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Abstract
Context—Improving the function of prosthetic arms remains a challenge, as access to the neural
control information for the arm is lost during amputation. We have developed a surgical technique
called targeted muscle reinnervation (TMR) which transfers residual arm nerves to alternative
muscle sites. After reinnervation, these target muscles produce an electromyogram (EMG) on the
surface of the skin that can be measured and used to control prosthetic arms.

Objective—Assess the performance of TMR upper-limb amputee patients using a pattern-
recognition algorithm to decode EMG signals and control prosthetic arm motions.

Design—Surface EMG signals were recorded on participants and decoded using a pattern-
recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm.
Participants were instructed to perform various arm movements, and their abilities to control the
virtual prosthetic arm were measured. In addition, TMR patients used the same control system to
operate advanced arm prosthesis prototypes.

Setting—This study was conducted between January 2007 and January 2008 at the
Rehabilitation Institute of Chicago.
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Participants—This study included five patients with shoulder disarticulation or transhumeral
amputations who received TMR surgery between February 2002 and October 2006. It also
included five non-amputee (control) participants.

Main Outcome Measure—Performance metrics measured during virtual arm movements
included motion-selection time, motion-completion time, and motion-completion (or `success')
rate. Three of the TMR patients were also able to test advanced arm prostheses.

Results—TMR patients were able to repeatedly perform 10 different elbow, wrist and hand
motions with the virtual prosthetic arm. For TMR patients, the average (standard deviation (SD))
motion-selection and motion-completion times for elbow and wrist movements were 0.22 s (0.06)
and 1.29 s (0.15), respectively. These times were 0.06 s and 0.21 s longer than the average times
of control participants. For TMR patients, the average (SD) motion-selection and motion-
completion times for hand-grasp patterns were 0.38 s (0.12) and 1.54 s (0.27), respectively. TMR
patients successfully completed an average (SD) of 96.3% (3.8) of elbow and wrist movements
and 86.9% (13.9) of hand movements within 5 s, compared to 100% (0) and 96.7% (4.7)
completed by controls. Three of the patients were able to demonstrate the use of this control
system in advanced prostheses including motorized shoulders, elbows, wrists and hands.

Conclusion—These results suggest that reinnervated muscles can produce sufficient EMG
information to control advanced artificial arms.

Introduction
The loss of one or both arms is a major disability that profoundly limits the everyday
capabilities and interactions of upper-limb amputees. Currently available prostheses do not
adequately restore the function of an individual's arm and hand. The most commonly used
prostheses are body-powered. These devices capture remaining shoulder motion with a
harness, and transfer this movement through a cable to operate the hand, wrist or elbow.
With this control method, only one joint can be operated at a time. Myoelectric prostheses
use the electromyogram (EMG) signals (the electrical signals generated during muscle
contraction) from residual limb muscles to control motorized arm joints. Current control
strategies use the amplitudes of the EMG signals from one or two remaining muscles to
sequentially operate each function in the prosthesis.1 For example, the biceps and triceps
muscles are used by a transhumeral amputee to control the elbow, wrist and hand. The user
must trigger a “mode switch” to sequentially select which of these devices is to be actuated.
This type of operation is not intuitive, as the residual muscles control physiologically
unrelated movements. The use of currently available arm prostheses is cumbersome and
slow for people with transhumeral or shoulder disarticulation amputations—the people
whose disability is the most severe.2–8

We have developed a new surgical technique, called targeted muscle reinnervation (TMR),
to improve myoelectric prosthesis control.9–14 With TMR, remaining arm nerves are
transferred to residual chest or upper-arm muscles that are no longer biomechanically
functional due to loss of the limb. Once reinnervated, these muscles serve as biological
amplifiers of motor commands from the transferred arm nerves and provide physiologically
appropriate EMG signals for hand, wrist and elbow control. TMR has been successfully
performed in people with transhumeral and shoulder disarticulation amputations and has
markedly improved their functional use of prostheses.10, 12, 13 Using a simple control
paradigm based only on the amplitude of EMG signals from reinnervated muscles, TMR
amputees can intuitively and simultaneously control hand open/close and elbow extension/
flexion.
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Further investigation has shown that TMR provides a rich source of motor control
information. Electrode arrays were used to record EMG signals as TMR patients attempted
16 different motions involving the elbow, wrist, thumb and fingers. The patterns produced
by the combined EMG signals during the performance of different movements were used by
a computer to create a “classifier.” The classifier was then used to predict motions being
performed based on the current pattern of EMG signals. This strategy is called “pattern
recognition.” Analysis of the data revealed that the intended motions could be classified
with an average classification accuracy of 95 %.15, 16 However, it is unknown whether
reinnervated muscles can stably and accurately provide myoelectric signals for real-time
control of multifunction prostheses. Real-time performance metrics are required to examine
the clinical robustness and accuracy of myoelectric prosthetic control with TMR.

