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Abstract
Retroviruses integrate into the host cell’s chromosome. Accordingly, many aspects of the life
cycle of retroviruses like HIV-1 are intimately linked to the functions of cellular proteins and
RNAs. In this review, we discuss in brief recent genome-wide screens for the identification of
cellular proteins that assist HIV-1 replication in human cells. We also review findings on other
cellular moieties that help or restrict the viral life cycle.

Within the last ten years, assisted by new screening technologies for analysing cellular gene
expression, it has become apparent that the interaction between HIV and its host cell is a
vastly more sophisticated and intimate duet than had previously been surmised. Here we
review the results of such approaches pertaining to HIV-1. Firstly we summarize the recent
genome wide screens that have begun to reveal how extensively the virus interacts with and
utilizes its host cell. We then survey the virus life cycle, highlighting the identified cellular
chaperones of the virus and, where known, their role in viral replication. Finally we describe
in some detail the functional attributes of certain of the best characterized innate defense
molecules of the cell, the so called ‘Restriction factors’.

Genome wide evidence for positive and restrictive factors regulating HIV-1
replication

As in a number of other viral systems, such as influenza (1) and hepatitis C (2), the
replication cycle of HIV-1 and its dependence on cellular factors has been studied by large-
scale knockdown experiments using interfering RNA (siRNA and shRNA). These
effectively identify factors necessary for replication and do not reveal cellular inhibitors of
replication unless they are specifically designed to do so. Four such genome wide studies
have been published. At first sight the two surprising features of these screens are the fact
that so many cellular proteins are apparently involved in HIV-1 replication and secondly
how little overlap there is between the factors identified in different screens. Some of the
latter disparity may be ascribed to methodological differences in the cell lines, reporter
genes, assay times and methods, as well as the nature of the infectious construct analyzed.

In the first of these screens, which assessed the whole viral life cycle, Brass et al. (3)
transfected pools of siRNAs targeting over 20,000 host proteins into a HeLa derived cell line
expressing both the cellular receptors for HIV-1 and an LTR driven reporter construct. Viral
infection with the IIIB strain of HIV-1 followed 72 hours later. Virus production was
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analysed 48 hours later by direct fluorescent staining of the cells for capsid protein and by
measuring infectivity of the supernatant from the cells. 273 cellular factors were identified
as having an effect on HIV-1 of which 36 had previously been shown to play a role.

The second siRNA screen (4) targeted a similar number of proteins, focussing more on
earlier stages of infection. In this case the 293T cells were infected at 48 hours with a
pseudotyped HIV carrying the firefly luciferase gene within the viral RNA. Luciferase
expression was a surrogate marker for successful infection, integration, and gene expression.
From 295 initial hits, a combination of quantitative PCR and detailed in silico analyses
reduced this to 40 proteins with possible roles in uncoating and reverse transcription and 15
more affecting integration or nuclear import.

The third screen (5), again using siRNA, targeted 20,000 gene products and, like the first of
these screens, wild-type virus was used to infect a HeLa cell line expressing a reporter gene
driven by an HIV-1 LTR. In this case wild type virus was used to infect the cells 24 hours
after transfection, and the reporter gene assayed 24 and 72 hours later. siRNAs which
affected cell viability were filtered out and potential targets reanalysed with a second siRNA
pool. The final list of likely genes was arrived at by further in silico screening, limiting it to
those genes expressed in activated T cells or macrophages. 311 targets resulted from this
combined screen of which 44 had previously been implicated in HIV replication.

In total these screens identified 842 genes as capable of assisting HIV replication. This
amounts to around 3.3% of the known human protein coding genes (6) The overlap however
was small with 34 genes identified in two or more screens and only three, MED6, MED7
and RELA, common to all three (Fig. 1). Another surprise was the absence of some genes
well-established as pivotal for HIV replication. LEDGF/p75, an essential cofactor for
proviral integration (7) did not appear at all and TSG101 (8) and CRM1 (9), which are
known to be essential, appeared in only one screen.

False negatives are not too surprising since in a high throughput screen there is no validation
of successful knock down of the gene product. In addition the knock down may be only
partial, the target may be essential for cell viability, or there may be functional redundancy,
or a combination of these.

In addition complementarity of as little as seven nucleotides with an unrelated mRNA
sequence may suffice for knockdown (10); hence, bystander interference with non-targeted
genes, so-called off target effects, may also muddy the waters.

