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Summary
In this article we develop a latent class model with class probabilities that depend on subject-
specific covariates. One of our major goals is to identify important predictors of latent classes. We
consider methodology that allows estimation of latent classes while allowing for variable selection
uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search
Gibbs sampler for posterior computation to obtain model averaged estimates of quantities of
interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through
simulation studies and application to data on weight gain during pregnancy, where it is of interest
to identify important predictors of latent weight gain classes.
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1. Introduction
Latent class models arise naturally in the context of modeling heterogeneity and are
particularly suited for data expected to have underlying clusters. It is well-known that a
finite mixture of normal densities can characterize densities of widely varying shapes. Hence
these models are appealing for both cluster analysis and density estimation. Latent class
models and their extensions to more complicated settings such as longitudinal data have
gained considerable popularity and have been successfully used for many applied problems.
For example, Oh et al. (2003) use latent class logit models for modeling heterogeneity in a
target market or population, Elliott et al. (2005) use latent class trajectory models to
distinguish patients with depressive symptoms, while Dunson et al. (2008) develop
semiparametric Bayesian latent class trajectory models for joint modeling of pregnancy
weight gain trajectory clusters and response densities of birth weight.

Bayesian analysis of latent class or Gaussian mixture models poses several challenges such
as selecting the number of components and the so-called label switching problem. The
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Bayes information criterion (BIC) (Schwarz, 1978) and the deviance information criterion
(DIC) (Spiegelhalter et al., 2002) are often used to choose the number of classes. For these
models, Schwarz's theoretical justification of the BIC as an approximation to the log
marginal likelihood does not hold, and the DIC does not have a unique interpretation
(Celeux et al., 2006). Full Bayesian analysis of mixtures with an unknown but finite number
of components can be carried out using the reversible jump Markov chain Monte Carlo
(MCMC) method of Richardson and Green (1997). Their approach treats the number of
components as unknown and mixes over all possible values of number of classes. The other
alternative is to use semiparametric approaches that avoid specification of a fixed number of
classes, for example using Dirichlet process mixtures (Escobar and West, 1995). The non-
identifiability of the components poses another hurdle; this happens when the parameters
have exchangeable priors and permuting the labels of the parameters produces identical
posterior distributions. One solution to this problem is to impose an identifiability constraint
on the parameters, for example impose a particular ordering on the class means or
precisions. There are other alternatives that define label invariant loss functions and
minimize the loss using stochastic optimization; for a detailed review see Jasra et al. (2005)
and the references therein.

In this article our focus is on developing latent class models for scenarios where information
is available on several covariates, in addition to having a univariate response variable. We
let the probability of belonging to a particular class depend on subject-specific covariates
through a multinomial logit model. While one alternative is to use probit regression for the
underlying class probabilities, epidemiologists find logistic regression models more
appealing, because the regression coefficients can be interpreted as the change in the log-
odds of the binary response variable for an unit change in the predictors. In particular, it is of
considerable interest to determine important predictors of the latent classes. We develop
Bayesian variable selection methods for a novel formulation of multinomial logit regression
models embedded in latent class models.

If the latent classes were known the problem would boil down to incorporating variable
selection uncertainty in logistic regression models for unordered categorical data. Although
multinomial probit models have been widely studied and used in Bayesian statistics,
especially after the seminal ideas of data augmentation by Albert and Chib (1993),
multinomial logit models have not gained so much popularity in spite of the natural
interpretability of the design coefficients in terms of odds ratios. This is perhaps because
these models are less amenable to Bayesian computation compared to their probit
counterparts. Gustafson and Lefebvre (2008) develop Bayesian variable selection methods
for multinomial probit models, where the set of relevant predictors is allowed to vary with
the class. A recent paper by Holmes and Held (2006) provides a clever representation of
Bayesian logistic regression in terms of scale mixture of normal densities. We extend their
idea to a mixture model framework, which simultaneously incorporates covariate
information and variable selection uncertainty, and propose a joint model for infant birth
weight and latent pregnancy weight gain classes. Although our methodology has been
motivated by data from a reproductive epidemiologic study, the methods can certainly be
used for more general settings.