This study assessed the real-time control of multifunction prostheses based on TMR
combined with a pattern-recognition algorithm. Performance metrics (motion selection time,
motion completion time and completion rate) were quantified by training and testing with a
virtual multifunction prosthesis. It also was demonstrated that participants were able to
successfully operate advanced experimental upper limb prostheses. A qualitative assessment
of the control of these advanced arm systems is presented including videos of the patients
using the devices.

METHODS
This study was conducted with five patients who had undergone TMR surgery 11–70
months prior to testing. For comparison, five non-amputee control participants were
included in the study. This study was approved by the Northwestern University Institutional
Review Board and conducted between January 2007 and January 2008 at the Rehabilitation
Institute of Chicago. All participants gave informed consent and provided permissions for
publication of videos and photographs for scientific and educational purposes.

Five of the six shoulder-disarticulation or transhumeral amputees who had undergone TMR
surgery in collaboration with the Rehabilitation Institute of Chicago agreed to participate in
this study. Three of these participants had shoulder-disarticulation amputations. Patient S1
was a 54-year-old man who underwent bilateral shoulder-disarticulation amputations in May
2001 following high-voltage electrical injuries to both arms. During TR surgery, which took
place in February 2002, his residual musculocutaneous, median, radial, and ulnar nerves
were transferred to the pectoralis major and pectoralis minor muscles (Figure 1a).11, 17, 18

Patient S2 was a 24-year-old woman with a left shoulder-disarticulation (very short residual
humerus) amputation resulting from a motor-vehicle accident in May 2005. During TMR
surgery, the musculocutaneous, median, radial and ulnar nerves were transferred to portions
of the pectoralis major and serratus anterior muscles (Figure 1b).13 Patient S2 began fitting
with her TMR prosthesis in February 2007. Patient S3 was a 37-year-old man who
underwent right shoulder-disarticulation amputation in February 2005 following severe
electrical burns. During TMR surgery, which took place in July 2006, the
musculocutaneous, median, radial and ulnar nerves were transferred to the pectoralis major,
pectoralis minor, and latissimus muscles (Figure 1c). Two patients with transhumeral
amputations also participated in the study. A 50-year-old man with a right transhumeral
amputation resulting from a motor-vehicle accident in April 2004 (T4) had the median nerve
transferred to the medial biceps and the distal radial nerve transferred to the brachialis
muscle during TMR surgery in January 2005.14 A 38-year-old woman with a left
transhumeral amputation due to a motor-vehicle accident in April 2006 (T5) had the median
nerve transferred to the medial biceps, and the distal radial nerve transferred to the lateral
triceps during TMR surgery in October 2006. For comparison, five healthy non-amputees
(three males and two females, aged 20 to 45 years) participated in the study. The control
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participants were chosen to have representation of both genders and an age range similar to
the TMR patients.

EMG Data Collection
For each TMR patient, 12 self-adhesive bipolar EMG electrodes were placed on the skin
over the reinnervated muscles. Four electrodes were placed at sites chosen previously
through clinical evaluation to control the amputees' prostheses.10–12 The eight additional
sites were determined by an electrode-placement optimization algorithm16 which sought to
maximize the classification accuracy for different movements. For control participants, 12
electrodes were used to record EMG signals from physiologically appropriate muscles in the
arm and hand. One electrode was placed over the biceps muscle, and a second over the
triceps muscle; six electrodes were placed around the proximal forearm; one electrode was
placed on the dorsal side of the wrist; and three electrodes were placed on the hand (medial
and lateral thenar eminence and hypothenar eminence). The EMG signals were amplified
and band-pass filtered from 5–400 Hz. Data were sampled at 1 kHz by an analog-to-digital
converter (Measurement Computing, USB-116FS) and processed in real time on a desktop
computer using the software platform Matlab (The Mathworks, Natick, MA).

