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ABSTRACT

Summary: ESS++ is a C++ implementation of a fully Bayesian
variable selection approach for single and multiple response
linear regression. ESS++ works well both when the number of
observations is larger than the number of predictors and in the
‘large p, small n’ case. In the current version, ESS++ can handle
several hundred observations, thousands of predictors and a few
responses simultaneously. The core engine of ESS++ for the
selection of relevant predictors is based on Evolutionary Monte Carlo.
Our implementation is open source, allowing community-based
alterations and improvements.
Availability: C++ source code and documentation including
compilation instructions are available under GNU licence at
http://bgx.org.uk/software/ESS.html.
Contact: l.bottolo@imperial.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In recent years, biological sciences have taken full advantage of
rather inexpensive high-throughput technologies. New experiments
at a systemic level have been conceived to dissect the role of
genetic and environmental factors in the development of common
diseases or the identification of risk factors for complex phenotypes
(Heinig et al., 2010). The dimensions and diversity of available
genetic, genomics and other ’omics data sets pose new theoretical
and computational problems requiring multi-level data integration
and efficient statistical analysis tools.

When the aim is to predict the variation of pathophysiological
or complex phenotypes, regression models are widely used. In this
set up, Bayesian variable selection (BVS) allows the construction
of parsimonious regression models for high-dimensional datasets,
adopting prior specifications that translate expected sparsity of the
underlying biology and facilitate the interpretation of the results.
Moreover, in problems where no single model stands out, model
uncertainty is taken into account, reporting competing models with
their posterior evidence.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors
should be regarded as joint First Authors.

ESS++ is a C++ implementation of a fully BVS approach for
linear regression that can analyse single and multiple responses in an
integrated way (Bottolo and Richardson, 2010; Petretto et al., 2010).
Whereas other approaches (Servin and Stephens, 2007) consider
one predictor at the time, ESS++ performs an efficient search for
combinations of covariates that predict the variation of single and
multiple responses. Like Shotgun Stochastic Search (Hans et al.,
2007), ESS++ is also designed to work under the ‘large p, small n’
paradigm i.e. when the number of predictors p is large with respect
to the number of observations n, thus making fully Bayesian analysis
feasible in genetics/genomics experiments.

When the number of predictors is large, the multimodality of the
model space is a known issue in variable selection. ESS++ explores
the 2p-dimensional model space using an extension of parallel
tempering called Evolutionary Monte Carlo that combines Markov
chain Monte Carlo (MCMC) and genetic algorithms. Specifically,
ESS++ relies on running multiple tempered chains in parallel which
exchange information about set of covariates that are selected in the
regression models. Since chains with higher temperatures flatten the
posterior density, global moves (between chains) allow the algorithm
to jump from one local mode to another. Local moves (within-
chains) permit the fine exploration of alternative models, resulting
in a combined algorithm that ensures that the chains mix efficiently
and do not become trapped in local modes.

2 EXAMPLES OF ESS++ APPLICATION
In this section, we present the results of the application of ESS++
to investigate genetic regulation. To discover the genetic causes
of variation in the expression (i.e. transcription) of genes, gene
expression data are treated as a quantitative phenotype while
genotype data (SNPs) are used as predictors, a type of analysis
known as expression Quantitative Trait Loci (eQTL). In this
context, it is important to distinguish cis-eQTLs, where the genetic
control points (SNPs) are located close to the location of the
transcribed gene, from trans-acting eQTLs, which lie on a different
chromosome. Here, we use a larger dataset (Heinig et al., 2010) to
reanalyse three genes (Cd36, Ascl3 and Hopx) that were presented in
Petretto et al. (2010): in particular, for each gene we investigate the
ability of ESS++ to find a parsimonious set of predictors (polygenic
regulation) that explain the joint variability of gene expression in
seven tissues (adrenal gland, aorta, fat, heart, kidney, liver, skeletal
muscle) using 1304 SNPs and 29 observations, taken from the rat
inbred lines that were studied.
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Fig. 1. Marginal posterior probability of inclusion (MPPI) obtained running ESS++ on a multiple tissues mapping experiment for three different genes: for
each gene, the set of SNPs associated with high MPPI (>0.50) are highlighted, showing monogenic control for (a) Cd36 gene (SNP J664145) and (b) Ascl3
gene (SNP J697407), with evidence for polygenic control for (c) Hopx gene (SNP WKY-G-j-20h03_f1_365 and SNP J590621).