Section 2 introduces our Bayesian latent class model, then provides a detailed description
for choice of prior distributions and outlines a Gibbs sampling algorithm for posterior
computation. In Section 3 we validate our approach through simulation studies. In Section 4
we apply our methodology to the motivating application of pregnancy weight gain classes
and birth weight. We identify several important predictors of weight gain classes. In addition
we compare our latent class model to a commonly used model with pre-determined classes,
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and show that our model can outperform it. In Section 5 we summarize our key
contributions and conclude with a list of possible extensions.

2. A Bayesian Latent Class Model to Include Predictors
We consider the following latent class model with Q classes:

(1)

where yi denotes the continuous, univariate response variable for the ith subject, μk and ϕk
denote the kth class mean and precision, and wik is the binary latent allocation variable, such
that wik = 1 if the ith subject belongs to class k and 0 otherwise. Additional information is
available on each subject through a set of p covariates, denoted by xi = (xi1, … xip)′, which
we allow to influence the response distribution through the class probabilities.

The latent class indicator variables are assumed to be drawn from a multinomial distribution,
whose cell probabilities depend on predictors via a polytomous generalization of the logit
link:

(2)

where  denotes a multinomial distribution with cell probabilities πi = (πi1, …, πiQ)
′. Following common practice we set βQ = 0, so that the other coefficients can be interpreted
in terms of change in log-odds relative to this baseline category.

2.1 Prior Distributions
Choice of prior distributions is an important aspect of Bayesian analysis. Since it may be
unrealistic to assume the availability of strong prior information regarding mixture
components in practice, we follow the guidelines of Richardson and Green (1997). We
choose weakly informative prior distributions; however, subject matter knowledge can be
incorporated in our method whenever available. Our prior distributions are as follows:

(3)

where  denotes the Gamma distribution with mean g/h and variance g/h2. Without
further restrictions, the class labels for k = 1, 2, … Q, are not uniquely determined and a
permutation of the labels would lead to the same model. Since our interest lies in inferences
on class-specific parameters, the non-identifiability of labels would cause a problem in
posterior computation. We adopt a traditional choice and impose restrictions on the class
means for identifiability. Henceforth we assume μ1 > μ2 > … μQ.

It is of primary interest to identify important predictors of the latent classes. Moreover,
including the full set of predictors will ignore uncertainty and may lead to more error-prone
estimates of class probabilities due to inclusion of irrelevant predictors. With that in mind,
we formally account for variable selection uncertainty in our prior distribution. We specify a
mixture of point mass at zero and a normal distribution for the βk's:
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(4)

where δ0(.) represents a measure concentrated at 0. Here pkj denotes the exclusion
probability of the covariate xj in predicting membership to class k, with respect to the
baseline class Q. The above formulation essentially embeds models with all possible
combinations of predictors in an all encompassing mixture model. This allows unimportant
predictors to automatically drop out of the model via zeroing of the regression coefficients
βk. We can use a Gibbs sampling algorithm for posterior computation, which simultaneously
explores models and parameters, commonly referred to as the stochastic search variable
selection (SSVS) approach (George and McCulloch, 1993).

2.2 Posterior Computation for Multinomial Logit Models
We first briefly review the computational challenges involved in Bayesian logistic
regression with two categories. While conditionally conjugate prior distributions are
available for linear models and the posterior distribution can be computed in closed form,
that is not the case for either probit or logistic models. For normal prior distributions on
regression coefficients, the posterior distribution is known only up to a normalizing
constant. The data augmentation approach of Albert and Chib (1993) introduces underlying
normally distributed latent variables for observed binary response variables in probit
models. Marginalizing out the latent variables yields the original likelihood. Conditional on
the latent variables, the full-conditional posterior distributions of the regression coefficients
are available and Gibbs sampling can be used to draw samples from the joint posterior
distribution.

