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Abstract
Transport phenomena of platelets and white blood cells (WBCs) are fundamental to the processes
of vascular disease and thrombosis. Unfortunately, the dilute volume occupied by these cells is not
amenable to fluid-continuum modeling, and yet the cell count is large enough that modeling each
individual cell is impractical for most applications. The most feasible option is to treat them as
dilute species governed by convection and diffusion; however, this is further complicated by the
role of the red blood cell (RBC) phase on the transport of these cells. We therefore propose an
extended convection–diffusion (ECD) model based on the diffusive balance of a fictitious field
potential, Ψ, that accounts for the gradients of both the dilute phase and the local hematocrit. The
ECD model was applied to the flow of blood in a tube and between parallel plates in which a
profile for the RBC concentration field was imposed and the resulting platelet concentration field
predicted. Compared to prevailing enhanced-diffusion models that dispersed the platelet
concentration field, the ECD model was able to simulate a near-wall platelet excess, as observed
experimentally. The extension of the ECD model depends only on the ability to prescribe the
hematocrit distribution, and therefore may be applied to a wide variety of geometries to investigate
platelet-mediated vascular disease and device-related thrombosis.

1. Introduction
The simulation of transport of WBCs and platelets is important in various areas of
biomedical engineering. Both cells play a vital role in wound healing and are important in
the remodeling of bioscaffolds. Platelets are also involved in atherosclerosis (Ross 1999)
and thrombosis. The interaction of WBCs with the vessel wall in adverse flow conditions
leads to the formation of neointimal hyperplasia and atherogenesis (Chervu and Moore
1990, Ross 1999). Platelets and leukocytes can also interact during the inflammation
response through traditional chemical pathways and binding receptors to form platelet-
neutrophil clusters (Mickelson et al 1996). Platelet deposition in medical devices can induce
thrombosis and formation of emboli, leading causes of hemodynamic-related complications.
Therefore, an accurate, predictive model of cell transport would be valuable for a wide range
of applications.

It is well known that blood flowing in a tube or vessel is characterized by a near-wall excess
of platelets (Aarts et al 1988, Eckstein et al 1989). The phenomenon is valuable for the
body’s response to injury. Several theories have been proposed for why this layer forms, but
the most consistent with experimental findings is that the red blood cells (RBCs) exclude the
platelets from the core, either through collision or volume displacement. The RBC motion to
the core excludes the smaller, less dense platelets to the wall. The exact reason for why
RBCs are preferred in the core as opposed to platelets is not fully understood since platelets
and WBC also migrate away from the wall in the absence of RBCs (Goldsmith and Spain
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1984, Aarts et al 1988). The most likely reason is that this is the lowest energy state for the
system as a whole.

There are three methods used for mathematically modeling platelet and WBC transport:
discrete models, fluid-continuum models and dilute phase models. Discrete models
explicitly represent the microstructure of the blood, by either considering the dynamics of
individual cells or the dynamics of representative particles on a mesocopic scale. The cells
may be treated as particles or deformable capsules, depending on the scale of the domain
with respect to the size of the cells. Fogelson et al (Fogelson and Guy 2004, Guy and
Fogelson 2002, Kuharsky and Fogelson 2001) for example simulate blood flow of
deformable cells in capillaries and arterioles in which tractions are imposed on the cells by
both the surrounding fluid and collisions and adhesions between other cells. These models,
done on the micro-scale, tend to be computationally intensive and hence are prohibitively
expensive in large flow domains. For example, medical devices and large blood vessels may
transport trillions of platelets and billions of white blood cells (WBCs) per second.
Consequently, simulations of flow domains involving cell counts greater than the low
hundreds are typically modeled by a disperse subset of the cells. For example, Kleinstreuer
and colleagues (Hyun et al 2004, Longest and Kleinstreuer 2000, 2003b, 2003a, Longest et
al 2000, 2003a, 2003b, 2005) simulate transport of platelets and WBCs in arterial
anastomoses by studying the probability distributions of random particles. This technique
provides consideration of the cell trajectories, shear history and surface interactions, but
does not guarantee that they represent the entire population of cells normally present in the
flow domain. A third variation in this class of models uses the lattice-Boltzmann method
(Nguyen and Ladd 2002, Sun et al 2003, Sun and Munn 2005, Boyd et al 2005, Dupin et al
2006, Bernsdorf et al 2006), originally developed for rarified gases, which represents the
cell population using probability densities of infinitesimally small particles. This approach
has seen many recent advances (Gabbanelli et al 2005, Harting et al 2005, Premnath and
Abraham 2005), but is not fully developed (Guo et al 2004, Hazi 2003, Latt et al 2008,
Siebert et al 2008, Kim and Pitsch 2008, Rohde et al 2008, Kao and Yang 2008, Caiazzo
and Junk 2008).