We run ESS++ for 2.2M sweeps with 200K as burn-in using four
chains. The prior requires two main user-defined parameters the
a priori expected model size and SD of the model size. We set these
to E

(
pγ

)=2 and sd
(
pγ

)=2, respectively, meaning the prior model
size is likely to range from 0 to 8.

For each gene, Figure 1 shows the marginal posterior probability
of inclusion (MPPI), a measure of the marginal contribution of each
predictor. For the first gene Cd36, Figure 1a, ESS++ confirms shared
genetic effects due to a single cis-eQTL (SNP J664145) and in silico
prediction of its systemic effect in all tissues (Aitman et al., 1999).
For the second gene Ascl3, Figure 1b, ESS++ also finds a single
cis-acting genetic control point (SNP J697407) for the variation of
the gene expression in all seven tissues, highlighting the fact that
the second trans-acting locus found in Petretto et al. (2010) was
specific for the four tissues considered (adrenal gland, fat, heart,
kidney). The landscape for the MPPI is much more complicated for
the last gene Hopx, Figure 1c, although the locus with highest MPPI
(SNP WKY-G-j-20h03_f1_365) is the one identified in Petretto et al.
(2010).

One of the distinctive features of ESS++ is also the possibility to
look at the best models visited during the MCMC run. For instance,
in the Hopx gene the 10 best visited models are all polygenic, SNP
WKY-G-j-20h03_f1_365 is included in all 10 best visited models
and altogether they account for about 15% of the posterior mass.
Finally, when compared with the computational time of the Matlab
implementation of Petretto et al. (2010), ESS++ runs on a 3 GHz
desktop computer, with the same MCMC specifications roughly 15
times faster (in 36, 74, and roughly 400 minutes for the examples
above).

3 DOCUMENTATION AND IMPLEMENTATION
ESS++ is written in C++. Documentation of the algorithm (provided
with the code and in the Supplementary Material) details not only the
installation on different platforms and the contents of the package,
but also how to run ESS++.

The command line of ESS++ is extremely simple and it requires
few specifications from the user: the response and predictor matrices
(-Y file_name, -X file_name); the number of sweeps and
the burn-in period (-nsweep int, -burn_in int); if an
hyperprior on the regression coefficient is required (-g_set);
if the user prefers a standard/detailed output for the summary
statistics (-out file_name, -out_full file_name); and
if additional output files (MCMC move histories) are required
(-history).

The set-up of ESS++ is highly customizable by the user through
the modification of the -par file. Among several other settings it
is possible to define: the a priori expected value and the SD of
the number of predictors (E_P_GAM, SD_P_GAM); the number of
chains and their initial distance (NB_CHAINS, B_T); the parameters
for the evolutionary part of the algorithm such as the proportion
of local and global moves (P_MUTATION); and the weighting of
different types of global moves (P_DR). We refer the reader to
Table 1 of the accompanying documentation for full details on all
the parameters that can be entered in ESS++.

The C++ implementation of ESS++ is open source. Its natural
object-oriented structure favours community-based alterations and
improvements. ESS++ is memory efficient and can be run,
even for very large datasets, on a desktop computer. However,
when thousands of observations are collected, the calculation of
the (marginal) likelihood, which relies on costly linear algebra
operations (QR decomposition, matrix multiplication), becomes rate
limiting. A future development for ESS++ will be the translation of
some of these linear algebra operations into Compute Unified Device
Architecture.
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