Taking the latent variables to be distributed as a logistic distribution would lead to the
logistic likelihood. However this will not lead to a conditionally conjugate form for the
regression coefficients. In a recent article, Holmes and Held (2006) develop an innovative
scale mixture of normals representation for logistic regression. They introduce an extra layer
of latent variables as scale parameters, which yields conditionally conjugate forms. For a
binary response variable wi, their specification is as follows:

(5)

(6)

(7)

where zi and λi are latent variables and KS denotes the Kolmogorov Smirnov distribution
(Devroye, 1986). As in the probit case, the original logistic regression model is obtained by
marginalizing out the latent variables. The above specification leads to normal full
conditional distributions for the regression coefficients and truncated normal distributions
for zi, as in probit regression. However, it is not straightforward to sample from the full
conditional distribution of λi, and the authors outline a rejection sampling method. This
method is attractive for its exact representation of the logistic model in terms of scale
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mixture of normals; however, we have found that it becomes computationally prohibitive for
large values of sample size, say a few thousands, as in our application. Hence we adopt an
approximation of the logistic density with location parameter μ, by a tν(μ, σ2) distribution
(O'Brien and Dunson, 2004), with ν degrees of freedom and location and scale parameters μ
and σ2 respectively. They recommend using ν = 7.3 and σ2 = π2(ν − 2)/(3ν), values chosen
to have equal variances for the exact and approximating density and to minimize the
integrated squared distance between them. To obtain exact inferences, one can use
importance sampling to re-weight the samples generated from a Markov chain Monte Carlo
(MCMC) output. Kinney and Dunson (2007) illustrate that the above approximation is very
close, leading to weights that are close to 1, and hence the weighted and unweighted results
are nearly the same. Thus we have refrained from using the importance re-weighting to
avoid extra computational overhead. Because a t distribution can be expressed as a scale
mixture of normals, this approximation yields normal and Gamma full conditional
distributions which are easy to sample from and helps us eliminate the time-consuming
rejection sampling step. An approximation of the logistic distribution by a finite scale
mixture of normals (Frühwirth-Schnatter and Frühwirth, 2010) may offer another promising
alternative to the Holmes and Held (2006) approach.

As it is likely that our latent class model will have more than two classes, we need to extend
the above approach to accommodate for an unordered categorical response variable.
Suppose there are Q categories and let wik = 1 if subject i belongs to the kth category and 0
otherwise. Holmes and Held (2006) show that the conditional likelihood L(βk|β−k, w) also
has the form of a logistic regression in terms of wik for the kth class vs. all the other classes,
where β−k = (β1,…,βk−1,βk+1,…,βQ). This is the key idea for extending our latent two-class
model to a latent multi-class model, and allows for the construction of a Gibbs sampler,
which loops over the parameters of all classes.

2.3 Gibbs Sampling Algorithm for Latent Class Model
We first define auxiliary variables in the context of our latent class model, given by eqn (2).

(8)

(9)

(10)

where i = 1,…n and k = 1,…,Q − 1. We set  and  as per the
recommendations of O'Brien and Dunson (2004). The Gibbs sampling algorithm for
posterior computation proceeds by drawing samples from the full conditional distributions:

(1) For k = 1,…Q, μk|(ϕ,w,z,ζ,β,βϕ,y) ~ N(Eμk,Vμk), Vμk = (κ + ϕknk)−1,

,  with μ1 > μ2 >…μQ.
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(2)

For k = 1,…Q, ,

.

(3) For i = 1,…n, wi|(μ,ϕ,β,βϕ,y) ~ MN(Q,θi), θi = (θi1,…,θiQ)′,

.

(4) For k = 1,…Q − 1 and for i = 1,…n,

, where

 denotes the logistic distribution with location and scale parameters μ
and S2 respectively.

(5) For k = 1,…Q − 1 and i = 1,…n,

.

(6) For k = 1,2,…Q − 1, and j = 1,2,…,p,

, where β−kj = (βk′j′ : k′
= 1,…,k − 1,k + 1,…,Q − 1; j′ = 1,…,j − 1,j + 1,……p),

, ,

(7)
βϕ|(z,w,μ,ϕ,β,ζ,y) ~ 

We have done a block updating for (w, z, ζ) in the above Gibbs sampler. In particular, it is
necessary to integrate out z in the full conditional distribution of w, otherwise wik would be a
deterministic function of zik.

3. Simulation Study
To evaluate the performance of our method, we simulate 25 datasets with sample size 3,000
and Q = 4 classes. We consider 20 predictors (besides the intercept), generated from
independent N(0,1) variables. The true βk's are chosen to be sparse: β1 = (0.8,1,2,0.5,0,…,0),
β2 = (0.3,0,…,0,−1,1.7,−2), and β3 = (0.3,1,−2,0.8,0.9,0,…,0). The values are chosen so that
the true predictors of classes 1 and 2 are different, and most of those for classes 1 and 3 are
overlapping but with different magnitudes and signs. We generate the class labels from a
multinomial distribution with cell probabilities as given in eqn (2). To have resemblance
with our real data, the true class means and precisions are set close to the posterior means
obtained from using a latent class model with 4 classes for the real data. They are (0.58,
0.44, 0.38, 0.20) and (43.49, 78.32, 101.95, 45.71) respectively.

