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Abstract

In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution
Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white
matter, and makes possible multiple-fiber modeling of each voxel for better characterization of
brain connectivity. However, the complex orientation information afforded by HARDI makes
registration of HARDI images more complicated than scalar images. In particular, the question of
how much orientation information is needed for satisfactory alignment has not been sufficiently
addressed. Low order orientation representation is generally more robust than high order
representation, although the latter provides more information for correct alignment of fiber
pathways. However, high order representation, when naively utilized, might not necessarily be
conducive to improving registration accuracy since similar structures with significant orientation
differences prior to proper alignment might be mistakenly taken as non-matching structures. We
present in this paper a HARDI registration algorithm, called SPherical Harmonic Elastic
REgistration (SPHERE), which in a principled means hierarchically extracts orientation
information from HARDI data for structural alignment. The image volumes are first registered
using robust, relatively direction invariant features derived from the Orientation Distribution
Function (ODF), and the alignment is then further refined using spherical harmonic (SH)
representation with gradually increasing orders. This progression from non-directional, single-
directional to multi-directional representation provides a systematic means of extracting
directional information given by diffusion-weighted imaging. Coupled with a template-subject-
consistent soft-correspondence-matching scheme, this approach allows robust and accurate
alignment of HARDI data. Experimental results show marked increase in accuracy over a state-of-
the-art DTI registration algorithm.
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1. Introduction

Diffusion Tensor Imaging (DTI) (Alexander, 2006) is well-established for characterizing
neural pathways in the brain by means of fiber tractography. However, its inherent Gaussian
assumption of water diffusion does not always hold true, and it has in fact been shown that a
significant fraction of the white matter (WM) voxels contain fiber bundle crossings (Behrens
et al., 2007), in which case the simplistic model of DTI breaks down. One of the methods
proposed to remedy this is via High Angular Resolution Diffusion Imaging (HARDI) (Tuch
et al., 1999), suggesting that the apparent diffusion coefficients could be evaluated along
many different directions without fitting a global function to the data. The outcome is an
angular distribution of the diffusion-weighted signal attenuation.

Precise voxel-level comparison of HARDI datasets cannot yet be performed across subjects
without removing confounding structural variability. Better structural alignment generally
allows increased specificity in delineating changes related to growth, diseases, and aging.
For this reason, there has been a recent flourish of HARDI registration algorithms. Fourth
order tensors (Barmpoutis et al., 2009), along with a distance called the Hellinger distance,
were employed by Barmpoutis et al. (Barmpoutis et al., 2007) for registration of human
hippocampi. Geng et al. (Geng et al., 2009) proposed a method which utilized a spherical
harmonic (SH) representation of the orientation distribution function (ODFs). Reorientation
was performed directly on the SH coefficients in a manner similar to the Finite Strain (FS)
method (Alexander et al., 2001b) by extracting rotation matrices from local Jacobians.
Cheng et al. (Cheng et al., 2009) took a multi-compartmental approach which was based on
Gaussian mixtures. Reorientation was performed on the individual Gaussian components,
each representing a major fiber direction, using an extension of the Preservation of Principal
Directions (PPD) method (Alexander et al., 2001b). Hong et al. (Hong et al., 2009)
performed registration with the help of To-weighted images and applied the estimated
deformation fields to the diffusion-weighted images with retransformation — taking into
account rotation, scaling, and shearing effects of the spatial transformation — of the fiber
orientation distribution. Bloy and Verma (Bloy and Verma, 2010) computed the SH band
energies as features for use with a Demons-based multi-channel registration algorithm for
alignment of HARDI data.

For effective utilization of the wealth of information afforded by HARDI, we propose in this
paper a hierarchical spherical harmonics (SHs) based HARDI registration algorithm. SHs
(Alexander et al., 2002; Frank, 2002) of different orders have been shown to be capable of
representing different diffusivity patterns (Frank, 2002). Specifically, zeroth, second and
fourth order SHs (see Fig. 1) have basis functions with shapes which are sphere-like, cigar-
like and cross-like — ideal for representing voxels with isotropic, single-fiber, and dual-
fiber diffusivity profiles, respectively. This property presents a natural way of hierarchically
extracting orientation information afforded by diffusion-weighted imaging (DWI1). The key
of our approach involves representing the Orientation Distribution Profile (ODF) with
increasing complexity to help progressively refine the registration. This effectively allows
lower order, relatively orientation invariant, but more robust representations to guide the
initial registration and higher order, directional, more precise representations to refine the
alignment. This approach puts high and low order information in their proper contexts and
helps avoid the mismatching arising from large structural orientation differences.