The cell line used must also be taken into account. So for example DDX53, identified in the
Brass screen as affecting HIV replication is only expressed in testicular and some malignant
tissues (11), making it an unlikely candidate HIV cofactor in vivo.

shRNA has also been used as a screen for cellular cofactors of HIV-1 (12) The fact that
these are transcribed within the cell and processed to siRNA means that they have a more
sustained duration of action. In a fourth genome wide screen, shRNAs that target 54,509
human transcripts were expressed as an FIV lentivirus vector library pseudotyped with
VSV-G envelope and transduced into Jurkat cells. Antibiotic selection was used to pick out
constitutively expressing cell clones. 9357 shRNA expressing clones survived selection, and
these clones were then infected with HIV. Any cells surviving after four weeks of HIV
infection were assumed to be expressing a shRNA that knocked down the expression of a
protein necessary for viral replication. The findings from this study suggested that only
18.2% of the cell’s total transcriptome can be knocked down without affecting Jurkat cell
viability in tissue culture implying that the durable knock down of 82% of cellular
transcripts is incompatible with cell survival in culture. This screen identified 252 transcripts
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enriched in surviving cells and thus presumed to be required for HIV replication. Again
there was trivial overlap with the three siRNA screens, with only three genes in common
between this and each of the latter two, although combining all four screens revealed 40
genes common to at least two of them. The critical methodological difference is that the
shRNA study incorporated a “selection” process built into the “screening” while the three
siRNA studies are purely screening assays (Fig. 2).

A comprehensive meta-analysis of the overlap between the three siRNA screens and other
large-scale screens has been published. It concludes that potentially 2410 protein coding
genes (9.5% all human genes) may be involved in the replication of HIV. The analyses also
showed that variations between replicates, in time points, and in filtering thresholds all
influence the readouts from the various siRNA screens. This article concludes that these
type of approaches are better at identifying essential common cellular pathways rather than
at pinpointing specific proteins within these pathways.

More recently a transcriptome analysis of unseparated cells from lymph nodes of HIV
infected individuals has been published (13), seeking mRNAs which showed a correlation
with viral load. The vast majority (~ 95% of 592 transcripts) showed a negative correlation.
A significant number of those with identifiable function were involved in downregulating
immune activation or cellular transcription, reflecting the enhancing effect on virus
replication associated with activated immune cells. Surprisingly of the 5% (32 genes and 2
unknown transcripts) which were positively associated with viral load many were
components of the innate and adaptive immune response, with a particular emphasis on the
interferon pathway (which might be expected to inhibit HIV replication). Novel candidate
restriction factors were identified. Perhaps because of the nature of the tissue of derivation
being a mixed population of primary cells, there were only 5 genes identified which
overlapped with the previous screens : GOLGA9P, MED31, TCFL5 (Cha), ACADSB, and
CYCS

Known cellular factors involved in the HIV-1 lifecycle
In contrast to the above genome–wide screens there have been many studies focussing on
particular stages of the viral life cycle and the cellular processes and individual cellular
factors identified as being associated with each of these phases of HIV replication.

Viral entry
Surface receptor molecules for cell entry

The primary receptor for HIV, the CD4 protein, found on macrophages and T-lymphocytes
(14) is a member of the immunoglobulin superfamily. The second major receptor
(coreceptor) for HIV-1 is one of two molecules; either CCR5 on macrophages (15,16) and
T-lymphocytes, or CXCR4 found on T-lymphocytes (17). Both of these are chemokine
receptors. CXCR4 is an alpha chemokine receptor specific for the ligand stromal derived
factor 1 (SDF-1 or CXCL 12). CCR5 is a beta chemokine receptor, and like CXCR4 it
belongs to the seven transmembrane family of cell surface receptors. Its ligands are a small
family of molecules including MIP-1alpha (CCL3), MIP-1beta (CCL4) and RANTES
(CCL5) (18) and variants including CCL3L1 and CCL4L1 (19). All of these ligands can
compete with HIV and inhibit cell entry of the virus. The latter two have varying genetic
copy numbers, and for CCL3L1 the number of gene copies and hence the level of
chemokine was suggested to influence disease progression (20) although subsequent studies
failed to substantiate this (21,22).
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In vivo chemokine receptors are signal transduction molecules, and there is evidence that
this process is involved in HIV entry (23–25). There is accumulating evidence that infection
involves disruption and rearrangement of the cytoskeletal molecules particularly actin.
Downstream signalling from CXCR4, induced by HIV, dephosphorylates and activates
cofilin leading to depolymerization of F-actin (26). Molecules inhibiting this process can
impair HIV replication significantly. As yet a similar functional pathway has not been
demonstrated for CCR5.