The prior distributions and their hyperparameters are chosen as described in Section 2.1. For
class means and precisions, we choose data-dependent hyperparameters, similar to
Richardson and Green (1997). In particular, we take ξ as the observed sample mean and 1/κ
as the square of the observed range of the data. This leads to a fairly weak prior for the class
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means. The values of α, g and h are taken as 2, 0.2 and 10/(observed range)2. The prior
exclusion probabilities, pkj are set equal to 1/2, which corresponds to an uniform prior over

the model space, and , the prior variance of βkj is taken to be 1.

3.1 Selection of the Number of Classes
Our Bayesian variable selection approach assumes that the number of latent classes is fixed.
Thus, we first address how to select the number of classes using the pseudo Bayes factor
(PSBF) (Geisser and Eddy, 1979). The PSBF is based on the idea of choosing models based
on their leave-one-out cross-validation predictive densities. The PSBF for comparing models

Mj and Mj′ with j and j′ classes is: 
where y−i = (y1,…,y(i−1),y(i+1),…yn). Gelfand and Dey (1994) describe how to estimate
PSBF from MCMC output. We also calculate the BIC for a simplified log-likelihood
ignoring covariates, as it is readily available as part of the R package mclust.

We run the Gibbs sampler described in Section 2.3 under each of 2, 3, 4, and 5 class models
for 25,000 iterations, and discard the first 5,000 samples as burn-in. We find that PSBF
shows an overwhelming support for the 4 class model versus 2 and 3; however, it does not
penalize the 5 class model as much. Interestingly, estimates of true Bayes factors based on
path sampling in Scaccia and Green (2003) also show a similar trend: a steady incline and
then leveling off for models with more classes. It is likely that there is some inherent
problem of identifiability in these models, which is responsible for not penalizing the over-
parameterized models enough. PSBF identifies the 4 class model as the true model 19/25
times. BIC fails to identify the true model in all 25 datasets, it almost always chooses the 2
class model. The BIC calculation assumes a typical univariate mixture model without
covariates, i.e., , π = (π1,…,πQ)′, i = 1,…n. The poor performance of BIC in
this case may be attributed to the over-simplified log-likelihood used instead of the true one.

3.2 Bayesian Variable Selection and Bayesian Lasso
We now study the performance of our Bayesian variable selection (BVS) approach under the
4 class model. We also develop a Bayesian analogue of the Lasso (Tibshirani, 1996), and
compare it to BVS. We extend the Bayesian Lasso (BL) of Park and Casella (2008) for
linear regression to our latent class model. BL leads to using Laplace priors for the

regression coefficients, , in place of the mixture priors
described for BVS in eqn (4). A Gibbs sampler can be developed for the latent class model
with BL, exploiting the fact that the Laplace distribution can be expressed as a scale mixture
of normals. The resulting hierarchical prior is βkj|η ~ N(0, ηkj

2), ηkj
2 ~ ε(ak

2/2), k = 1,…Q
−1, j = 1,…p, where ε(α) is the exponential distribution with mean 1/α. This produces
tractable full conditional distributions viz. normal for βkj and inverse-Gaussian for 1/ηkj

2,
leading to a straightforward Gibbs sampler. One option is to put a weak prior on the penalty
parameter, ak

2, to learn adaptively from the data. However, for our model there is not
enough information on this parameter, and putting a prior had adverse effects on MCMC
convergence. Hence, we implement BL for several fixed values of ak

2: the mean, 25th, 50th,
and 75th percentiles of a Gamma prior distribution, , with hyperparameters as in
Park and Casella (2008).