Registration is achieved by employing a forward-backward-consistent soft-correspondence-
matching scheme. In formulating the cost function for registration, we take into account
simultaneously correspondence matching as seen from the points of view of both the
template image and the subject image to ensure that the registration is guided by consistent
information given by both images (Christensen, 1999). We also employ a soft-
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correspondence scheme where multiple matching candidates are allowed to guide the
deformation of each voxel to ensure robustness to outliers (Chui and Rangarajan, 2003). The
complexity of the brain anatomical structure makes matching rather ambiguous, and
incorrect deformation caused by misguidance due to outliers, especially in the early stages,
would be disastrous for later stages of the registration. For this reason, we allow multiple
candidate points to play a concerted role in guiding the deformation of a particular voxel in
the early registration phase and enforce a more one-to-one matching in the later phase.
Comprehensive evaluation with a series of experiments demonstrates that SPHERE vyields
improved performance, compared with a state-of-the-art DTI-based registration (Yap et al.,
2010).

The rest of the paper is organized as follows. We describe in Section 2 the forms of ODF
representation used in SPHERE. We further show how these representations can be used in a
forward-backward-consistent soft-correspondence matching scheme for achieving HARDI
registration. Section 3 demonstrates the effectiveness of SPHERE via a number of
experiments. Section 4 provides some further discussion on the current work. Section 5
concludes this paper.

2. Methods

We introduce in this section the key working mechanisms of SPHERE. We discuss the
forms of representation used for characterizing the ODF, the retransformation mechanism
needed for orientation correction related to spatial warping, the measure involved in gauging
the similarity of the feature vector computed for each voxel, and the registration framework
involved in the alignment of HARDI data.

2.1. Representation of the ODF

From the diffusion-attenuation signal acquired with DWI, an ODF characterizing fiber
pathway orientation information can be computed for each image voxel. In what follows, we
describe the ODF representations used in SPHERE: 1) SH based representation, and 2)
Statistical descriptors.

2.1.1. Spherical Harmonic Representation—SHs, denoted as ¥;", with | denoting the
order and m the phase factor, are a basis for complex functions on the unit sphere. Explicitly,
they are given as:

20+1 (1 - m)!

4 (l+m)! P (cos(@)e™?

Y6, ¢)=
(1)

where (6, ¢) obeys the physics convention (6 € [0, n], ¢ € [0, 2x]) and P}" is an associated
Legendre polynomial. Since diffusion signals are real and antipodal symmetric, it is
sufficient to utilize a real basis function set of even orders, i.e., for =0, 2,4, ...,Land m =
-L,...,0,..., L

V2-Re (¥]"), -L<m<0
Y,O, m=0

V2 -Im (Y,"'), O<m <L

7111:
()

where Re (¥}") and Im (¥;") represent the real and imaginary parts of ¥;", respectively.
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We denote S(g) as the diffusion-attenuated signals at a finite set of points on a sphere, where
g is the diffusion encoding direction in a pulsed-gradient spin-echo experiment. As a
spherical function, it can be approximated as a linear combination of a set of SH basis
functions:

L 1
s@=)> > Y@

1=0 m=-1 (3)

Order L determines the complexity of the representation. A higher value for L will bring the
representation closer to the original signal and will hence extract more directional
information (Frank, 2002). The SH coefficients ¥;" are determined using a Laplace-Beltrami
regularized least-squares estimator, as described in (Descoteaux et al., 2007).

To compute the ODF, we employ the strategy proposed by Descoteaux et al. (Descoteaux et
al., 2007) where the Funk-Radon transform, working together with the Funk-Hecke theorem
(Descoteaux et al., 2007), is used to obtain the ODF by scaling the SH coefficients in (3),

m

i.e., Y ops=21P1(0)y}", where P(x) is the Legendre polynomial of degree I. That is, the ODF,
®(g), given by S(g) is:

L I
V@)=, > Vw1 ()= Z Z 27PLO))T (8.

1=0m=-1 1=0m=-1 (4)

2.1.2. Statistical Descriptors and Edge Maps—We incorporate in SPHERE, in
addition to SHs, the following statistical descriptors of the ODF. The mean of the ODF is
computed over the unit sphere Q:

() ODF

Var 5)

H=(D(g))= f geaP(@)dg="

In practice, the above equation is implemented in its discrete form:

1= (gl)>—l%z (g)

gic¥ (6)

where Zis the direction set. From the above equation, it is clear that the mean is invariant to
the transformation of g; caused by spatial warping. The ODF anisotropy, which measures the
deviation of the ODF from its isotropic component, is defined as:

PRCCRCO DD
(o@f) SN e .

For better characterization of structural shapes, regional statistical descriptors consisting of
regional mean:
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1
M= m Z u(z)

ze N (8)

and regional anisotropy:

, ZZEJ,\N(Z) -l
Zze./i' |u(z)] (9)

/)'V =

are computed for the neighborhood ./ of each voxel. In addition to these descriptors, we
applied a Canny edge detector on the p and p maps to obtain edge information (denoted as
j{w j{p) for guiding the alignment of tissue boundaries. Example statistical and edge maps
are shown in Fig. 2.

2.2. Retransformation of the ODF

The alignment of HARDI data poses as a challenging problem since, on top of spatial
registration, a retransformation of the ODF is needed to ensure proper alignment of the WM
fascicle. To achieve this, we have implemented the method proposed by Rafflet et al.
(Raffelt et al., 2009), where we approximate the ODF using a number of weighted Point
Spread Functions (PSFs), reorient these PSFs individually, and then recompose the
reoriented PSFs to obtain the transformed ODF. Specifically, from the transformation f
estimated at each iteration of the registration, a local transformation matrix F is computed
for each voxel, and the direction of each PSF, gj, is transformed by F and becomes

g.=Fg,/|[Fg;|| (See Fig. 3).