Fluid-continuum models assume that the cells comprise a distinct continuum ‘mixed’ with a
continuum for plasma (Jung and Hassanein 2008, Jung et al 2006a, 2006b). The treatment of
the cellular phase as a continuum is however questionable for WBCs and platelets, which
are too dilute for the classical definition in continuum mechanics: that the medium is indeed
‘continuous not containing gaps or empty spaces’ (Malvern 1969) (see the appendix). In
other words, these cells cannot contribute to the macroscopic dynamics of the flow
(Sequeira and Janela 2007).

Dilute phase models for the transport of suspensions with low volume fraction are typically
governed by the convection–diffusion transport theory. Platelets have been modeled using
this approach for decades (Adams and Feuerstein 1983, Hubbell and McIntire 1986, Karner
and Perktold 1998, Leonard et al 1972, Richardson 1981, Sorensen et al 1999a, Wootton et
al 2001, Buchanan and Kleinstreuer 1998). Some of the more recent implementations by
Sorensen et al (2002) and Jordan et al (2004) were used to predict platelet deposition in
disturbed flow. Although the models performed well in predicting deposition between
parallel plates, they were unable to accurately predict the deposition downstream of the
reattachment point downstream of a backward step. Both groups theorize that this was due
to the failure to include the active influence of RBCs that drive platelets toward the wall.

Several methods have been proposed to improve platelet transport to reactive walls. The
early attempts used an enhanced diffusivity, as was also employed by Sorensen and Jordan
(Sorensen, Jordan et al). These models have been effective to enhance platelet flux to the
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wall thereby predicting deposition at expected rates in parallel plates. But due to the isotropy
of diffusion and the use of passive transport instead of an active method, these models do
not establish or maintain a near-wall excess of cells. Consequently, they fail to predict the
longitudinal deposition downstream of a backward step. Other approaches have been
proposed using drift fluxes that force the platelet concentration to adopt a desired profile, but
these require a priori knowledge of the final profile and are valid only in tube flow
(Eckstein and Belgacem 1991, Hofer and Perktold 1997). Kao (2000) further proposed the
use of a platelet flux contrary to the flux of RBCs. However, this assumption is only valid as
the RBC concentration profile is developing, yet experiments show that the lateral platelet
flux continues after the RBC profile is established.

In light of the numerous difficulties in accurately modeling the transport of platelet and
WBCs, a more general approach is clearly needed that accounts for the various phenomena
governing the interactions between multiple species such as permeability, volume exclusion,
electrostatic repulsion, collisions, hydrodynamic interactions and hydration layer. An
extended convection–diffusion (ECD) model is introduced here that employs a fictitious
concentration function that lumps these key factors. The ECD model presumes that the RBC
profile is prescribed based on experimental data or a complimentary multi-phase simulation
such as that of Jung et al (Jung and Hassanein 2008, Jung et al 2006a, Jung et al 2006b) or
Massoudi and Antaki (2008).

2. Extended convection-diffusion model
The ECD model presented below represents blood as a single continuum, in which the
platelets and WBCs are modeled as dilute species. The concentration profile of RBCs
interacts with either platelets or WBCs, obeying a conservation of mass principal similar to
diffusion through membranes. Without loss of generality, the model is initially described for
platelets and expanded to WBCs later. Considering a finite volume of blood, the overall
mass flux of platelets is governed by the generalized transport equation:

(1)

where [P] is the concentration of platelets, and the vector J represents the flux of platelets,
limited in this study to convection and diffusion:

(2)

where u is the velocity field of the fluid, D is the diffusivity of the platelets and Ψ is a field
potential that incorporates the various factors that cause migration of cells. There are two
physical conditions that Ψ must obey: (1) the flux must reduce to that of only platelets when
the hematocrit is zero and (2) all fluxes in the platelet equation must vanish in the absence of
platelets. The most general form that satisfies these two constraints is

(3)

where H is the hematocrit, ψ is a polynomial expansion of hematocrit about zero, N is the
order of the polynomial expansion and ψi is the polynomial coefficient. Equation (3) implies
an inverse relationship between [P] and H; therefore, a regional increase in RBC
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concentration causes a reduction (exclusion) of platelets. It is also assumed that the platelets
are too dilute to affect the concentration of RBCs.