Classifier Training and Testing
The 11 motion classes were elbow flexion, elbow extension, wrist flexion, wrist extension,
wrist pronation, wrist supination, hand opening, three types of hand grasps and a no-
movement class. TMR patients were allowed to try five different hand-grasp patterns: three-
jaw chuck, fine pinch, key grip, power grip and tool grip (Figure 3a). Each patient chose
three of these grips based on relative ease and reliability of control. For control participants,
the three grasps were three-jaw chuck, fine pinch and tool grip; the three most commonly
used grasps chosen by the patients. The participants were instructed to follow a
demonstration of each movement displayed in random order on the computer screen (Figure
3b) and to perform the movement with a comfortable and consistent level of effort. The
prompt was displayed with a countdown during the rest time between trials to give patients
time to prepare. EMG data were collected in eight consecutive trials. In each trial, each
motion was repeated twice and held for 4 s, producing 8 s of EMG recordings per motion.
There was a 3 s time interval between motions in the four even-numbered trials. A variable
rest time of 0–3 s was used in the four odd-numbered trials in an attempt to keep the
participants engaged and enhance the classifier's robustness. EMG data from the eight trials
were split into two groups: the four odd-numbered trials were combined and used to train the
classifier; the four even-numbered trials were combined and used to test the classifier. The
pattern-recognition algorithm used in this study was implemented as follows: EMG
recordings were segmented into a series of 150 ms analysis windows with 50 ms of overlap,
resulting in a new classification every 100 ms. Four time-domain features3, 15 were
extracted from EMG signals in each analysis window. The combined features from the
even-numbered trials were used to train a linear discriminant analysis (LDA) classifier.3, 15,
16, 19 This LDA classifier was then used to classify the combined features from the testing
set. The classification accuracy for each movement was the percentage of total analysis
windows for that class which were correctly classified. The overall classification accuracy
was the average of these values for all (11) movements. The LDA classifier was then used in
real-time to classify features extracted from real-time EMG signals, produce a new
prediction of the motion class every 100 ms, and control a virtual reality arm or a physical
prosthesis, as described below. Computational time for each analysis window was less than
3 ms.
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Virtual Prosthesis Control
Experiments with a virtual prosthesis were performed immediately after classifier training.
Participants were instructed to follow visual prompts for each movement, and a virtual arm
that responded to the classifier output was displayed on the screen (Figure 3b). Once the
participants correctly selected the desired movement, they were asked to maintain it until the
virtual arm completed the movement. The time of movement onset was identified as the
time of the last `no movement' classification (Figure 4). Each of the 10 motions was
randomly presented three times in a trial and the trials were repeated six times for a total of
180 movements: 72 hand-grasp motions and 108 elbow and wrist motions. These data were
used to evaluate the speed and consistency of control using real-time pattern recognition.

The performance metrics used to assess virtual prosthesis control were motion-selection
time, motion-completion time, and motion-completion (or `success') rate. The motion-
selection time was the time taken to correctly select a target motion and was defined as the
time from movement onset to the first correct classification (Figure 4). This quantity
measures how quickly motor commands can be translated into correct motion predictions.
The motion-completion time was defined as the time from movement onset to the tenth
correct classification (which represented the full range of motion for any movement) (Figure
4). The fastest possible speed to complete any motion was 1 s, corresponding to 10
consecutive correct classifications with new classifications occurring every 100 ms. If the
correct class was not selected within a 5 s time limit, the movement was considered a
failure. The motion-completion rate was the percentage of successfully completed motions
out of the total attempted motions (72 attempted motions for the hand, and 108 attempted
motions for the elbow and wrist) within the time limit. Because the motion-selection and
motion-completion data for each participant was highly skewed, the median value for all six
arm movements (elbow and wrist) and all four hand movements (hand open and three hand-
grasps) were calculated for each participant, and these values were averaged across the five
TMR patients and five control participants.

Preliminary research demonstrated that hand-grasp patterns were more difficult to perform
than elbow and wrist movements. Therefore, the control scheme for hand grasps was
modified. A hand grasp could only be selected when the hand was fully open. Once a grasp
was selected, any hand-grasp pattern would close the hand in the initially selected grasp.
However, if the initial hand-grasp pattern selected was incorrect, the patient would have to
fully open the hand and try again.

Physical Prosthesis Control
Three of the TMR patients were able to test advanced upper arm prosthesis prototypes
developed under the Defense Advanced Research Project Agency's Revolutionizing
Prosthetics program. Video of this initial testing is presented as supplemental information.

