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Abstract
To identify Bipolar Disorder (BD) genetic susceptibility factors, we conducted two genome-wide
association (GWA) studies: one involving a sample of individuals of European ancestry (EA; n =
1,001 cases; n = 1,033 controls) and one involving a sample of individuals of African ancestry
(AA; n = 345 cases; n = 670 controls). For the EA sample, SNPs with strongest statistical evidence
for association included rs5907577 in an intergenic region at Xq27.1 (p = 1.6 × 10-6) and
rs10193871 in NAP5 at 2q21.2 (p = 9.8 × 10-6). For the AA sample, SNPs with strongest statistical
evidence for association included rs2111504 in DPY19L3 at 19q13.11 (p = 1.5 × 10-6) and
rs2769605 in NTRK2 at 9q21.33 (p = 4.5 × 10-5). We also investigated whether we could provide
support for three regions previously associated with BD, and we show that the ANK3 region
replicates in our sample, along with some support for C15Orf53; other evidence implicates BD
candidate genes such as SLITRK2. We also tested the hypothesis that BD susceptibility variants
exhibit genetic background-dependent effects; SNPs with the strongest statistical evidence for this
included rs11208285 in ROR1 at 1p31.3 (p = 1.4 × 10-6), rs4657247 in RGS5 at 1q23.3 (p = 4.1 ×
10-6), and rs7078071 in BTBD16 at 10q26.13 (p = 4.5 × 10-6). This study is the first to conduct
GWA of BD in individuals of AA and suggests that genetic variations that contribute to BD may
vary as a function of ancestry.
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INTRODUCTION
Bipolar disorder (BD) is a paradigmatic complex phenotype with many genetic and non-
genetic determinants. BD is characterized by episodes of mania and depression (1). Onset is
usually in late adolescence, although BD typically recurs and relapses throughout life. BD
affects approximately 1% of the world’s population, and carries a lifetime risk for completed
suicide as high as 17%. Family, twin, and adoption studies all support a substantial genetic
component in BD (2-4). The sibling recurrence risk is between 7 and 10, and heritability is
estimated to be about 80%. While this is consistent with a strong genetic component, the
identification of specific genetic variations that influence BD susceptibility has been
difficult.
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Although some family studies have suggested that BD has an autosomal dominant genetic
determinant, the vast majority of genetic studies suggest that BD has a high level of genetic
heterogeneity and a substantial polygenic component (5,6). Linkage studies have identified a
number of loci with inconsistent replication. While previous linkage studies were highly
divergent (7), recent meta-analyses of linkage studies have found consistent supportive
evidence for linkage to a few potential BD susceptibility loci (8-10), notably 6q, 8q, 13q,
and 22q. A number of polymorphisms in a variety of candidate genes have been tested for
association with BD, but most of the polymorphisms have shown no statistically compelling
associations with BD; those that appear to be associated show odds ratios of 1.1 to 1.3,
which is again consistent with a polygenic basis for BD (11).

In the last several years the development of genome-wide association (GWA) study designs
and analysis methods have made it possible to search for multiple genetic variations
underlying a condition like BD without a priori assumptions about the genes or genomic
regions that might harbor susceptibility variations (12). The GWA study approach has
revealed a number of genetic variations that are unequivocally associated with traits and
diseases (13,14). The US National Institutes of Mental Health–sponsored Genetics Initiative
for Bipolar Disorder Consortium (Bipolar Consortium) has collected over 3,500 subjects
with BD during 1990-2008. A genetic component of the Bipolar Consortium, termed the
‘Bipolar Genome Study (BiGS),’ was initiated in 2006 to conduct a GWA study of BD. The
initial BiGS GWA study was funded through the Foundation for the National Institutes of
Health Genetic Information Association Network (GAIN) initiative
(http://www.genome.gov/19518664) and we report the results of this GWA study here. Of
note, many investigators have access to and have utilized the DNA samples from individuals
with BD that were collected as part of the Bipolar Consortium; thus, it is the case that a
portion of the samples on which we report here are not entirely independent of previously
published BD GWA studies (15,16) and an ongoing BD GWA study (Scott, Muglia,
Upmanyu, Guan, Flickinger, Kong, Tozzi, Li, Burmeister, Absher et al., submitted).