A more direct interaction has been implicated through the gp41 molecule directly recruiting
p115-RhoGEF a guanine nucleotide exchange factor (27). This would facilitate remodelling
of actin by GTPase activity.

Other cell surface molecules can also participate in HIV binding and entry. Integrin
alpha4beta7 can bind gp120 activating LFA-1 which is involved in viral synapse formation
and cell to cell transmission (28).

Transport of the viral preintegration complex to the nucleus
Subsequent to fusion and entry into the target cell, the steps required for the virus to traffic
to the cell nucleus are relatively less well documented. Control of actin polymerization and
depolymerization is apparently important, and the actin polymerization nucleator Arp2/3 is
involved (29). It is suggested that this may facilitate a short range trafficking towards the
microtubule network which is then responsible for transport to the nucleus. The actin
cytoskeleton was also specifically assessed as playing a role in early HIV replication in one
of the large siRNA screens. Proteins including AKAP13, another guanine exchange factor,
were identified in this screen together with factors which regulate actin nucleation and
organization as well as proteins affecting microtubule formation and function. Each of these
candidates needs validation by specific studies.

Entry to the nucleus involves the ability to translocate across an intact nuclear membrane as,
unlike other retrovirus families, lentiviruses can infect and integrate into non-mitotic cells. A
number of the viral proteins which form the preintegration complex (PIC) have been shown
to bind to members of the importin alpha family (30). They dock with Importin beta at the
nuclear pore and facilitate entry of molecules bearing a nuclear localization signal. Several
cellular proteins have been identified associated with the PIC including barrier to
autointegration factor (BAF) (31,32), Lap 2α (33) and HMG I(Y) protein (34). The viral
accessory protein Vpr which is a component of the PIC binds to the nuclear pore complex
protein Pom 121 (35). The PIC being larger than a nuclear pore, it is unsurprising that
various other nuclear pore complex proteins have also been identified in nuclear entry
including Nup 98 (36) Nup 124p (37), Nup 358 (38) and Nup 153 (39). Importin 7 has
recently been shown to enhance nuclear entry of HIV-1 (but not HIV-2) (40) correlating
with its ability to bind to the viral Integrase proteins which also are components of the PIC.
Transportin 2 which was identified by two of the siRNA screens (3,4) has also been shown
to enhance nuclear import of the PIC (41). Perhaps most intriguing has been the observation
that tRNA molecules themselves can act as nuclear entry chaperones for the HIV PIC. Since
most HIC cellular movement involves hijacking cellular processes it will be interesting to
see how widespread this mode of nuclear targeting is (42).

Proteins influencing reverse transcription
AKAP14, a regulator of PKA in response to signal transduction from G protein coupled
receptor, has been implicated in HIV infection, and there is evidence of direct interaction of
this protein with the reverse transcriptase enzyme (43). Other proteins have proven to be
more controversial. There are conflicting reports that the A/U binding protein HuR, known
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to stabilize mRNA, does, (44) and does not, (45) have a role in interacting with reverse
transcriptase. Again the large scale siRNA screens have raised novel and plausible
candidates including DHX15, a helicase, and RBM17, a nucleic acid binding protein,
amongst others. Evidence of their direct interaction with the preintegration complex is
awaited.

Transcription and chromatin
HIV-1 transcription is regulated by the viral promoter located in the 5′ long-terminal repeat
(LTR) of the provirus. The LTR contains binding sites for several transcription factors such
as Sp1 and NF-κB, NFAT, LEF-1, COUP-TF, Ets1, USF and AP-1. Amongst these factors
Sp1 and NF-κB have been studied best, and through detailed mutagenesis of their binding
sites in the LTR, their contributions to HIV-1 replication in human cells have been well-
delineated (46,47). Besides Sp1 and NF-κB, the roles of the other transcription factors are
believed to contribute differentially to transcription under varying conditions of stimuli and
in different cell types such as in primary T cells versus macrophages (48,49). Because the
activities of LTR-interacting DNA-binding factors in basal LTR-transcriptional initiation
and elongation have been well-reviewed elsewhere (50,51), they will not be further
elaborated here.

In recent years, perhaps the biggest impetus for understanding the transcriptional regulation
of HIV-1 arises from a need to address transcriptional mechanisms of proviral latency (52).
Latently infected cells form a reservoir of antiretroviral treatment (ART) resistant cells that
prevent curative therapy of HIV-1 (53,54). These latent cells arise stochastically as a small
population from productively HIV-1 infected cells that have integrated proviral DNA. To
comprehend transcriptional latency, one needs to study the nucleosomally organized
structure of the integrated provirus. HIV-1 integration is generally random but tends to favor
active genes (55); however, independent of the site of integration in human chromosomes,
two nucleosomes, named nuc-0 and nuc-1, are precisely organized in the 5′LTR. In
particular, the histone organized nuc-1 structure (located at position −2 to +140 of the LTR)
normally serves to down modulate basal transcription.