The posterior inclusion probability of a predictor xj for predicting membership to class k vs.
baseline class Q, is the sum of posterior probabilities of all models with βkj ≠ 0. Its Monte
Carlo estimate is the proportion of non-zero βkj's in the MCMC samples. The Bayes factor
(BF) for testing the hypothesis that xj is a predictor of class k vs. the hypothesis that it is not,
is the ratio of posterior odds to prior odds: {p(βkj ≠ 0|y)/p(βkj = 0|y)}/{p(βkj ≠ 0)/p(βkj = 0)}.
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For BVS, we flag a covariate as important using two thresholds: BF> 1 and BF> 3.2, using
Jeffreys' scale of evidence (Jeffreys, 1961). For BL, a covariate is flagged if the 95%
posterior credible interval of the associated regression coefficient does not contain zero.

The summarized results are shown in Web Figures 1–3 and Web Table 1. The rate of
classifying subjects to the true class is best for BVS, with a median around 0.8. For variable
selection, BVS and BL are comparable in identifying true predictors, while BVS with BF>
3.2 does best overall in controlling false positives. Web Table 3 shows the mean squared
error (MSE) in estimating βkj's. BL consistently has a higher MSE than BVS. A cross-
validation approach to select ak

2 may improve the performance of BL, but will be
computationally much more demanding, so we do not consider it here.

4. Application to Data From PIN Study
4.1 Description of Data and Scientific Goals

We use data from the Pregnancy, Infection and Nutrition (PIN) studies (Savitz et al., 1999;
Deierlein et al., 2008), which consists of multiple cohorts of pregnant women from central
North Carolina. Weight gain during pregnancy has been shown to be associated with various
maternal and child health outcomes like mode of delivery, child birth weight, preterm birth,
maternal postpartum weight-retention etc. (Viswanathan et al., 2008). The Institute of
Medicine (IOM) specifies a recommended weight gain for women based on their pregravid
body mass index (BMI) (Institute of Medicine, 1990, 2009). Based on the IOM
recommendations, women can be classified into one of the three IOM weight gain classes:
inadequate, adequate, and excessive. Since the cut-offs for these classes are often debated
and do not take into account any other maternal characteristics apart from pre-pregnancy
BMI, we propose an alternative approach in which we let the classes be unknown, and the
probability of being allocated to a class depend on covariates.

One of our primary goals is to investigate which additional maternal characteristics such as
age, race, diet, etc. are predictive of the mother's weight-gain class. Considering both
continuous and categorical variables representing maternal characteristics, we have 21
predictors in all. We develop a Bayesian hierarchical latent class model, with class
probabilities depending on subject-specific predictors. In addition we formally account for
variable selection uncertainty in the model and obtain posterior estimates of quantities of
interest such as log-odds for a particular covariate via Bayesian model averaging (BMA).
The idea is that this approach would automatically zero out the unimportant predictors of
weight gain class, and thus enable us to identify relevant predictors and possibly improve
predictions of health outcomes such as birth weight. We analyze data from 2,660 pregnant
women with complete information on outcome and covariates of interest.

4.2 Joint Model for Birth Weight and Weight Gain Class
A simple two-stage approach for modeling birth weight and weight gain class is to: i) first
estimate the latent weight gain class using the model in Section 2, and then ii) use the
estimated class as a “known” predictor in a linear regression model with child's birth weight
as the outcome. This naïve approach has two main drawbacks. First, it ignores uncertainty in
estimating latent classes by treating them as observed covariates. Second, the weight gain
classes cannot borrow any information from the birth weight distribution, as they are
constructed independently of birth weight. Hence, instead of using this approach, we
develop a joint model for latent classes and birth weight, such that the classes also depend
on birth weight. Moreover, the latent classes used as unknown covariates in the birth weight
regression are not fixed for any individual. They are allowed to vary across MCMC
iterations, with more probable classes (that receive more weight under the posterior
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distribution) appearing more frequently. We provide a detailed description of our joint
model below.

We choose the first level of our joint model as described in eqn (1) and eqn (2). Here yi
represents the weekly weight gain rate for the ith subject, where weekly weight gain rate is
calculated as (total weight gain recorded at last visit/gestational age at last visit in days)×7.
Let xi = (xi1, … xip)′ denote the p covariates, and wi = (wi1, wi2, … wiQ)′ be the vector of
latent class indicators, where wik = 1 if the ith subject belongs to class k and 0 otherwise. We
now specify the next hierarchy of the model: birth weight regression given the latent weight
gain classes. As birth weight distribution has slightly heavier tails than a normal distribution,
we assume that the errors follow a t distribution. Let bwti denote the ith person's birth weight
and ui(wi) denote the corresponding r by 1 vector of covariates, which includes indicators of
the latent classes and their interactions with indicators of the BMI groups. We include these
interactions because weight gain recommendations depend on pregravid BMI, as the
implications of varying amounts of weight gain depends on maternal weight status before
pregnancy. The resulting model is