2.3. Feature Vector and Similarity Measure

For each voxel at location x, the SH coefficients and statistical descriptors are grouped into a
vector a(x) = [ay(x), ap(x)], with:

21 (0= (130, pX)u 1.1 (K)o (), A (%), A5 (3)] . 22()= [{ Vil )] (10

where { W)'}"(X)} is the set of weighted SH coefficients computed up to order L. The weight
of each order-band | is denoted by w; € [0, 1]. In our implementation, the weights are
dependent on the iteration t < t, where t is the total number of iterations used in
correspondence matching. Denoting the maximally allowed order of SHs at a particular
iterationtas L(t) =sup {lit =, | <L}, where 0 < (g < {p<...<{<..<{ <1lare
constants determining the point of time at which L(t) is increased to I, we define the weights
as:

Li-1° L(f) -1=20
wi(t)= i
0, otherwise. (1)

Note that the lower order SH coefficients can be progressively suppressed by letting 0 < k| o
< ... <x1 < kg =1, so that emphasis can be placed on the higher order SH coefficients.
SPHERE by default uses L = 4 with k1 = 0.40 and x, = 0.20.
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Normalizing the elements of a;(x) to have a range of [0, 1], the similarity measure can be
defined as:

as (Xr) - az (Xs ) }

(X, Xg)= 10 [a1(x,) — a;(x; -
n(x;, x,)= {0 [a1(x,) al(X,)]}X{”az(XT)“x”az(xs)”

(12)

where ©[a] = TTx(1 — |ay|), and x1 and Xg are specific voxel locations in the template image
and the subject image, respectively. In the first term of the similarity measure, we are
interested in gauging the intensity similarity of the statistical features. This is helpful to
ensure that different types of tissues (e.g., as indicated by the mean and anisotropy maps)
will not be matched. This is modulated by the second part of the similarity measure, where
by using the normalized scalar product, we are more interested in measuring via the SH
coefficients the shape, instead of intensity similarity, between ODFs. For robustness, we
employ instead regional similarity measures:

1. :l'/(x-p Xs):m Z I](Z. X +f(Z) - f(XT))
ze M (xp)
Na e X)=7ty D, M+ @) = f7 (%), 2)
ze(xg) (13)

which compare the similarity of the feature vectors in the neighborhood # surrounding Xt in
the template image with that of Xg in the subject image with consideration of the
transformation f. Note that similarity measures in both directions are defined so that they can
be employed for forward-backward consistent matching. The SH coefficients are re-
estimated in each iteration of the registration to take into account the effect the spatial
transformation has on the ODF. Compared with voxel-wise measures, regional similarity
measures that take into account voxel neighborhood information are generally more robust
to noise.

2.4. Landmark Selection

The sheer number of voxels in an image volume can make the computation involved in
registration prohibitive. This is aggravated for the case of HARDI where information is
increased by a few folds due to acquisition in a significant number of non-collinear
directions. To overcome this, out of all possible voxels of a template image and a subject
image, we select as landmarks a subset of voxels with highly distinctive feature vectors for
correspondence matching. As the registration progresses, an increasing number of
landmarks are used to refine the registration. Besides the obvious benefit of making the
correspondence matching problem more feasible, this approach also helps mitigate the
problem of local minima. Selecting an initial smaller number of landmarks essentially means
that we are now solving a lower-degrees-of-freedom approximation of the transformation,
and is hence less prone to be trapped by local minima. As more landmarks start to
participate, transformation of increasing complexity can be estimated. SPHERE selects as
landmarks a combination of voxels with the highest edge magnitudes (#,, > oW, # >
a(p)y and anisotropy magnitudes (p > a(P)), since these voxels represent important
anatomical structures, and can be located reliably in images with sufficient contrast.
Selecting voxels with high anisotropy values (refer Fig. 2(b)) as landmarks facilitates the
registration of the WM skeleton, and selecting voxels with high edge values (refer Fig. 2(e)
& (f)) aids the refinement of boundaries between white matter, grey matter and
cerebrospinal fluid. The values of o1, a(#p) and o) are initially high, but are
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progressively lowered to allow more voxels to participate in correspondence matching as
registration progresses.

2.5. Registration Framework
For registration, the cost function employed in SPHERE is:

C®y, Py, ))=C(Py, H+C(Pg, H+ CP)+CPs) +  C(f)
——

Matching Soft Correspondence Regularization (14)

Matching—Voxel at x7 and voxel at xg are deemed as a matching pair if they are close
spatially and if their feature vectors show high similarity. Naturally, a voxel pair xt and xg
satisfying these conditions will be given a higher probability value p(xT, Xs) in the cost
function. We also enforce a symmetric matching mechanism (Christensen, 1999) which
avoids bias toward the template or the subject image. The component cost functions are
thus:

C®uLN= Y P x) {0 = XIP = log [ (e, %))
x € xg €4
CRu= Y puxex I = F I - log [0 (%))

X €V X eV (15)

where Pt = {pt(XT, X5)} and Ps = {ps(XT, X5)}. ¥ 1 and ¥ g represent the template and
subject brain domains, respectively.