Because the nuc-1 nucleosome presents a barrier to HIV-1 transcription, it stands to reason
that the HIV-1 encoded transcriptional activator Tat would have evolved mechanisms to
resolve this block. Indeed, Tat is known to associate with histone acetyl transferase (HAT)
proteins whose activities remodel nucleosomes to allow transcriptional access. Tat has been
found to bind several different HATs: CBP/p300, p/CAF, GCN5, Tip60, and TAFII250 (56–
60). Through binding to the HAT proteins, Tat then relieves chromatin repression at the
HIV-1 LTR. Recently, Tat has also been found to bind a histone chaperone protein hNAP-1
(61) which acts with ATP-dependent chromatin remodeling complexes to facilitate
transcription.

Countering the effect of HATs are the histone deacetylase proteins (HDAC) which remove
the acetyl-group from HAT-acetylated histones to enforce transcriptional silencing. In the
HIV-1 LTR, it is thought that the LSF protein binds position −10 to +27 of the LTR to
recruit the YY1 factor which further binds HDAC-1 to silence viral transcription. Tat
expression down regulates HDAC-1 serving to remove this repression of transcription.
Indeed, this scheme of removal of repressive activity has been verified through treatment
with several HDAC inhibitors (HDACIs) such as Trichostatin A (TSA), Trapoxin (TPX),
Valproic Acid (VPA), sodium butyrate (NaBut) and other compounds which have been
shown to activate integrated proviruses in latently infected cells (62,63). The clinical
importance of these findings lies in the potential use of HDACi in HIV-1-infected patients
undergoing ART; this use could possibly activate the latent viral reservoirs allowing for the
potential purging of the in vivo latently infected cells.

Lever and Jeang Page 5

Biochemistry. Author manuscript; available in PMC 2012 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Post transcriptional regulation of incompletely spliced HIV-1 RNAs
The expression of unspliced and partially spliced HIV-1 RNAs is regulated post-
transcriptionally by the viral Rev protein. Rev modulates the export of unspliced/partially
spliced viral RNAs from the nucleus into the cytoplasm (64). This is an important property
because unspliced and partially spliced viral RNAs serve as the moieties for the synthesis of
Gag, Pol, and Env proteins; and the unspliced RNA is also the genomic RNA that is
packaged into progeny virions. Because cellular RNAs are normally retained in the nucleus
and do not exit into the cytoplasm, there must be a target-specificity by Rev for unspliced
and partially spliced HIV-1 RNAs. This specificity is conferred on unspliced and partially
spliced HIV-1 RNAs by a highly secondary structured RNA element (the Rev-responsive
element, RRE) which is a binding site for the RNA-binding Rev protein. The current view is
that Rev binds to the RRE and interacts with CRM1 (chromosome maintenance region 1
(65–67)) protein. This interaction then directs the viral ribonucleoprotein complex to a
nuclear-cytoplasmic shuttling pathway which is normally used for the export of cellular
small nuclear RNAs, and rRNAs. The RRE-CRM1 pathway is distinct from that used to
export fully spliced HIV-1 mRNA and cellular mRNAs from the nucleus (68,69). There are
recent comprehensive reviews on the export of unspliced/ partially spliced HIV-1 RNA from
the nucleus to the cytoplasm (70), on the possible role of Rev in the translation of HIV-1
transcripts (71), on Rev activity in RNA encapsidation (72), and on the effect of Rev on
proviral integration (73). Rather than repeating those summaries, below, we will highlight
selectively two classes of proteins, RNA helicases and RNA cap methylase, as examples of
cellular factors that cooperate with Rev to regulate post transcriptional HIV-1 RNA
expression.