Johns Hopkins University Applied Physics Lab (JHUAPL) and their collaborators
developed a seven-degree-of-freedom prosthetic arm that was tested with patient S1 in
January 2007. S1 controlled flexion and extension of the motorized shoulder by using
residual shoulder motion to operate a mechanical rocker switch. A motorized humeral
rotator was controlled with EMG signals from the residual deltoid and latissimus dorsi
muscles. Powered elbow flexion/extension, wrist pronation/supination, wrist flexion/
extension and a hand that allowed three-jaw chuck and lateral pinch grip were controlled
with EMG signals from TMR muscles and the pattern recognition algorithm.

DEKA Integrated Solutions Corporation and collaborators developed a 10 degree-of-
freedom prosthetic arm system that was tested with patients S1, S2 and T5 in May, June and
July 2007, respectively. A shoulder controller operated with residual shoulder movement
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allowed shoulder-disarticulation patients to simultaneously operate shoulder flexion/
extension and abduction/adduction. Humeral rotation was controlled with EMG signals from
the latissimus dorsi and deltoid muscles. The powered elbow, wrist and hand were
controlled with pattern recognition of EMG signals recorded over TMR muscles. For patient
T5, the humeral rotator was controlled with a switch, while the elbow, wrist, and hand were
controlled with pattern recognition of EMG signals recorded over TMR muscles. The
DEKA hand had multiple motors and was able to form a variety of hand-grasp patterns
including those shown in Figure 3a.

Surface electrodes were either self-adhesive or built into the patients' prosthetic sockets. The
arm systems were trained at the beginning of each session with a short pattern-recognition
protocol similar to the one described above. Training and testing with the prostheses
occurred over a two-week period for each patient. Sessions generally lasted two to three
hours with one session in the morning and one in the afternoon.

RESULTS
Virtual Prosthesis Testing

The mean (SD) classification accuracy was 97% (2) for control subjects and 88% (7) for
TMR patients.

The majority of movements were selected quickly, with motion-selection times less than 0.3
s (Figure 5a). The average (SD) motion-selection times for elbow and wrist movements
(elbow flexion/extension, wrist rotation and wrist flexion/extension) were 0.16 s (0.03) for
control subjects and 0.22 s (0.06) for TMR patients (Table 1). The motion-completion rate
(SD) for the 180 movements was high; 96.3% (3.8) for TMR patients and 100% (0) for
control participants. For TMR patients, the selection of the appropriate hand-grasp patterns
took longer and had, on average, a 9.4 % lower success rate than wrist and elbow
movements (Table 1). For control participants, the median motion-selection time for hand
grasps was similar to that of elbow and wrist movements (Table 1). The motion-completion
rate for hand grasps was slightly (3.3%) lower (Table 1).

The movements performed by both TMR patients and control participants were also
completed quickly, consistent with the high classification rates (Figure 5b). The fastest
possible motion-completion time was 1 s, representing perfect classification of the intended
movement. The average (SD) motion-completion times for elbow and wrist movements
were 1.29 s (0.15) for TMR patients and 1.08 s (0.05) for control participants. For both
groups, hand grasps took longer to complete than arm movements: the average (SD) motion-
completion times for hand grasps were 1.54 s (0.27) for TMR patients and 1.26 s (0.17) for
control participants.

The average (SD) motion-completion rates within a 3 s time limit were 94.1% (out of 108
elbow and wrist movements) and 80.3% (out of 72 hand grasps) for TMR patients, and
99.6% (out of 108 elbow and wrist movements) and 93.6% (out of 72 hand grasps) for
control participants (Figure 6c). The motion-completion rate for hand grasps was lower for
two of the five TMR patients. The motion-completion rate increased dramatically as the
time limit was increased up to approximately 2 s and then began to plateau; the maximum
motion-completion rate was generally reached by 6 s.

Real-Time Control of Advanced Prosthetic Arm Systems
Building upon the virtual arm training experience, three TMR patients were able to
demonstrate control of physical arm systems as shown in the supplemental videos (Videos
1–4) (http://www.ric.org/research/centers/necal.…). All three patients were able to perform
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basic operations using pattern-recognition control on the first day of testing. Over a two-
week trial period, their proficiency improved with practice, systems debugging and minor
systems improvements.

The patients were able to operate all functions of the prosthetic arm prototypes. Control of
arm and hand movements using pattern-recognition of EMG signals from TMR muscles
provided the ability for intuitive, sequential control of the elbow, wrist and hand. The
shoulder disarticulation patients were able to simultaneously operate the shoulder and arm.
Patients generally performed one motion at a time and would occasionally operate two joints
simultaneously for reaching tasks.