Soft Correspondence—Soft correspondence are permitted in the initial stages of the
registration so that the cost function is smooth and better behaved. Toward the end of the
registration, more exact one-to-one correspondence is enforced. This is realized by
component cost functions:

CR®I=y Y. Pi(%X) log(py (%, X)),
X €V X €Y
CR)=y . Py %) log(py(x, X,)).

X €Y Xg€T (16)

Parameter y controls the degree of fuzziness of matching. It has initially high values,
encouraging fuzzy matching, and later progressively lower values, which enforce exact
matching.

Transformation Regularization—Mapping f is required to be smooth for preserving a
biological sensible topology. This is enforced by the component cost function: E(f) =
BlILfI2. & is an operator which aids in measuring the bending energy. p is a weighting factor
which is decreased throughout the registration to allow f to model deformation of increasing
complexity.

Optimization—The (14) can be minimized by alternating between correspondence
matching and dense transformation estimation (Yap et al., 2009,2010). We first fix f and
solve for Pt and Pg by letting 9C(P, Ps, f)/9pt(XT, Xg) = 0 and 3C(Pr, Ps, f)/9ps(XT, Xs) =
0. We then fix Pt and Ps, and solve for f using Thin-Plate Splines (TPS) (Bookstein,
1989;Chui and Rangarajan, 2003).
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Retransformation—\We approximate the ODF with a set of weighted PSFs and for a local
transform F, we tilt the PSF directions individually by g’ = Fg/lIFgll (see Fig. 3), and

compute a new set of SH coefficients {.\"'1"}. Refer to (Raffelt et al., 2009) for more details.

2.6. Implementation Issues

2.6.1. Simplification of the Optimization Problem—~arly and principled rejection of
overly weak matches, i.e., outliers, can help reduce the computation time by passing over
points that could not possibly match. This is realized by setting (prior to normalization)
pt(XT, Xs) Or ps(XT, Xs) values which fall below a predefined threshold to zero. A small
value for p(xT, Xs) or ps(xT, Xs) implies two things: 1) The points in consideration are too
far apart, and 2) There is a structural mismatch between them. The above observations allow
us to reduce the computation cost significantly. Firstly, for each voxel, similarity
comparison can be limited to a small local region since the influence of candidate voxels is
decaying exponentially with distance, and overly far voxels can be excluded from
consideration. Secondly, voxels with similarity below a certain threshold can also be left
out. This implies less voxels need to be considered when estimating the transformation,
which is crucial to keep the matrix inversion and distance computation steps involved in
estimating the TPS parameters computationally tractable.

2.6.2. Multiscale Implementation—We also note here that the registration is performed
in a multiscale fashion, where the image is first downsampled to lower dimensions to
estimate a coarse transformation for use in higher dimensions. This ensures that the
transformation is robust to image noise and at the same time helps reduce the computation
cost. Progressively building up the transformation from a coarser level avoids having to
compute everything in the finest level. In our implementation we use three different levels of
granularity: quarter and half dimensions, and also the original dimensions.

2.6.3. Maximum Order for Spherical Harmonics—Unless otherwise mentioned,
SPHERE by default utilizes SHs up to the fourth order. This is a good compromise between
registration accuracy and computation time. We show in Section 3.4.7 that by increasing the
maximum order to 6, improved performance can be obtained. However, beyond this point,
we observe degradation in performance.

2.7. Summary: SPHERE

A schematic summary of SPHERE is given in Fig. 4, with details summarized below:

1. Affine Registration: Linearly register the subject volume to the template via
FLIRT (Jenkinson and Smith, 2001) with the help of the anisotropy maps (see Fig.
2(b)). Retransform the ODFs.

2. Computation of Statistical Features: Compute the statistical maps (see Fig. 2).

3. Computation of Spherical Harmonic Coefficients: Compute the SH coefficients
hierarchically according to the stage the registration is in. In earlier stages, use
lower order SHs. In later stages, use higher order SHs to refine orientation
alignment.

4. Landmark Selection: Select voxels at boundaries or with high anisotropy values
as landmarks for registration guidance.

5. Correspondence Matching: Carry out template-subject-consistent soft-
correspondence matching.
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6. Retransformation and Re-Estimation of Spherical Harmonic Coefficients:
Based on the estimated deformation field, retransform the ODF and re-estimate the
SH coefficients.

3. Experimental Results

We evaluated the performance of SPHERE using a number of experiments. We first present
qualitative results by giving visual evidence of the effectiveness of SPHERE. We then move
on to quantitative analysis by providing statistics relevant to the evaluation of registration
accuracy.