We performed a GWA study of BD separately in individuals of European ancestry (EA) and
of African ancestry (AA) using a variety of methods to control for population substructure
and admixture among the individuals of AA. Our study is the first GWA study of BD
involving individuals of AA. In addition to standard single locus analyses within the EA and
AA groups, we also assess the extent to which single nucleotide polymorphisms (SNPs)
exhibite evidence of genetic background-dependent effects or allelic heterogeneity across
the EA and AA individuals. Although more than 190 GWA studies have been performed to
date (12) these studies have virtually all been with EA subjects (NHGRI catalog of
published GWA studies: http://www.genome.gov/gwastudies/), raising important questions
as to the generalizability of the results to other populations. We assessed the consistency of
the SNPs exhibiting the strongest associations with BD in our study with previously
published results of BD GWA studies. We tested variation at ANK3, which is a candidate
gene that was implicated in an earlier GWA study (15) and identified as genome-wide
significant in a recent collaborative analysis (17). Finally, we genotyped a subset of SNPs in
the regions exhibiting strongest association in a replication case/control group and tracked
the co-inheritance of these SNPs and disease in families.

MATERIALS AND METHODS
See Supplemental Material for information regarding study subjects and genotyping and
quality control. The final number of BD cases was 1,001 EA subjects and 345 AA subjects;
control counts were 1,033 EA subjects and 670 AA subjects. The final dataset consisted of
724,067 SNPs in the EA dataset and 840,730 SNPs in the AA dataset. The two datasets had
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702,044 SNPs in common, and these were used to perform analyses addressing SNP and
SNPxgenetic background interactions in the combined sample.

Statistical Analysis
Primary analyses—All genetic analyses were conducted using PLINK (18) versions 1.03
and 1.04. Our primary analyses tested the association of each SNP (coded additively) with
BD using three distinct methods that control for genetic background heterogeneity (Table 1):
(1) single locus, contingency table analysis with genomic control adjustment, (2) logistic
regression using a LAMP-derived estimate of ancestry as a covariate, and (3) logistic
regression using the top 4 MDS dimensions as covariates. Association analyses using these
three methods were conducted within the EA and AA samples separately, as well as within
the combined sample (see Table 1). For each analysis, the distribution of expected p-values
under the null hypothesis (i.e., no association), and the genomic inflation value (λ) was
calculated in PLINK using the adjust command (Figure S1). Genomic inflation values are
reported as both uncorrected and corrected for a study size of 1,000 cases and 1,000 controls
(19,20).

Haplotype tests—Haplotype analyses were performed in the EA population using the
sliding window approach in PLINK (18), and results for 10-SNP windows are highlighted.
We used OMNIBUS p-values for the primary analysis and individual haplotype p-values for
the analysis of haplotype heterogeneity at ANK3. In these analyses, population structure was
not taken into account. For the haplotype heterogeneity analysis at ANK3, the proportion of
haplotypes that reached a p-value of p < 0.05 was performed using the 10-SNP window
results. For each window, the number of haplotypes with an individual p-value less than
0.05 was counted and a proportion calculated for the window. Smoothing was performed
over the results for the rest of the genome, and regions were highlighted that had a smoothed
proportion greater than or equal to the maximum found at ANK3 (0.33). Regions were
distinct and were delineated by the first and last marker with a smoothed value greater than
or equal to 0.33.

Imputation—Imputation was performed for the cleaned EA dataset using MACH v.1.0.16
(http://www.sph.umich.edu/csg/abecasis/mach/index.html) with HapMap rel21 phased
haplotypes as a reference (see Supplemental Material).

Genetic background-dependent effects—We assessed genetic background-specific
effects, which could be due to interactions with background-specific variation or
alternatively, due to different functional variation at the locus of interest. We combined the
EA and AA samples and performed logistic regression analyses with adjustment using a
LAMP main effect covariate and a LAMP x SNP interaction term (Table 2). We compared
the OR across different categories of admixture. We split the AA individuals into high and
low admixture categories by the approximate median %CEU of 15%, and calculated the OR
and 95% confidence interval within these and the EA group (see Figure 1).