The joints on these prostheses were capable of relatively high speeds. The speed range was
customized to each patient as the patients preferred to operate the arms at slower speeds to
allow more accurate control. This control is demonstrated by patient S1 catching checkers
rolling across a table (Video 1), patient S2 stirring a spoon in a cup (Video 3) and patient T5
moving small blocks (Video 4).

The powered shoulder systems markedly increased the workspace of the prostheses.
Motorized shoulder flexion allowed the shoulder disarticulation patients to reach above their
heads. Motorized shoulder flexion also allowed these patients to have a deeper workspace as
demonstrated by S2 performing reaching motions over a table (Figure 7a). Humeral rotation
and shoulder abduction widened the workspace for all patients and facilitated reaching to the
midline for bimanual tasks. The powered wrist served mostly to preposition a functional
wrist angle and facilitate better hand operation. The increased number of powered joints also
allowed more precise orientation of the hand in space. For example, a ring could be moved
across a geometric wire, as shown in Figure 7b.

Many different hand grasps were possible with the DEKA arm system; patients were able to
try three-jaw chuck, lateral pinch, fine pinch, power grasp and tool grip. Patients varied in
their abilities to control different grasps: one patient could reliably select four hand-grasp
patterns, another could control up to three, and the third could reliably operate two. Training
with a smaller number of hand grasps improved performance. Choosing different hand-grasp
patterns was also more difficult than operating the wrist or elbow motions, consistent with
the virtual data presented above. The different grasps facilitated different functional
activities. For example, the power grip allowed a firm grasp of a hammer and the fine pinch
enabled the picking up of small objects (Figure 7c).

COMMENT
This study presents experiments on real-time control of highly articulated artificial arms in
patients with targeted muscle reinnervation—a novel neural-machine interface. In this study,
we have demonstrated that a pattern-recognition algorithm can be used to decode surface
EMG data from reinnervated muscles and provide intuitive control of powered elbows,
wrists and hands.

The quantification of outcomes is always a challenge with respect to arm function. EMG-
pattern-recognition studies generally report classification accuracies found with able-bodied
participants. The accuracies are generally in the range of 90–100% regardless of the
classification algorithm chosen, demonstrating a ceiling effect. Classification accuracy,
however, is a limited metric of control function: a study by Lock et al. failed to demonstrate
a high correlation between pattern classification accuracy and simple performance testing.20

In this study, classification accuracy for TMR patients was lower than that for control
participants. The values measured here were similar to previously reported data from our lab
and other investigations of using pattern recognition of EMG signals to classify intended
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movements.16, 21, 22 It is important to note that this is only the averaged accuracy of being
able to hold a motion for 4 s—it is not a dynamic estimation of performance.

In this study, we have developed a protocol to assess the control of a virtual arm; a protocol
we believe is more challenging and allows measurement of more insightful performance
parameters. The data from control participants performing the same tests are presented as a
reference, and represent the performance possible with a more complete EMG data set. Our
protocol allows the quantification of several key performance metrics. The motion-selection
time is the speed at which the user can access a function in the prosthesis. Faster is clearly
better, but what is good enough? Farrell et al. found that participants did not appreciate a
time delay of less than 100 ms23 and others have advocated that a delay of up to 300–400
ms is acceptable.21, 22, 24 Thus the motion-selection times of TMR patients for arm
function are quite good (220 ms or less) and the motion-selection time for hand grasps is
perhaps marginal at 380 ms. It should be noted that this delay is not due to computational
processing, which only takes a few milliseconds. The motion-selection time delay is
intrinsic to EMG control, as it represents the need for sufficient data to accumulate before an
accurate decision can be made.

The motion-completion time is a measure of speed of use. We set a normalized gain so that
a task could be completed in 1 s, which correlates to a reasonable speed for prosthesis
function of 90–120 degrees/s. Here we see that the TMR patients did quite well compared to
the control subjects. Perhaps the most important metric was the motion-completion rate: a
measure of robustness. A very high success rate is needed to allow adequate function and
prevent user frustration. One patient had excellent completion rates of 99% for the elbow
and wrist and 96% for the hand grasps (Figures 7a and 6b); this was comparable to the
control participants (Figure 6c). Two others clearly struggled to perform multiple hand-
grasping functions. In general the success rates for elbow and wrist functions were high but
the success rates for controlling multiple hand grasps were much lower, demonstrated that
this is more challenging to some patients.