3.1. Materials

Diffusion-weighted images were acquired for 14 adult subjects using a Siemens 3T TIM
Trio MR Scanner with an EPI sequence. Diffusion gradients were applied in 120 non-
collinear directions with diffusion weighting b = 2000s/mm?, flip angle = 90°, repetition
time (TR) = 12,400ms and echo time (TE) = 116ms. The imaging matrix was 128 x 128
with a rectangular FOV of 256 x 256mm2. 80 contiguous slices with a slice thickness of
2mm covered the whole brain. Data post-processing includes brain skull removal, motion
correction and eddy current correction using algorithms developed and distributed as part of
the FMRIB Software Library (FSL) package (Smith et al., 2004). T1-weighted structural
images were also collected for ROI propagation in the fiber tracking experiment.

3.2. Affine Registration as Initialization

FLIRT (Jenkinson and Smith, 2001), available as part of the FSL package (Smith et al.,
2004), is a robust and accurate automated linear registration tool based on a multi-start,
multi-resolution global optimization method. It can be run with a number of different
transformation models (degrees of freedom) and with a number of different cost functions.
In our experiments, we used a least-squares cost function and computed a 12 parameter
affine transformation matrix. We ran this algorithm on the histogram-matched anisotropy
maps (see Fig. 2(b)) computed from the diffusion-weighted images. Limiting the search
angles in the xy, xz and yz planes to [-10°, 10°], we found that satisfactory initial linear
registration could be achieved.

3.3. Deformable DTI Registration

F-TIMER (Yap et al., 2009, 2010) is a deformation DTI registration algorithm which
leverages tensor regional and edge information as anatomical signatures for guidance of
registration. It has been shown that F-TIMER (Yap et al., 2009) gives better registration
accuracy than DTI-TK (Zhang et al., 2006) and DTI-DROID (Yang et al., 2008; Ingalhalikar
et al., 2010). The fact that F-TIMER shares a similar deformation mechanism with SPHERE
makes it an ideal comparison baseline to gauge whether the hierarchical SH based
representation scheme used in SPHERE is effective for HARDI registration. We
reconstructed from the diffusion-weighted images in the dataset the tensor fields, which we
then utilized to estimate the deformation fields using F-TIMER. We note that, to date, most
comparison of HARDI registration algorithms were performed with respect to some forms
of affine registration (Geng et al., 2009; Bloy and Verma, 2010; Barmpoutis et al., 2007).
We performed in our experiment a more stringent evaluation by making comparison with
DTI-based deformable registration.

3.4. Evaluation

In what follows, we present results from a number of experiments designed to validate the
performance of SPHERE in different settings.
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3.4.1. Average Images—Auveraging the images aligned by the different algorithms give
us a direct and intuitive means of inspecting registration accuracy. A sharper image indicates
better registration accuracy, while a fuzzy image indicates structural misalignment. Fig. 5
shows the average images produced by SPHERE, F-TIMER and FLIRT by registering the
images onto a randomly selected template. Overall, SPHERE gives a sharper average image.
The regions circled in red show visible improvement given by SPHERE. The regions circled
in yellow are the “false positive’ regions in which the average image generated by F-TIMER
shows structures where the template does not. Notice that the improvement is most
prominent in the cortical regions, which is the Achilles’ heel of most registration algorithms.

3.4.2. Orientational Discrepancy—The local maxima of an ODF reflect local fiber
directions. In our case, the directions were computed with Camino (Cook et al., 2006) by
locating the peaks of the ODFs using Powell’s algorithm on a set of sample points generated
by randomly rotating a unit icosahedron 1000 times. Assuming that Gt(x) is the set of
directions given by the ODF local maxima of a template voxel at location x and Gg(x) is the
set of directions of a corresponding voxel in an aligned subject, Orientational Discrepancy
(OD) is defined as:

1 . .
OD(x)== | max min dg(g;f, g§)+ max  min dg(g;-s s g})
g}-EGT(x) g?eGS (x) g? eGS (x) g}EGT (x) (17

where do(g; . g}) gives the angle difference between g; and g}, i.e.:

do(g] . g))=cos ™" (Ig; - g3 (18)

The absolute value is taken since diffusion is assumed to be antipodal symmetric. In cases of
multiple local maxima, the term

: T ,S
Juin dy(g; . g;)
8;€G4(x)

returns the angle difference between g,.T with a direction in Gg that is most closely aligned
with itself. The term

‘max min (Ig(giT,gi)

gl.reG,l.(x) g?EGS (x)

measures the maximum angle discrepancy between a pair of ODFs as seen from the point of
view of the template voxel. To ensure consistency, equation (17) measures the angle
discrepancy symmetrically by taking into account measurements from both the points of
view of the template and the subject voxels.

OD values were computed only for voxels requiring second or fourth order representation,
since voxels requiring only zeroth representation are essentially non-directional. We locate
these voxels by employing the method described in (Alexander et al., 2002), where ANOVA
was used to determine whether truncating the SH series at a higher order as opposed to a
lower order significantly changes the fit to the data. In Fig. 6, we show the average
improvement in terms of OD reduction yielded by SPHERE for the regions (see Table 1)
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that have been shown in (Alexander et al., 2001a, 2002) (except the genu and splenium of
corpus callosum and the external capsule) to be traversed by crossing fibers. Compared with
DTI-based registration (Fig. 6), SPHERE yields improvement of fiber pathway alignment in
all regions. Note that, the cumulative effect of a fraction of degree of error is detrimental for
tractography algorithms which are greedy in nature, and can result in incorrect fiber
trajectories (Zalesky, 2008).