It is perhaps not surprising that RNA helicases could serve as co-factors for Rev-directed
export of HIV-1 RNAs (74). In this respect, DDX3 a cellular RNA helicase was found to
enhance Rev-dependent nuclear-cytoplasmic export of HIV-1 RNAs (75). DDX3 is a
nuclear-cytoplasmic shuttling protein which binds CRM1, Rev, and nuclear pore proteins.
Thus, one notion is that this RNA helicase may function with Rev and CRM1 to remodel the
HIV-1 ribonucleoprotein complex to ‘thread’ the attached RNA through the nuclear pore,
facilitating its release into the cytoplasm. A second RNA helicase, DDX1, has also been
reported to bind the N-terminus of Rev and to participate in the export of unspliced HIV-1
RNA from the nucleus to the cytoplasm (76). There is additional evidence that two other
RNA helicases RHA and RH116 also regulate HIV-1 expression (77,78). The mechanisms
for these latter helicases in viral replication appear to be different from the nuclear-
cytoplasmic regulation of RNA export. Knockdown of another helicase, DDX24, appears to
reduce viral RNA encapsidation possibly by its negative effects on the enhancement of RNA
packaging which is now a recognized property of the Rev protein. It is likely that additional
RNA helicases will be discovered which interact with HIV-1.

Besides RNA-binding proteins, the inherent characteristics of an RNA may also dictate its
post-transcriptional fate. An early RNA-modification of many cellular transcripts is the
formation of a 7-methylguanosine (m7G) cap. The m7G cap facilitates the initiation of
translation in mammalian cells, and uncapped RNAs are generally unstable (79,80). The
cap-status of HIV-1 RNAs had not been well-understood. Recently, it was found that
different HIV-1 RNAs are either m7G- or hyper trimethylated TMG (trimethylguanosine) –
capped at their 5′ ends (81). Viral transcripts containing RRE (i.e. unspliced or partially
spliced HIV-1 RNAs) appear to be bound by Rev which then recruits a cap
hypermethylating enzyme PIMT (peroxisome proliferator-activated receptor-interacting
protein with methyltransferase) to modify the m7G-cap to a TMG-cap on these RNAs. The
acquisition of a TMG-cap by these HIV-1 RNAs facilitates their recognition by CRM1 and
directs the RNAs to the CRM1 nuclear-cytoplasmic export pathway. Accordingly, the
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PIMT-mediated TMG modification increases selectively the cytoplasmic expression and
translation of HIV-1 mRNAs encoding for proteins like Gag and Env.

The above two classes of Rev-co-factors illustrate the complexities of post-transcriptional
HIV-1 gene regulation. A potential benefit to characterizing these and other cellular
cofactors for HIV-1 replication is that some of the proteins could be potentially targeted by
small molecule inhibitors which might repress viral propagation. Initial candidate inhibitors
for RNA helicases and cap hypermethylases and their possible utility for inhibiting HIV-1
have been reported (82).

Viral assembly and export
The intact viral particle consists of two copies of the virus RNA and a group of carefully
ordered structural proteins. It appears that an early preassembly complex trafficking to the
plasma membrane consists of a combination of a single RNA molecule with a small number
of associated Gag proteins (83). The site of initial interaction of these two is not established
although there is some evidence that this occurs at the microtubule organizing center
(84,85). Cellular proteins likely bind both the protein and RNA components of this complex
to facilitate its trafficking. In the case of the RNA, a relatively small number of proteins
have been implicated, some of which appear to be associated with the viral RNA in both
nuclear and cytoplasmic subcellular compartments. Members of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family including hnRNP which A1 and A2 possess
nucleocytoplasmic shuttling capability have been identified as playing a role (86,87). A1
appears to enhance Gag production possibly by increasing nuclear export of the genomic
RNA although this is controversial. A2 binds to two response RNA elements within the
genomic RNA, A2RE-1 and A2RE-2 found in the Gag and Vpr coding sequences
respectively. Mutation of A2RE-2 leads to mislocalization of gRNA in and around the
nucleus. Knockdown of hnRNPA −2 leads to accumulation of gRNA in the perinuclear
microtubule organizing center (MTOC) however this RNA appeared to be derived from the
cytoplasm. Conflicting results have been obtained when comparing knockdown of A2 with
mutation of A2RE-A2, but with its suggested links to the microtubule system one could
speculate that the protein is involved in ensuring the RNA takes the appropriate pathway as
it traffics through the cell.

The RNA binding protein Staufen appears to act as a chaperone to the RNA and has been
detected in viral particles (88). Similarities between this and the known HIV TAR RNA
binding protein TRBP (89) may be pertinent.

There is increasing evidence that the microtubule network is involved in the cytoplasmic
transport of the early assembly intermediates of HIV. Knockdown of KIF4, a kinin involved
in cytokinesis which is also known to bind Gag altered localization of the latter, and
expression of the dominant negative form of KIF4 decreased Gag levels globally but led to
an accumulation in the perinuclear region. SOCS1 is induced during HIV infection and can
stimulate late steps in HIV replication and can bind the MA and NC domains of Gag.
Knockdown reduces trafficking and assembly and again results in the appearance of
perinuclear aggregates of Gag. Other transport proteins including Arf and GGA may also
play roles in trafficking and viral release (90).