Quantifying operation of a virtual arm allowed measurement of some useful metrics in the
laboratory. However, the ultimate goal is for amputees to operate more dexterous prosthetic
arms. Controlling a real prosthesis introduces many practical challenges such as EMG signal
recording stability, interference from muscles controlling remaining joints, and the effects of
tissue loading and arm dynamics.25 As part of this Defense Advanced Research Agency
program, we had the opportunity to do initial testing of advanced robotic arms with three of
our patients. The arms were operated using practical control schemes including: pattern
recognition control using EMG signals from TMR muscles; conventional myoelectric
technology; and custom powered shoulder controllers. The supplemental videos provide
compelling qualitative results. Each subject was able to gain some mastery of the systems in
the first day of testing. Within two weeks they were all able to demonstrate encouraging
control of these complex devices. Our training and testing periods were brief. Improvement
in control and function would be expected with more practice. Simultaneous operation of all
shoulder motions and one arm movement was demonstrated. However, patients would only
use simultaneous operation of two joints for reaching tasks and usually operated only one
motion at a time. This is likely due to the cognitive burden of operating such a complex
device.

The lack of sensory feedback is an obstacle for controlling such complex devices. Patients
are currently forced to rely on visual feedback. Improved sensory feedback, especially
proprioception, will be critical to the long-term goal of neural integration and more natural
control of complex robotic arms.
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These early trials demonstrate the feasibility of complex multifunction prosthesis control
with TMR. Additional research and development need to be done before field trials can be
performed. Improving EMG signal recording repeatability and stability are required to
minimize or eliminate daily classifier training. Work is ongoing to develop more robust
surface EMG recording systems and prosthetic interfaces. Implantable EMG systems
eliminate some of the surface EMG recording problems and may provide more stable
systems.26 Adaptive pattern-recognition algorithms also may improve the stability of control
with extended use. There are various hierarchical control schemes that may be more robust
for some patients; customization of control hierarchy is an accepted practice in modern
prosthetics. The JHUAPL and DEKA robotic arms performed very well as early prototypes.
Further improvements are needed, and planned, including reducing the size and weight and
increasing the robustness of these advanced prostheses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic of TMR surgery in a participants S1 (a), S2 (b) and S3 (c).
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Figure 2.
Timeline of relevant history of TMR patients including original amputation, TMR surgery,
practice with the virtual arm, and testing for this study.
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Figure 3.
(a) Five hand-grasp patterns used in this study. (b) Screen shot of the prompted movement
and responding virtual arm.
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Figure 4.
Two performance metrics: motion-selection time (MSt) and motion-completion time (MCt).
The target motion classes are shown by green dots and the decisions of the classifier are
depicted as blue circles. Each target movement started from a state of rest. The classifier
made a motion prediction every 100 ms. The mean absolute values of the recorded EMG
signals are shown in the bottom panel.
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Figure 5.
(a) Motion-selection time histogram for both TMR patients and control participants. (b)
Motion-completion time histogram for both TMR patients and control participants. Both
times were calculated from all the completed movements with a time limit of 5 s. The time
bin is 0.1 s for motion-selection times and 0.5 s for motion-completion times.
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Figure 6.
Completion rate vs. time. (a) Elbow and wrist completion rates for the five TMR patients.
(b) Hand-grasp completion rates for the five TMR patients. (c) Average completion rates for
TMR patients (black lines) and control participants (red lines), respectively.
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Figure 7.
Patients using experimental arm prostheses. (a) Patient S2 was shown reaching to catch a
tissue box using the DEKA arm. (b) Patient S1 was shown moving a ring across a geometric
wire using the JHUAPL arm. (c) Patient T5 was shown grabbing a pen using the DEKA
arm.

Kuiken et al. Page 18

JAMA. Author manuscript; available in PMC 2011 February 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kuiken et al. Page 19

Table 1

Performance metrics for virtual arm protocol for a 5.0 second time limit.

Performance metrics TMR Patients (n=5) Control Participants (n=5)

Motion-Selection Time (s) Average (SD) Average (SD)

 Elbow & wrist classes* 0.22 (0.06) 0.16 (0.03)

 Hand grasp classes** 0.38 (0.12) 0.17 (0.09)

Motion-Completion Time (s) Average (SD) Average (SD)

 Elbow & wrist classes* 1.29 (0.15) 1.08 (0.05)

 Hand grasp classes** 1.54 (0.27) 1.26 (0.18)

Motion-Completion Rate (%) Average (SD) Average (SD)

 Elbow & wrist classes* 96.3 (3.8) 100 (0)

 Hand grasp classes** 86.9 (13.9) 96.7 (4.7)

*
for 108 attempted elbow and wrist movements

**
for 72 attempted hand-grasps
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