3.4.3. Fiber Alignment—TFor evaluation of fiber alignment accuracy, we performed
tractography on the images with the help of Camino (Cook et al., 2006). The ODF of each
voxel was computed using the method described in (Hess et al., 2006), and possible fiber
directions given by each voxel was determined by using Powell’s algorithm to locate the
ODF local maxima. A whole brain streamline tractography was then performed for each
image using voxels with FA > 0.25 as seeding points. The stopping FA value was set at 0.1.
The maximum allowed turning angle was 70°, and the number of directions for each ODF
was limited to two. Fibers shorter than 20mm or longer than 200mm were discarded.

We carefully selected a set of WM tracts that were readily identifiable and highly
reproducible (Wakana et al., 2007). Two ROIs (Mori et al., 2002; Wakana et al., 2007) were
placed with the help of ITK-SNAP (Yushkevich et al., 2006) in different regions of the
template brain image for extraction of each fiber bundle. These ROIs were then propagated
to the other images with the help of deformation fields estimated using HAMMER (Shen
and Davatzikos, 2002), which was applied on the coregistered T1-weighted image of each
subject. For comparison of alignment accuracy, corresponding fiber bundles extracted in the
subject space were spatially warped to the template space by deformation fields estimated
using the diffusion-weighted images. For a comprehensive evaluation, we extracted a wide
variety of fiber bundles which belong to different categories (Wakana et al., 2004): 1)
Callosal fibers, 2) Projection fibers, 3) Association fibers, and 4) Limbic system fibers. The
specific fiber bundles are listed in Table 2. Visual illustration of some of the extracted fiber
bundles is given in Fig. 7.

We gauged the effectiveness of the registration algorithms by comparing the adjacency of
the aligned fiber bundles. The distance between two fiber bundles & and %was measured in
a way similar to that used in (Zhang et al., 2006). The distance measure is defined as:

1 . .
T Z mind(F, Gyt Z mind(Gi, Fy)
Fies G»,‘E% (19)

where d(Fj, Gj) is a pairwise distance between fibers Fj € 7 and G; € % which in our case,
is defined as the mean of the closest distances calculated for all points on fiber F; to fiber G;
(Gerig et al., 2004). This measure approximately establishes anatomic correspondences
between points along fibers of different subjects. When two fiber bundles are perfectly
aligned, the value returned is zero. The results, shown in Fig 8, indicate that SPHERE
generally yields lower fiber distances, implying more accurate alignment of the fascicles.

For better visualization of the variation of fiber distances, we computed, for each point on a
fiber bundle extracted in the template, the average of the shortest distances to the fiber
bundles tracked in the individual subjects. Specifically, for each point on a template fiber,
we located a corresponding closest point (based on Euclidean distance) on a subject fiber
among the bundle, and noted the respective distance. The average distance values, computed
across subjects, were finally reported. The results, shown in Fig. 9, indicates that larger
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misalignment generally occurs for points nearer to the cortical region, which is not
surprising since cortical structures generally exhibit larger variability.

3.4.4. Label Transfer—By labeling common brain structures in individual images and
then warping the labels to the template space, we can compare the effectiveness of various
algorithms in aligning brain structures (Klein et al., 2009). We labeled several WM cortical
structures by following closely the atlas generated in (Oishi et al., 2009). The WM structures
were selected from the cortical regions where registration algorithms are often known to
have problem aligning: the right and left superior parietal WM (SPWM-R and SPWM-L)
and, superior occipital WM (SOWM-R and SOWM-L) and superior temporal WM (STWM-
R and STWM-L). Warping the labels to the template space and computing the degree of
overlap of the warped labels with the template labels using the Dice ratio (Dice, 1945), we
observe (Fig. 10) that bigger WM structures such as the SPWM and STWM can be aligned
comparably well with both SPHERE and F-TIMER. But for smaller WM structures such as
the SOWM, SPHERE clearly shows superior performance.

3.4.5. Synthetic Data—Evaluation up to this point has been based on real image data. We
complement this with a set of synthetic HARDI images with known ground truth. To ensure
that the generated images are realistic, we registered, using HAMMER (Shen and
Davatzikos, 2002), 10 Tq-weighted images to the template T;-weighted images. A set of
HARDI images were then generated by warping the template HARDI image using the
deformation fields estimated by HAMMER. Taking these deformation fields as the ground
truth, we evaluated the registration accuracy of SPHERE by comparing its estimated
deformation fields with the former. The voxel-average Euclidean distance between a pair of
deformation fields was computed as a measure of how closely the deformation fields
estimated by SPHERE resemble the ground truth. The results, shown in Fig. 11, indicate that
the deformation fields estimated by SPHERE are closer to the ground truth when compared
with DTI-based registration. Performing a paired t-test, we found that the difference is
statistically significant at p = 2.76 x 107,

