRNA ex-
pression was upregulated to a greater extent than that of 
the LDL receptor in human hepatocytes in primary cul-
ture ( 45, 47 ). Our results support and extend these previ-
ous fi ndings by showing that treatment with atorvastatin 

cholesterol homeostasis including genetic factors, circa-
dian rhythm, body weight, and various therapeutic agents 
such as ezetimibe, statins, and plant sterols ( 9 ). Recent 
data have suggested that the downregulation of choles-
terol synthesis by statin therapy is compensated by a rise in 
intestinal cholesterol absorption ( 11 ). Our study is consis-
tent with this concept ( 31, 32 ), having shown a reduction 
in plasma lathosterol levels (synthesis) compensated by an 
increase in both campesterol and sitosterol (absorption) 
following treatment with atorvastatin. 

 In the present study, treatment with atorvastatin signifi -
cantly increased intestinal mRNA levels of NPC1L1, which 
was paralleled by a nonsignifi cant increase in NPC1L1 
protein expression. In agreement with our fi ndings, a 
study with miniature pigs showed that NPC1L1 expression 
was increased incrementally in both the jejunum and the 
liver by combination therapy with ezetimibe and simvasta-
tin ( 33 ). Activation of the nuclear transcription factor 
SREBP-2 is known to be negatively regulated by sterols and 
was recently reported to activate NPC1L1 transcription 
( 34 ). Similarly, HNF-4 a , a key modulator of lipid and glu-
cose metabolism, has also been reported to interact syner-
gistically with SREBP-2 in the regulation of NPC1L1 
expression ( 35 ). Our results showed a positive correlation 
between changes in NPC1L1 and changes in both SREBP-2 
and HNF-4 a  mRNA expression, a fi nding that supports 
the notion that these transcription factors stimulate intes-
tinal NPC1L1 expression. Therefore, it is likely that the 
increase in mRNA expression of NPC1L1 refl ects choles-

  Fig.   4.  Correlation between changes in HMG-CoAR, LDL receptor, and intestinal NPC1L1 mRNA expression and changes in intestinal 
SREBP-2 (A) and HNF-4 a  (B) mRNA expression following treatment with atorvastatin, 40 mg/day, versus placebo are shown.   
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had greater impact on PCSK9 than on LDL receptor 
mRNA expression in human enterocytes as well. Our fi nd-
ings also support the role of SREBP-2 as a transcriptional 
regulator of both the LDL receptor and PCSK9 in human 
enterocytes. 

 ABCG5/8 are heterodimers involved in the transport of 
cholesterol from hepatocytes into the bile and from en-
terocytes into the intestinal lumen ( 48–50 ). In animal 
models, hepatic expression of ABCG5/8 has been shown 
to be increased following statin therapy, which was associ-
ated with an increase in biliary cholesterol concentration 
( 51, 52 ). Lally et al. ( 53 ) reported a signifi cant increase in 
intestinal ABGC5/8 mRNA expression in diabetic patients 
following treatment with statins. These observations con-
trast with our fi ndings showing that intestinal mRNA ex-
pression of ABCG5/8 was decreased following atorvastatin 
therapy. Therefore, ABCG5/8 may work in different ways 
in the enterocyte in order to prevent intracellular choles-
terol depletion associated with HMG-CoAR inhibition. 
Further studies are needed to clarify this issue. Although 
there was a large discrepancy between expression of the 
two transporters, the high correlation between atorvasta-
tin-induced changes in ABCG5 and ABCG8 expression ob-
served in the present study supports the concept that these 
two transporters are obligate heterodimers and suggests 
that dimerization of ABCG5 and ABCG8 could be regu-
lated at the posttranslational level. Finally, the variability 
among individual responses of LDL-C, lathosterol, and 
surrogates of cholesterol absorption was smaller than that 
of NPC1L1 and ABCG5/8 expression, suggesting that 
other determinants, either constitutional or environmen-
tal, play an important role in cholesterol metabolism. 

 In conclusion, these results indicate that HMG-CoAR 
inhibition with atorvastatin stimulates intestinal expres-
sion of NPC1L1 and PCSK9, increases cholesterol absorp-
tion, and reduces ABCG5/8 expression; these effects are 
mediated most likely by stimulation of the transcription 
factors SREBP-2 and HNF-4 a .  
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