Viral budding
In contrast to the relative sparsity of proteins known to be involved with trans-cytoplasmic
trafficking, there is an abundance of information on those involved in the later stages of
assembly and viral budding. This reflects the fact that the virus hijacks a complex of
proteins within the cell which are usually used for budding and export into the endosomal
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system – the endosomal sorting complex required for transport (ESCRT) machinery. A full
description and analysis of all of the ESCRT and ESCRT associated proteins involved in
viral export are beyond the scope of this review. The reader is referred to excellent recent
reviews on the subject (91–93). In brief it is known that the Gag protein of HIV can bind
specifically to a number of the cellular proteins. In particular the PTAPP motif in the P6
region of Gag is able to interact directly with the ESCRT I protein TSG 101, and the YSPTL
motif from P6 interacts with ALIX from ESCRT III. In a manner analogous to their role in
budding of cell membranes into the endosome, these proteins facilitate the assembly of Gag
monomers in an array at the plasma membrane and the evagination of a Gag containing
particle away from the cell. The final process of membrane scission allowing the enveloped
viral particle to escape from the cell surface is still a matter of debate but involves proteins
of the CHMP family whose in vivo role is in the final separation of cell membranes during
cell division.

Intracellular defences against HIV
Clearly the cell is not a passive participant in virus replication. However apart from those
multifarious pathways subverted by the virus for its own use there are inhibitory factors
within cells which act as intracellular defences and whose presence inhibits or ‘restricts’ the
virus (Fig. 3). The first of these to be identified in retroviruses was Fv1 which restricts
ecotropic murine leukemia viruses (94). This paradigm prepared the way for the
identification of similar factors restricting HIV. Because of their potential importance in
novel antiviral approaches they have been extensively investigated in recent years.

Trim 5 alpha
Simian immunodeficiency viruses are able to replicate in the cells of Old World monkeys
(95–99), but HIV fails to do so (100) despite successful binding and cell entry. The
inhibitory factor, initially identified and termed Lv1 (101–104) was saturable with an excess
of viral cores. From a cDNA library of rhesus macaque expressed in HeLa cells, clones
resistant to HIV-1 but sensitive to SIVmac were isolated and found to express simian
TRIM5alpha (105) siRNA knockdown of this protein rendered the cells permissive to HIV.
TRIM5alpha interacts with the viral capsid through a region also associated with the binding
of a cellular factor Cyclophilin A (CypA) (106–108) a cellular peptidyl/prolyl isomerase
which isomerises a peptide bond at this locus on the HIV-1 capsid. This was substantiated
by identification of an unusual fusion protein in the owl monkey named TRIMCyp
comprising a chimera of TRIM5alpha and cyclophilin (109,110) (a similar insertion event
producing a chimeric protein has been noted in monkeys of the Macaca genus (111). The
owl monkey is a New World monkey yet still restricts HIV, and TRIMCyp was
hypothesised to target the TRIM effector component to the viral core, since restriction could
be blocked by the cyclophilin inhibitor Cyclosporin A.

TRIM stands for Tripartite Motif, a term used for a family of around 70 proteins sharing
three polypeptide domains – an N-terminal RING domain, a B-box and a coiled coil. They
carry out diverse functions within the cell including roles in development as well as anti-
viral activity, and they have been implicated in oncogenesis (112–115). TRIM5alpha is the
longest splice variant of the TRIM5 family with a unique C terminal B 30.2/SPRY domain.
It is expressed constitutively but also upregulated by type I interferons (116–118). The
RING domain has a zinc binding motif associated with E3 ubiquitin ligase activity, and
TRIM5alpha can ubiquitinate other proteins and itself (119,120). The B-box is a B2 form
(121,122) and is essential for the restriction activity of TRIM5alpha as shown by the
inactivating effect of point mutations (123,124). It also contains a zinc binding motif with
homology to the RING domain although its function is still not fully elucidated.
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The coiled coil domain, as occurs in other proteins such as the HIV envelope transmembrane
glycoprotein, facilitates oligomerization, and the functional form of TRIM5alpha is thought
to be either a dimer or a trimer (125).

The B30.2 domain contains a sequence with a PRYSPRY motif associated with exposed
loops with three highly variable regions (V1-V3) (126,127). These are thought to confer the
virus binding specificity of the TRIM5alpha protein. As one of a number of examples, a
single amino acid substitution in the V1 region substituting a non-positively charged amino
acid for arginine at position 332 renders human TRIM5alpha as effective as owl monkey
TRIMCyp in inhibiting HIV-1 (128,129).