Power and statistical significance—In the current study, we have employed a
significance threshold of 5 × 10-8, as this threshold has been commonly used in previous
GWA studies. As there were no SNPs that exceeded this threshold, we report the most
significant SNP for each sample, as well as regions where there are 5 SNPs within 100 kb of
each other all with p < 1 × 10-4. In addition, we list all SNPs reported with a p < 10-4

(Tables S3-S5). The strongest test of association lies in follow-up replication studies,
however, and with the data we have available to us, we have attempted to examine the
consistency of our results with previous GWA studies of BD and with our own newly
genotyped replication samples (Table 3).
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Pritzker study overlap and analysis—A concurrent study of BD is being undertaken
by the Pritzker Neuropsychiatric Disorders Research Consortium (PNDRC; Scott, Muglia,
Upmanyu, Guan, Flickinger, Kong, Tozzi, Li, Burmeister, Absher et al., submitted). There is
some overlap between the cases and controls used in our study and those used in the Pritzker
study (407 EA cases and 357 EA controls). As an extension of our analyses we excluded
these samples and repeated the association tests (see Table 1) so that the results of our study
and the study by the PNDRC could be compared on the basis of independent samples. It is
also the case that a portion of the samples on which we report here are not entirely
independent of previously published BD GWA studies (15,16). We were not, however, able
to perform a similar analysis with the non-overlapping samples from these other studies due
to restricted access to the genotype data and time constraints.

Comparison of our results with previous GWA studies—Initially, to assess the
extent to which our results corresponded with previous GWA studies of BD, we obtained p-
values for genotyped markers in the WTCCC (13) and STEP-BD (16) studies; it was the
case, however, that most of the top SNPs that we describe were not genotyped directly
within these studies. Therefore, we proceeded by investigating the three regions of interest
identified in a recent collaborative GWA study (17) within the EA sample in our study
(Figure S3). We evaluated the top SNPs from this study that were directly genotyped in our
study, as well as other SNPs in the three regions. We assessed both the direction of
associations between the two studies, as well as the strength. For comparison, we include the
results from these studies in the plots of regions of interest (Figure S2). Although limited,
we further analyzed our results relative to one of the single previously published GWA
studies (i.e., Baum et al., 2008) (15), which included about half of the probands and controls
used in the present study, in addition to a replication sample that is independent of our
sample (i.e., was collected in Germany). We present results in Figure S2, but note that
further analysis of the replication within each of the BD GWA studies will require specific
delination of the overlapping individuals within all the studies and imputation of all
genotypes.

Replication Genotyping
A subset of 85 SNPs from the GWA study was selected for replication genotyping based on
several criteria, with a primary focus on the allelic association p-value in the larger EA
sample. See Supplemental Material for additional information pertaining to replication
genotyping.

RESULTS
Descriptive Statistics

Demographic variables for EA and AA cases were generally similar (Table S1). For the AA
population, controls were less likely to be female. In the EA population, gender distributions
between cases and controls were similar. Controls were much older than cases in both
populations (mean age of cases: 18.0 (AA) and 19.3 (EA) vs. mean age of controls: 45.8
(AA) and 52.2 (EA), which should protect against cryptic disease in the control groups.

Basic Association Analyses
We report the top associated SNP in each ancestry group, as well as the top associated SNP
in the combined sample (Table 1; Figure S2). As discussed in the Subjects and Methods
section, we utilized different methods to control for genetic background heterogeneity and
admixture, but generally obtained similar results for all the methods. As shown in Table 1,
the most significant associations were different between the EA and AA subjects. For the
EA sample, the most significantly associated SNP was rs1825828 at 3q11.2, p = 7.0 × 10-7.
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However, upon inspection of the genotype intensity plot (see Figure S2), rs1825828
appeared to be poorly genotyped. The second-best association was rs5907577 in an
intergenic region at Xq27.1, p =1.6 × 10-6. For the AA sample, the most significantly
associated SNP was rs2111504 in DPY19L3 at 19q13.11, p = 1.5 × 10-6. In addition, we
looked for regions where there were multiple SNPs with low p-values (p < 1 × 10-4) with
close physical proximity to one another (i.e., within 100kb). We report two regions that
contain 5 SNPs that meet this criterion. Among EA, we report NAP5 (top SNP is
rs10193871, p = 9.8 × 10-6), and among AA, we report an intergenic region about 300kb
upstream of NTRK2 (top SNP is rs2769605, p = 4.5 × 10-5). When the EA and AA groups
were combined, the most significant SNP was rs4825220 in Xq27.1, p = 2.6 × 10-7, which
does not lie near a known gene. We also show Q-Q plots for each analysis (Figure S1).
Within AA and EA samples, overall p-value inflation was low. However, we observed high
levels of inflation when we combined the EA and AA datasets. This is due to the difference
in case-control ratios between the studies, which artificially induces population
stratification. Correcting for admixture using either LAMP or MDS covariates effectively
removed this stratification. However, using the genomic control method to adjust the p-
values overcorrected the association (Table 1).