(11)

where G(a, b) is a Gamma distribution with mean a/b and variance a/b2. This leads to t
errors with scale parameter 1/τ and a degrees of freedom (df). In accordance with the belief
of epidemiologists, this model assumes that conditional on the latent classes, birth weight is
independent of weight gain. In reality, the latent classes are not observed and induce a
dependency among birth weight and weight gain, thus making it possible for birth weight to
inform the classification.

By examining residual plots we take a = 20 which works reasonably well. For the prior
distribution for α to be at least as flat as the likelihood (Clyde and George, 2000) we take t
priors with a df and scale parameter 1/τ for α. The prior distribution for τ is p(τ) ∝ 1/τ, 0 < τ
< ∞, and those for unknown parameters in eqns (1) and (2), are chosen to be the same as
described in Section 2.1.

4.3 Analyses and Results for Classes Based on Weekly Weight Gain Rate
We carry out the analysis for the above model using the Gibbs sampler in Section 2. We run
the Gibbs sampler for 100,000 iterations, saving every 10th iterate to reduce autocorrelation
and save computer memory. The first 1,000 samples of the thinned chain are discarded as
burn-in. Motivated by a desire to have parsimonious and interpretable models, we do not
consider models with more than 6 classes. We choose hyperparameters based on the
recommendations by Richardson and Green (1997) and calculate the PSBF for models with
2–6 classes. The motivation for using PSBF is to choose models based on leave-one-out
cross-validation predictive densities for birth weight. The PSBF for comparing models Mj
and Mj′ with j and j′ classes is defined as

where bwt−i =(bwt1, …, bwt(i−1), bwt(i+1), … bwtn). The estimates of PSBF(3:2), PSBF(4:3),
PSBF(5:4) and PSBF(6:5) are 2.19 × 1013, 4.64 × 107, 6.06 and 2.13 respectively. While the
actual value of PSBF picks the 6 class model, a close scrutiny reveals a similar trend as in
the simulation studies in Section 3. There is a sharp rise in PSBF until the 4 class model is
reached and then it stabilizes. For the simulation studies this happened exactly after reaching
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the true class model, so we set the number of classes, Q = 4. For the selected model, we run
the Gibbs sampler for a million iterations, saving every 100th sample.

Based on the mean weekly weight gain rate, we shall refer to classes 1, 2, 3 and 4 as very
high, high, moderate and low weight gain rate classes. Prior hyperparameters are chosen as
in Section 3. The only difference is instead of using data-dependent prior distributions, we
now use subject matter knowledge to construct weakly informative priors. It is hypothesized
a priori that the range of weight gain in kilograms is [−9, 36], and dividing this by a
representative gestational age of 40 weeks, the postulated range for weekly weight gain rate
is I = [−0.225, 0.9]. In particular, ξ and 1/κ in eqn (3) are chosen to be the mid-point of I and
the square of its range respectively.

We also carry out a separate analysis to compare our results with IOM classes. Here we
consider three prespecified weight gain classes (inadequate, adequate and excessive), with
cut-offs formed using the IOM recommendations. Thus this involves only the birth weight t
regression in eqn (11), with indicators of classes that are completely known.

We examined trace plots of all parameters for MCMC convergence and mixing. Web Figure
6 shows agreement of inclusion probabilities from two different runs of the Gibbs sampler,
started from dispersed initial values, indicating further empirical evidence of MCMC
convergence. The posterior summaries are presented in Figure 2 and Tables 1, 2, 3. Figure 2
shows the posterior densities for mean weekly weight gain rate for all classes. Summarizing
the results from Tables 1, 2 and 3, it appears that underweight women tend to be in the
moderate class with high probability whereas overweight and obese women tend to be in the
low class. This agrees with the fact that the heavier women are expected to gain less weight
and vice versa. Black women or those with depressive symptoms are more often in the low
class compared to moderate or high. Women who report vomiting naturally belong to the
low class vs. moderate or very high. Non-smokers tend to be in the low or moderate class.
Some other covariates that were also flagged as important are mother's height, percentage of
protein in the diet, physical activity in the 3 months prior to pregnancy, and parity.