The exact mode of action of TRIM5alpha in restricting HIV-1 remains to be fully
elucidated. Mutational analysis of the RING domain has produced inconsistent results.
Ubiquitination of the viral capsid, followed by degradation in the proteasome, is suggested
by the reduction in inhibition seen in the presence of proteasome inhibitors (130,131), and it
has been postulated that TRIM5alpha binds to capsid and that its own autoubiquitination
capability flags the complex for degradation (132). However, other studies have suggested a
RING dependent proteasome independent mechanism (133) possibly involving direct
disassembly of the capsid.

Despite a high level of species specificity and diversity of TRIM5alpha between species and
polymorphisms within a species the human sequence is almost invariant (134). This has
been speculated to have contributed to the near universal susceptibility of humans to HIV
(135). A small number of single nucleotide polymorphisms have been identified; the
significance of these is unclear although one, the H43Y mutation, actually abolishes the
moderate level of restriction achieved against HIV-2 (136,137). Attempts to exploit this
natural antiviral system to protect against HIV are being explored.

APOBEC
APOBEC3 proteins are a family of DNA editing proteins (138), named because of their
homology to APOBEC1 an mRNA editing enzyme. There are seven in humans: - APOBEC
3A-3H which have arisen through gene duplication on chromosome 22. Overall this family
of cytidine deaminases act to defend the cell against exogenous and endogenous
retroelements and a variety of other viruses including HBV (139,140) and HCV (141).
APOBECs 3G and 3F are expressed in primary T-cell lines and in monocytes and
macrophages and are the major ones involved in HIV restriction. They have target sequence
preferences:- 3F targeting 5′-TC, whilst 3G is specific for 5′-CC, both deaminating the 3′ C
residue. Their importance in HIV infection came to light during studies on the Vif protein, a
23kDa protein accessory protein of the virus which is required for replication in certain cell
lines (142–144). APOBEC3G was found to be an endogenous restriction factor which could
be overcome by the Vif protein (145). APOBEC3G is incorporated into the viral particle in
the producer cell line and can exert its effect whether the virus subsequently infects
APOBEC 3 expressing or non-expressing cells.

APOBEC 3F/G has cytidine deaminase activity and binds to the nucleocapsid protein and
the viral genomic RNA (146) where, during the process of reverse transcription, it acts to
deaminate cytidine to uridine on the negative strand of the viral cDNA as it is synthesized.
The mutated cDNA now acts as template for the second DNA strand producing A to G
mutations. Thus the provirus will contain multiple nonsense and stop codons and is
nonfunctional. The mutated DNA will also be subject to destruction by the cell prior to
integration (147–154).
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APOBEC appears to have a number of other actions which are unrelated to the cytidine
deaminase activity and active site mutants still display an inhibitory effect on HIV. The
nature of this deaminase independent restriction is not fully elucidated (155–161). The
deaminase activity is in the C-terminus of the protein, yet surprisingly mutants with an intact
N terminal genomic RNA binding domain but a mutated C terminus can still cause A to G
mutation.

Vif has been shown to target APOBEC3F/G to the proteasome through ubiquitination via
linkage to the ELONGINB/C-CULLIN5 E3 ubiquitin ligase (162). There is also evidence
that Vif can inhibit APOBEC translation, reducing levels in the producer cell (163,164). It is
highly species specific. A single point mutation at position 128 switches HIV-1 Vif
restriction activity from HIV to SIVmac. (165–167). The concentration dependence of Vif
activity and the selective advantage to HIV of mutational escape has fostered the concept
that limited APOBEC activity may actually be advantageous to the virus in enhancing its
own capabilities of sequence variation (168).