We investigated the consistency of our top hits across each of the different groups in our
study. Table S2 shows to what extent the top hits in each individual sample (e.g., in the EA
group) showed evidence of association in the other samples (e.g., in the AA group). Top hits
within AA were not significant in EA and vice versa, suggesting that variation that
contributes to BD may differ between the two ancestral groups.

Imputation was performed using MACH
(http://www.sph.umich.edu/csg/abecasis/mach/index.html) on the EA dataset. Imputed SNPs
generally supported, and were of similar strength as the observed associations (see Figures
S2 and S3). Near EPHA6, however, there were no imputed SNPs that showed association
with BP, supporting the argument that the observed association is due to a genotyping error.

Haplotype Analyses
We performed haplotype-based association tests in the EA population, using the sliding-
window approach on the genotyped SNPs in PLINK. In addition to showing 10-SNP
haplotype p-values for each region where an individual SNP is highlighted, we also describe
the most significant haplotype. This haplotype is located on the X chromosome and is 7 Mb
away from the SNP with the highest single locus association strength (10 SNP OMNIBUS p
= 1.9 × 10-11). This region is about 1Mb downstream of SLITRK2 (Figure S2).

Comparison of Our Results with Previous GWA Studies
A recent collaborative GWA study (17) that consisted of 4,387 cases and 6,209 controls
pooled from the Wellcome Trust Case Control Consortium (13) Bipolar Analysis, Sklar et
al. (STEP-BD) (16), and 2,365 new samples highlighted three regions of interest: ANK3
(ankyrin G), CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel), and
a region 3.3kb away from C15ORF53 on chromosome 15q14 (17). This analysis was
restricted to individuals of EA; therefore, we investigated these regions within only the EA
sample in our study (Figure S3). When we focus on the top SNPs from this study that were
directly genotyped in our study, only one of the SNPs reached p < 0.05 (ANK3, rs1938526/
G, p = 0.036, OR = 1.31), although the top SNP in the 15q14 region approached p < 0.05
(rs2172835, p = 0.057, OR = 0.88). In both cases, the association was in the same direction
and of a similar strength as previously reported. In both of these regions, we saw additional
SNPs that showed low (0.01-0.0001) p-values.
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We thought that this pattern could indicate the presence of allelic heterogeneity, which has
also been suggested by a separate study focusing on 2 markers in the region (Schulze,
Detera-Wadleigh, Akula, Gupta, Kassem, Steele, Pearl, Strohmaier, Breuer, Schwarz, et al.,
in press), and which might reflect multiple underlying rare variants. In the presence of allelic
heterogeneity, we would expect that multiple haplotypes would show association with BD.
Using the 10 SNP window result from the haplotype analysis in the EA population, which
provide p-values for each haplotype in addition to the OMNIBUS p-values, we investigated
the proportion of haplotypes within each window that had p-values less than 0.05 (Figure 2).
In the ANK3 region, there were many 10-SNP windows that had a high proportion of low p-
value haplotypes (up to 75%, genome-wide average = 4.7%), with 2-5 haplotypes often
being implicated. In order to see if this was unexpected in the genome, we smoothed the
proportion of significant haplotypes across the genome and looked for other regions that
matched or exceeded the maximum smoothed value found in ANK3. We found 10 additional
regions covering approximately 1.5 Mb or about 0.05% of the genome that exceeded this
level of haplotype heterogeneity, indicating that the proportion of haplotypes that are
associated with BD at this locus is relatively high, compared to the rest of the genome
(Table S3). This provides additional support that the region shows allelic heterogeneity.

We further analyzed our results relative to one of the single previously published GWA
studies (i.e., Baum et al., 2008) (15), which included about half of the probands and controls
used in the present study, in addition to a replication sample that is independent of our
sample (i.e., was collected in Germany). Several of the 88 SNPs with replicated association
signals in the Baum et al. study (15) also show nominal evidence of association in the
present study (Table S4), including a SNP in ANK3 (i.e., rs9804190). The extent to which
this can be considered evidence for a consistent finding, however, is limited given the
overlap between the samples used in the two studies.

Genetic Background x SNP Interaction Analysis
Table 2 depicts evidence of SNP associations with genetic background-dependent effects.
As shown, no SNP showed strong genetic background-dependent effects (i.e., no p-values
less than 5 × 10-8). We do, however, report the top 3 SNPs, which occur in ROR1, RGS5,
and BTBD16 (all p-values < 4.5 × 10-6). We also show the OR across different categories of
admixture to depict these results (Figure 1).