We next focus on the birth weight regression part of the model. It is evident from Table 4,
that obese women have heavier babies than normal weight women. Only one of the
interaction terms of weight gain classes with BMI classes is significant, based on the 95%
credible intervals. As expected women in the high and very high classes have heavier babies
than those in the low class. To get a complete picture we also plot expected birth weight vs.
gestational age at delivery, for all possible combinations of weight gain classes and BMI
groups in Web Figures 4 and 5. The expectation is calculated for other covariates held
constant at their most commonly observed values, viz. non-smoker, nulliparous, white
mothers and male babies.

For the IOM class model (results in Web Table 2) none of the BMI classes and their
interactions with IOM classes are significant. Interestingly out of the two IOM classes
included in the model, only excessive is significant. Web Figure 7 shows observed vs. fitted
values of birth weight for latent and IOM class models. We further compare the latent class
model with i) Bayesian variable selection (BVS) and ii) Bayesian Lasso (BL) to the iii) IOM
class model based on out of sample predictions. We hold out a randomly chosen 10% (266
women) test sample to predict birth weight. We replicate this 10 times and calculate the

RMSE (root mean squared error),  for each test sample. Web
Figure 8 contrasts the RMSE for different methods. BVS has lower RMSE than both BL and
IOM in 9 out of 10 test samples. The average RMSE over 10 replicates for IOM and BVS
are 416 and 408 grams respectively. BL was run for four different choices of the penalty
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parameter, as in the simulation study. The minimum average RMSE among these is 410
grams. This suggests that the latent class model (using either BVS or BL) has better
predictive power than the IOM class model. A huge gain in predictions is not expected as
weight gain class constitutes only one of the many relevant predictors of birth weight. In
general, BVS and BL are comparable, with BVS doing slightly better than BL.

5. Discussion
Latent class models have received considerable attention in the literature for their ability to
flexibly model data with unknown clusters. In this article we have proposed a new approach
to let the latent class probabilities depend on predictors through a multinomial logit link.
Instead of choosing the full set or a subset of predictors, we perform Bayesian model
averaging over all possible subsets of predictors. The posterior computation can be
implemented using a Gibbs sampler, and importance of predictors can be assessed through
marginal posterior probabilities of inclusion.

For the application we have used a joint model for birth weight and weight gain during
pregnancy. This model has identified several important predictors apart from pre-pregnancy
BMI, such as race, parity, smoking status of mother etc. Our model also led to improvement
in prediction. This suggests that the IOM guidelines for weight gain during pregnancy in the
context of birth weight, could be refined by accounting for additional maternal
characteristics. A direct extension of our model is to estimate the latent classes using a more
general bivariate distribution of birth weight and weight gain class. An important extension
would be to consider latent class trajectory models to include multiple observations on
weight gain observed at different time points. The prior distribution on the model space can
be extended to a more flexible family of beta-binomial priors (Scott and Berger, 2008).

In this article we have introduced a full Bayesian variable selection approach, conditional on
the number of latent classes. We have outlined an approach to select the number of classes,
using the pseudo Bayes factor, followed by a visual inspection of its values. As pointed out
by one of the referees, the approach for selecting the number of classes is exploratory as it
relies on the modeler's judgment. There is extensive literature for Bayesian model selection
for the number of classes in typical univariate mixture models. However, none of this is
applicable to our model. In our framework the number of parameters change across models
with different number of classes, and also within a model with fixed number of classes due
to the variable selection component. Scaccia and Green (2003) have implemented reversible
jump MCMC (RJMCMC) (Green, 1995) in a model similar to ours, but without the variable
selection aspect. Their examples show that in these models RJMCMC can have a very low
acceptance rate for split/combine proposals, which are used to move across models with
different number of classes. Path sampling (Gelman and Meng, 1998) may offer an
attractive option from both theoretical and empirical standpoints. As future work, we intend
to use path sampling for Bayesian model selection/averaging for the number of classes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Pseudo Bayes factors for comparing models with 3 vs. 2, 4 vs. 3, and 5 vs. 4 classes:
PSBF(3:2), PSBF(4:3), PSBF(5:4), for the simulation study described in Section 3
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Figure 2.
Posterior density (y-axis) plots of mean weekly weight gain rate (x-axis) for very high, high,
moderate, and low classes.
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Table 1

Table showing log(odds) of belonging to very high vs. low weekly weight gain rate class for having
covariates that are found “interesting” (marginal posterior inclusion probability > 0.75); note that P(β1j ≠ 0)
was fixed at 1 for the Intercept

Ê (β1 j ∣ Y )a P̂(β1 j ≠ 0 ∣ Y ) 95% C.I.