BST/Tetherin
The viral accessory protein Vpu had long been known to be essential for efficient virus
assembly and export in some cell lines but not others (169–171). Mutating or deleting Vpu
led, in non-permissive cells, to a phenotype of reduced viral production and accumulation of
virus particles in the endosomes and at the cell surface (172). Initially Vpu was thought to
interfere with an unwanted premature interaction of the virus surface (SU) protein gp120
with its cognate receptor CD4, as both were synthesised in the endoplasmic reticulum (173).
However accumulating evidence showed that Vpu enhances virion release and overcomes a
dominant but protease sensitive inhibitor which retains virions associated with the cell
membrane (174,175). Electron microscopy studies showed mature virions tethered to the
plasma membrane (176). The cellular protein responsible for this restriction was only
recently identified as CD317 or BST, also termed tetherin (177). Tetherin is a 30–36kDa
heterogeneously glycosylated type II membrane protein which is an interferon inducible
protein with an unusual topology. It has an N-terminal cytoplasmic tail, a transmembrane
domain, an extracellular coiled coil domain and a C-terminal glycosylphosphatidylinositol
(GPI) membrane anchor. The intracellular domain of Tetherin contains a variety of
important motifs; specifically a YxY domain mediating clathrin-linked endocytosis, a KxxK
motif required for degradation by the KSHV K5 protein and, in non-human primates, a
DDIWK sequence targeted by Nef and also resulting in degradation. The coiled-coil consists
of two alpha helices containing three cysteines mediating disulphide bonding and two
asparagines representing putative glycosylation sites in the ectodomain. Tetherin is enriched
in lipid rafts of the plasma membrane due to its GPI anchor (178), where it can be
incorporated into assembling virions and subsequently prevent their budding away from the
cell surface. The mechanism is believed to involve bridging of the virion to the cell surface
by the two membrane binding domains of the protein (179). The bridging complex appears
to be an antiparallel dimer (180). Vpu counteracts the effect of tetherin by inducing its
downregulation from the cell surface and its subsequent degradation (1). One model
suggests an interaction between the two proteins’ transmembrane domains and subsequent
ubiquitination of the tetherin moiety leading to proteasome degradation (181–183). Tetherin
restricts the budding of a number of enveloped viruses, including a variety of retroviruses,
Kaposi’s sarcoma herpesvirus (184)and Ebola virus (185). Vpu is species/virus specific.

MicroRNAs
Small non-coding RNAs play important roles in the regulation of mammalian genes. It has
been suggested that over 30% of all human genes are regulated by microRNAs (miRNAs).
To date, over 1,000 human miRNAs have been identified (www.microrna.org). While recent
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genome-wide siRNA and shRNA screenings (see above) have shown that several hundred
host cell proteins contribute to the regulation of HIV-1 infection in human cells, how
miRNA-mediated regulation complements this picture is poorly understood. The biogenesis
and currently accepted mechanisms of action for miRNAs have been recently reviewed
(186). We briefly outline below findings relevant to miRNA regulation of HIV-1.

Plants and lower eukaryotic cells use miRNAs as a form of RNA-interference (RNAi) to
restrict infecting viruses (187). While mammals conserve the same functional miRNA
repertoire and RNA-silencing machinery, some have debated whether they employ a
miRNA-based antiviral strategy (12,188–190). For endogenous mammalian retroviruses,
there is a large body of literature demonstrating that a variety of small non-coding RNA
forms are employed to silence these elements (191–193). In silico analyses have also
indicated that exogenous mammalian viruses may be similarly susceptible to miRNA-based
restriction (194,195). Indeed, several investigators have demonstrated independently that a
number of human miRNAs specifically influence productive HIV-1 infection in human cells
(196–199). These results agree with findings that the knock down of either the Dicer protein
(200) or the RISC components (201), both necessary for miRNA-mediated gene silencing,
has resulted in enhanced HIV-1 replication in cells. The notion that miRNAs restrict viruses
in mammals as they do in invertebrate or plant cells is additionally supported by increasing
examples of RNAi-silencing suppressors encoded by mammalian viruses such as
Adenovirus (202–204), HCV (205) Ebola (206) Influenza A virus (207–209), primate foamy
virus (210), HIV (211–213) SARS corona virus(214) and HTLV-1 (215). Further
investigation is needed to understand how RNA-based and protein-based viral restriction
mechanisms cooperate together in human cells.

Concluding remarks
Our understanding of the extent of interaction and dependence of a virus like HIV-1 on
cellular factors continues to increase as do the number of factors involved. Apart from
giving us insights into the roles of these factors in the normal cell, they provide an array of
novel drug targets. HIV-1 is such a mutable virus that drug treatments targeting pure virion
processes rapidly produce escape mutations. Drugs that target processes which involve
interactions with non-mutable cell proteins will also target regions of the virus whose
variability is constrained by the conservation of their cellular partner. These present exciting
new therapeutic opportunities in HIV-1 and other viruses.
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Figure 1.
Diagram showing gene products unique, common to two, or common to all three siRNA
screens (references 3,4 and 5).
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Figure 2.
Schematic representations of general siRNA (left) and shRNA (right) based screening
approaches for cellular factors that assist viral replication. More detailed explanation is in
the text.
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Figure 3.
A drawing which highlights different infection processes used by HIV-1 and the various
cellular factors that restrict viral replication. The drawing is modified after Wainberg and
Jeang (216).
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