Comparisons of Different Methods for Determining Ancestry
Based on LAMP ancestry estimates using all autosomal SNPs, the EA set showed less than
1% Yoruban admixture (mean= 0.998, range: 0.944-1, STD = 0.005), whereas the AA set
showed almost 19% European admixture (mean = 0.188, range: 0.0-1, STD = 0.124).
Furthermore, LAMP ancestry estimates including 3053 EA and AA subjects were
significantly correlated with estimates generated with the more traditional STRUCTURE
method (r = 0.999, p < 0.001). Including parental allele frequencies of HGDP subjects
instead of HapMap subjects did not influence ancestry estimates (r = 1.0, p < 0.001).

Analysis of Subjects that did not Overlap with the PNDRC
Results of analyses that included the subgroup of EA subjects that did not overlap with the
Pritzker Study revealed a different top hit relative to analyses that included the entire
sample. Specifically, the most significantly associated SNP in this subsample of EA subjects
was rs6046396, which is upstream of RIN2 at 20p11. 23, p = 1.43 × 10-6 (see Table 1).
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Replication Genotyping Analyses
Results from the replication analysis are shown in Table 3, with SNPs shown from genomic
regions that demonstrated association (p < 0.03) in the family-based replication sample. The
analysis of the case-control replication cohort did not detect significance below the multiple-
testing threshold (p < 0.001) among the 85 SNPs genotyped, although three of the SNPs in
the C15ORF53 region demonstrated some evidence of association in the case-control cohort
(p = 0.03-0.04) as well as in the family sample (p = 0.008-0.015). The preponderance of the
association evidence from the family based analysis reported in Table 3 is derived from
transmission of SNP alleles to affected individuals. These transmissions are effectively
independent of the population association (21). The meta-analysis (Table 3) gave p-values of
0.004-0.01 for SNPs in this region, and reinforced the association evidence for SNP
rs13358880 on chromosome 5.

DISCUSSION
We conducted two GWA studies, one in a sample of individuals of EA and the second in a
sample of individuals of AA. In order to account for possible genetic background
differences, we: 1) considered the analysis of each sample separately; 2) estimated ancestry
and genetic background diversity from the genetic data and controlled for it in the
association studies; and 3) looked for evidence of genetic background x SNP interactions. In
order to qualify our results, we also compared them to previous GWA study results
investigating BD, performed replication genotyping of our most strongly associated SNPs
on an independent cohort, and conducted analysis of only the non-overlapping subjects in
our study (with another study’s subjects) in order to tease out independent evidence for
associations.

Although no single SNP showed significant association after correction for genome-wide
testing in either of our populations, some noteworthy associations were observed with BD
candidate genes, as well as with genes known to be expressed in human brain. Of particular
interest are SLITRK2 and NTRK2. SLITRK2 is a member of a family of six genes which are
widely expressed in neural tissue (22), producing proteins which are membrane bound.
SLITRK2 regulates neurite outgrowth in vitro. Thus, SLITRK2 is a logical bipolar risk gene.
Another member of this gene family, SLITRK1, has been reported to be associated with
Tourette’s syndrome (23). NTRK2 (also known as TrkB) is a tyrosine kinase receptor which
binds brain derived neurotrophic factor (BDNF) and possibly other neurotrophins, i.e., (for
review see 24). NTRK2 is a high priority bipolar candidate gene for several reasons. There is
abundant evidence from animal models of depression that hippocampal neurogenesis is
decreased during the behavioral syndrome, that antidepressants increase neurogenesis, and
that BDNF has antidepressant-like properties in these animal models (25). BDNF expression
is increased in animals by treatment with antidepressants or lithium, and BDNF SNPs have
repeatedly been implicated in genetic risk for BD, although the effect size is quite limited,
e.g. odds ratio of 1.1 (26-29).