Intercept 0.33 1 (−0.66, 1.24)

obese −2.03 1 (−2.6, −1.51)

nulliparous 0.98 1 (0.53, 1.47)

non-smoker −0.54 0.83 (−1.16, 0)

height 0.35 0.9 (0, 0.62)

physical activity 1.11 0.99 (0.44, 1.73)

vomiting −0.72 0.93 (−1.31, 0)
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Table 2

Table showing log(odds) of belonging to high vs. low weekly weight gain rate class for having covariates
that are found “interesting” (marginal posterior inclusion probability > 0.75); note that P(β1j ≠ 0) was fixed at
1 for the Intercept

Ê (β2 j ∣ Y ) P̂(β2 j ≠ 0 ∣ Y ) 95% C.I.

Intercept 0.64 1 (−0.78, 1.72)

overweight −1.24 0.88 (−2.6, 0)

obese −1.73 0.98 (−2.64, −0.38)

mom race black −0.88 0.88 (−1.79, 0)

depression −0.9 0.89 (−1.93, 0)

protein percent 0.7 1 (0.34, 1.21)

height 0.97 1 (0.63, 1.38)
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Table 3

Table showing log(odds) of belonging to moderate vs. low weekly weight gain rate class for having
covariates that are found “interesting” (marginal posterior inclusion probability > 0.75); note that P(β1j ≠ 0)
was fixed at 1 for the Intercept

Ê (β3 j ∣ Y ) P̂(β3 j ≠ 0 ∣ Y ) 95% C.I.

Intercept 1.3 1 (0.35, 2.12)

underweight 1.6 1 (0.82, 2.59)

obese −2.94 1 (−3.78, −2.23)

mom race black −0.67 0.88 (−1.39, 0)

depression −0.56 0.77 (−1.32, 0)

non-smoker 0.6 0.79 (0, 1.44)

physical activity 1.13 0.99 (0.51, 1.73)

vomiting −0.61 0.88 (−1.2, 0)
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Table 4

Table showing posterior means and 95% credible intervals for birth weight regression coefficients with
indicators of latent weekly weight gain rate classes: very high, high and moderate as covariates

Ê (αj ∣ Y ) 95% C.I.

high*underweight 0.03 (−0.18, 0.25)

high*overweight 0.38 (−0.03, 0.84)

high*obese 0.07 (−0.12, 0.26)

moderate*underweight −0.06 (−0.24, 0.12)

moderate*overweight 0.23 (−0.01, 0.44)

moderate*obese −0.04 (−0.27, 0.28)

Intercept 3.04 (2.94, 3.15)

gestational age 0.38 (0.36, 0.4)

(gestational age)2 −0.05 (−0.07, −0.04)

(gestational age)3 −0.04 (−0.05, −0.02)

non-smoker 0.17 (0.12, 0.23)

nulliparous −0.16 (−0.19, −0.12)

male 0.1 (0.07, 0.13)

mom race black −0.15 (−0.2, −0.11)

underweight −0.11 (−0.41, 0.2)

overweight 0.04 (−0.11, 0.19)

obese 0.15 (0.05, 0.25)

very high 0.38 (0.26, 0.51)

high 0.48 (0.32, 0.66)

moderate 0.08 (−0.03, 0.2)

very high*underweight 0.13 (−0.24, 0.49)

very high*overweight 0.08 (−0.34, 0.52)

very high*obese 0.06 (−0.27, 0.37)

high*underweight 0.03 (−0.19, 0.25)

high*overweight 0.38 (−0.03, 0.86)

high*obese 0.07 (−0.12, 0.26)

moderate*underweight −0.06 (−0.24, 0.12)

moderate*overweight 0.23 (0.02, 0.43)

moderate*obese −0.05 (−0.27, 0.25)
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