3.4.6. Bending Energy—A registration algorithm might lead to very good voxel-wise
similarity by compromising deformation smoothness. A more relaxed regularization of the
estimated deformation field implies a higher probability of breaking the topology. To ensure
that this is not the case with SPHERE, we measured the bending energy, defined as:

o I — P’f ’ o
A ll'lw'l3 fff (?xlllf')xw 20x35 Tel o) Frrdnadys

L. 11 =0,1.2
I+ +3=2 (20)

of the deformation fields estimated by SPHERE and F-TIMER. We observe that SPHERE
gives a lower (paired t-test, p = 1.17 x 10~14) average bending energy of 0.0344 compared
to 0.0772 given by DTI-based registration. It can also be observed from the bending energy
distribution, shown in Fig. 12, that SPHERE gives a distribution with a higher fraction of
low bending energy values. This indicates that, for achieving better registration results, we
have not sacrificed the smoothness of the estimated deformation field.

3.4.7. Comparison with Various Configurations—To study the effect of different
parameters, we tested various configurations of SPHERE to see how the registration
accuracy is affected. SPHERE was tested for SHs up to the second, sixth and eighth orders
(SH2, SH6 and SH8). Also tested was the non-hierarchical utilization of SHs up to the
second and fourth order (NH-SH2 and NH-SH4). For accuracy evaluation, we employed the
OD measure used in Section 3.4.2. For each subject, the OD values were averaged across all

Neuroimage. Author manuscript; available in PMC 2012 March 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yap etal.

Page 13

regions listed in Table 1. The OD values given by each method was measured relative to
SPHERE utilizing the default parameters (i.e., SH4). A positive bar in Fig. 13 indicates that
SH4 gives better registration accuracy, whereas a negative bar indicates otherwise. It can be
observed that registration accuracy continues to increase when SHs up to the sixth order are
used, but starts to decrease beyond this point. It is also clear that the hierarchical scheme
helps improve registration accuracy.

4. Discussion

The key idea of SPHERE involves using lower order SHs to extract coarse, relatively
orientation invariant information, for obtaining a robust estimate of the global deformation
and progressively turn to higher order representation for more localized refinement of fiber
pathway orientations. We note that SPHERE also incorporates additional features such as
regional distribution information for more robust matching and edge information for better
alignment of tissue boundaries. This allows SPHERE to perform matching based on
contextual information which better represents structures in contrast to voxel-wise intensity
matching.

We compared SPHERE with DTI registration using F-TIMER (Yap et al., 2010, 2009).
Visual inspection, voxel-based WM orientational discrepancy measurement, fiber
tractography based evaluation, label transfer based evaluation, synthetic data based
evaluation and bending energy based evaluation led us to conclude that SPHERE is capable
of registering HARDI data with higher accuracy.

The hierarchical strategy employed by SPHERE helps reduce computation time while at the
same time maintain high registration accuracy. When compared with non-hierarchical SH
based registration (discussed in Section 3.4.7), SPHERE affords a few-fold speed up in
computation time. Specifically, the current implementation of SPHERE requires
approximately 1 hour for completing the registration of a pair of images. This is a significant
improvement compared with the non-hierarchical version (NH-SH4), which requires
approximately 3 hours.

Future extension of the current work entails harnessing structural information obtained from
T1-weighted image for more precise alignment. Recently, Zolléi et al. (Z6llei et al., 2010)
has highlighted the importance of using anatomical information for initializing the
registration of fiber tracts. In future, we intend to extend our algorithm to incorporate
anatomical information from structural scans. This is motivated by the fact that the location
of the tracts and the surrounding anatomy is consistent across subjects (Zollei et al., 2010).
Anatomical information can also help alleviate the image geometric distortion problem
stemming from the intrinsic magnetic field inhomogeneities in By that are particularly large
near air/tissue and bone/tissue boundaries (Jenkinson and Smith, 2001). Moreover,
anatomical images are typically an order of magnitude finer than DWI in terms of voxel
resolution, making precise registration easier to achieve.

5. Conclusion

We have presented a HARDI registration algorithm which is based on careful extraction of
orientation information from diffusion-weighted images. Using spherical harmonics of
increasing orders, the proposed method allows progressively accruing orientation
information to be used in refining the registration. This essentially allows one to harness the
best of both worlds — the robustness of lower order representations and the specificity of
higher order representations. HARDI registration is an important step forward from
approaches based on scalar images or diffusion tensors, since HARDI provides significantly
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more information which enables one to probe into the complex tissue micro-architecture.
This work makes possible the comparison of diffusion-weighted information between
subjects, between groups, or between images of the same subject acquired at different time-
points.
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Figure 1.
(a) Zeroth order, (b) second order, and (c) fourth order SHs for representing isotropic,
single-fiber and dual-fiber diffusivity profiles.
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Figure 2.
Statistical and edge maps: (a) Mean, yu, (b) Anisotropy, p, (c) Regional mean, s, (d)

Regional anisotropy, p_s/, (€) p edge map, J{p, and (f) p edge map, jip.
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Figure 3.