Our genetic background analysis revealed significant levels of admixture among our AA
study subjects. Given this, we explored the comparability of different methods to account for
admixture in our analyses and found that three different methods – genomic control
adjustment, logistic regression using a LAMP-generated covariate, and logistic regression
using MDS-generated covariates – all produced very similar results within the AA
population. Regression with either LAMP or MDS based covariates was effective for
correcting artificially induced population structure when EA and AA samples were
combined, but genomic control overcorrected for this, effectively removing any real
association that was not associated with admixture levels.
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Different putative associations were observed among individuals of EA and individuals of
AA when analyzed separately, and analyses assessing the extent to which some SNPs show
genetic background-dependent effects highlighted different areas of potential association.
We believe that this is the first report emerging from a GWA to explicitly address the
dependency of SNP effects on ancestry, admixture, and/or genetic background.

We sought to replicate our most strongly associated SNPs in two independent sets of
subjects, one family-based, and one case-control. Positive results were seen with rs1495186
in C15ORF53 and some additional SNPs in that region. When considered cumulatively via
meta-analysis with the primary EA sample, these results demonstrate consistent support for
association of SNPs in the C15ORF53 region with BD, and provide additional supportive
evidence of association in other regions.

We also considered the consistency of our results with previous BD GWA studies. There
have been three previous GWA studies of BD (13,15,16), in addition to a more recent
collaborative GWA meta-analysis study (17), a subset of which were represented in the
previous independent GWA studies. The Ferreira et al. (2008) collaborative GWA meta-
analysis study (17) identified a region of strong association in ANK3, apparently distinct
from that detected in Baum et al. (2008). Ferreira et al. also found new evidence for
association at 15q14, which is near C15ORF53, as well as further support for the previously
reported CACNA1C gene; these authors concluded that ion channelopathies may be involved
in the pathogenesis of BD.

In the current study, we found consistent evidence of both previously-reported ANK3
findings, and borderline support for replication of a region characterized at 15q14, although
we failed to find support for the finding at CACNA1C. In ANK3 and at 15q14, multiple
SNPs in weak to no linkage disequilibrium with the previously associated SNP showed
stronger association. Investigation of haplotype-based associations in our study provides
support for allelic heterogeneity in ANK3 region. Allelic heterogeneity has the potential to
play an important role in genetically influenced disorders, yet can be difficult to detect in
population-based samples using common variants, making it a potential explanation of
“missing heritability” (30). Of note, and as we have previously indicated however, the Baum
et al. (2008) and Sklar et al. (2008) samples both overlap with the current sample (15,16),
thus stringent conclusions pertaining to replication are not warranted.

Our GWA study of BD provides some support for previous findings that variation in ANK3
and at 15q14 influence BD susceptibility. In addition, regions containing NAP5, NTRK2,
SLITRK2, and ROR1 are worthy of follow-up studies. As all of these associated SNPs and
regions have small effect size, it is likely, however, that the majority of the genetic
variations that influence BD remain yet to be discovered.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Top genetic background-dependent SNPs
The region around the top background-dependent SNP. The primary SNP is colored in
black. Other SNPs are colored according to linkage disequilibrium levels with the primary
SNP (r2) calculated from Phase 3 HapMap data using the CEU ] population. Recombination
rate (HapMap) is shown on the second y-axis in blue. RefSeq genes are shown with all
possible exons; arrows indicate transcript direction. In the upper left hand corner of each
graph, the genotype intensity plots are shown, with each color indicating the final genotype
call (blue and red for homozygotes and purple for the heterozygote). B. Odds ratios for the
top three background-dependent SNPs within groups showing different degrees of
admixture. Low and High admixture groups are all of African Ancestry, but are split into
two groups by the approximate median percent CEU. Lines indicate 95% confidence
intervals.
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Figure 2. Muliti-haplotype association in the ANK3 region suggests allelic heterogeneity
Each point summarizes the proportion of haplotypes within a given 10 SNP window. The
proportion of the haplotypes that show a p < 0.05 for a given window is plotted on the y-
axis. The x-axis is the physical position of the midpoint of the haplotype. The points are
colored according to the number of haplotypes that show p < 0.05. The proportion was
median smoothed over 101 windows (blue line). The red dotted line indicates the genome-
wide mean proportion of haplotypes with a p < 0.05. RefSeq genes are shown below the x-
axis.
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Table 2

SNPs showing strongest genetic background-dependent effects (EA/AA combined sample with interaction
term).

SNP/Allele Location MAF OR SNP x Ancestry Interaction p-value

rs11208285/A ROR1 (1p31.3) 0.38 2.05 1.4 × 10-6

rs4657247/T RGS5 (1q23.3) 0.21 2.11 4.1 × 10-6

rs7078071/T BTBD16 (10q26.13) 0.10 2.85 4.5 × 10-6
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