A 2D illustration of the retransformation mechanism used in SPHERE. Each PSF direction g
(only two directions are shown) is transformed by the local transformation matrix F to

become g;:Fg,-/HFg,.H. Note that reorientation of the PSFs using the rotation component R
extracted from F alone (far right) is not appropriate, since every PSF direction is equally
rotated and hence does not reflect the true effect of the local deformation on the ODF.
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Figure 4.

Schematic summary of SPHERE. The main components involve feature extraction
(statistical and SH based features), landmark selection, forward-backward-consistent soft-
correspondence matching and retransformation.
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(c) DTI (d) Affine

Figure 5.
Average images for visual inspection of registration accuracy. HARDI registration using

SPHERE generally shows greater sharpness. Regions circled in red show visible
improvement given by SPHERE. Regions circled in yellow show the areas where the
template does not show structures in contrast to DTI-based registration. To obtain these
images, the tensor fields constructed from the diffusion weighted images were warped (Xu
et al., 2003) using the estimated deformation fields to the common space, where they were
then averaged. The colored Fractional Anisotropy (FA) maps were generated using the
averaged tensor fields.
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Figure 6.

Orientational discrepancy reduction for the individual regions (see Table 1) gained by
SPHERE over DTI-based registration. Each bar indicates the mean OD reduction (ODpT —
ODnarpi) for each region, and the error bar indicates the corresponding standard error. The
asterisks indicate statistically significant differences, determined using paired t-tests with p
= 0.05. All regions, except GCC, SCC and EC, were found in previous studies (Alexander et
al., 2001a,2002) to be traversed by crossing fibers.
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(a) Forceps Minor and Forceps Major

(b) Corticospinal Tract (c) Anterior Thalamic Radiation

(d) Superior Longitudinal Fasciculus (e) Cingulum Bundle

Figure 7.

Fiber bundles employed for evaluation of registration accuracy. The fibers bundles were
extracted using a multi ROI approach described in (Mori et al., 2002; Wakana et al., 2007).
The fibers are color coded with red representing the left-right direction, green representing
the anterior-posterior direction, and blue representing the superior-inferior direction. Table 2
shows the full list of fiber bundles.
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Figure 8.
Fiber alignment comparison. Each bar indicates the mean fiber bundle distance, and the

error bar indicates the corresponding standard error. The asterisks indicate statistically
significant differences, determined using paired t-tests with p = 0.05.
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Figure 9.

Spatial distribution of fiber alignment errors. Anything above 6mm is represented by dark
red. A greater fraction of dark-blue points and a smaller fraction of dark-red points are
indicative of better fiber alignment.
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Figure 10.

Evaluation via label transfer. Each bar indicates the mean DICE ratio for each label, and the
error bar indicates the corresponding standard error. The asterisks indicate statistically
significant differences, determined using paired t-tests with p = 0.05. (SPWM: Superior
Parietal WM, SOWM: Superior Occipital WM, STWM: Superior Temporal WM)
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Figure 11.
Evaluation based on synthetic data. The estimated deformation fields were compared with

the ground truth via computing the Euclidean distance.
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Figure 12.
Bending energy cumulative distribution. SPHERE gives a larger fraction of voxels with

smaller bending energy values.
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Figure 13.

Registration accuracy for different configurations. Each bar indicates the mean OD
reduction given by SPHERE with respect to each of the method considered (ODpethod —
ODgpa4), and the error bar indicates the corresponding standard error. A positive value
indicates that SPHERE (using SHs up to the fourth order) gives better registration accuracy
with respect to the method in consideration; a negative value indicates otherwise.
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Table 1

ROIs for Evaluating Orientational Discrepancy

Abbreviation  Description
GCC Genu of Corpus Callosum
SCC Splenium of Corpus Callosum
IC Internal Capsule
EC External Capsule
CR Corona Radiata
OR Optic Radiation
PONS Pons
SLF Superior Longitudinal Fasciculus
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Table 2

Fiber Bundles Employed for Evaluation of Registration Accuracy

Category Abbreviation  Description

Callosal Fminor Forceps Minor
Fmajor Forceps Major

Projection CST-R Corticospinal Tract (Right)
CST-L Corticospinal Tract (Left)
ATR-R Anterior Thalamic Radiation (Right)
ATR-L Anterior Thalamic Radiation (Left)
PTR-R Posterior Thalamic Radiation (Right)
PTR-L Posterior Thalamic Radiation (Left)

Association IFO-R Inferior Fronto-Occipital Fasciculus (Right)
IFO-L Inferior Fronto-Occipital Fasciculus (Left)
SLF-R Superior Longitudinal Fasciculus (Right)
SLF-L Superior Longitudinal Fasciculus (Left)
ILF-R Inferior Longitudinal Fasciculus (Right)
ILF-L Inferior Longitudinal Fasciculus (Left)
UNC-R Uncinate Fasciculus (Right)
UNC-L Uncinate Fasciculus (Left)

Limbic System CB-R Cingulum Bundle (Right)
CB-L Cingulum Bundle (Left)
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