The 1 in the ψ term is for normal Brownian diffusion and the summation term represents the
RBC-induced transport. Another physical representation of the model parameters can be
illustrated by expanding the diffusive flux for Ψ:

(4)

The first term is the diffusive flux of platelets away from regions of high RBC content, such
as the core of pipe flow, where there is a greater likelihood of interaction. The second term
represents the RBC-enhanced diffusion of platelets along the gradient of platelet
concentration. Therefore, the flux of platelets toward the wall is eventually balanced by the
flux of platelets down the concentration gradient.

3. Methods
The model was evaluated in two geometries: parallel plates, commonly used to study the
deposition of platelets on artificial surfaces (see figure 1), and a cylindrical tube, also used
experimentally to observe distribution of both platelets and WBCs.

The simulations performed in parallel plates adopted dimensions to approximate those of
Slack and Turitto (1994) having a half-height, B, of 100 µm. The length and width of the
experimental channel were much larger than B allowing the end effects to be neglected. A
non-slip condition was applied to the walls with respect to the fluid flow. The walls were
also treated as non-reactive with respect to the deposition of cells (platelets and WBCs.) The
wall shear rate was set to 1000 s−1 to match experimental and simulation data of Wagner
and Hubbell (1990) and Sorensen et al (1999a), respectively. The flow was assumed to be
steady state and Newtonian due to the high shear rate, yielding the velocity field throughout
the domain as

(5)

where u is the component of the velocity vector in the x-direction and

(6)

where v is the component of the velocity vector in the y-direction. Umax is calculated from
the wall shear rate from

(7)

Two different hematocrit profiles were specified for use in equation (3), one parabolic, Hp,
and one blunt, Hb, shown in figure 2. The functional forms of these profiles are given below:

(8)
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(9)

where H ̄ is the bulk hematocrit (40% in this study), and H ̃ is a constant specified to achieve
a bulk hematocrit of 40%. Hp aimed to approximate the profile determined by previous
numerical simulations (Massoudi and Antaki 2008), while Hb approximated the distribution
of blood cells observed experimentally (Aarts et al 1988).

The model was calibrated using fully developed flow, which reduced the dependence of the
problem to a single dimension, y. The transport equations (3)–(5) were integrated to yield
the steady-state platelet concentration profile:

(10)

The constant c was calculated from

(11)

assuming constant flux, where Co is the bulk platelet concentration. Sensitivity analysis was
run for ψ1 setting N = 1, and for N setting ψi to 10. Then, the unknown values, ψi and N,
were optimized to best match an empirical fit to experimental data of Hubbell, presented by
Wagner (1991) and later Sorensen et al (1999a):

(12)

where δ is 35% of H, and A is an empirical constant, 5.6. Several criteria were used to
determine the best fit. The first was the R2-value:

(13)

The 95% confidence intervals for the model parameters were calculated using Monte Carlo
simulations (Motulsky and Christopoulos 2004). ANOVA was applied as per Motulsky and
Christopoulos (2004) to determine significant difference between models of different orders.
These models were also compared using the Akaike’s information criterion (Motulsky and
Christopoulos 2004).

The model was then implemented in a two-dimensional simulation of blood flow between
parallel plates to evaluate the development of the concentration profile from inlet to outlet.
Three sub-cases were considered: (case 1.1) steady state, using the empirical platelet
concentration profile (equation (12)) as the inlet boundary condition to test the stability of
the steady-state solution; (case 1.2) unsteady, using an initially uniform concentration of
platelets throughout the domain to evaluate the development of the profile over time; and
(case 1.3) unsteady, using an initially zero concentration over the domain and the empirical
profile at the inlet to evaluate the development of the profile in both time and space. The
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simulated profiles were compared at different lengths along the flow domain. The total mass
inflow was compared to the outflow to ensure that mass conservation was upheld.

For case 1.1, various enhanced diffusivity models commonly used to predict deposition of
platelets along parallel plates were investigated:

(14)

proposed by Keller (1971),

(15)

used by Zydney and Colton (1988), and

(16)

introduced by Sorensen et al (1999a, 1999b), where De is the enhanced diffusivity, Dplt is
the Brownian diffusivity of platelets (1.58 × 10−9 cm2−s−1), drbc is the diameter of the RBC
(5 µm), and k and n are empirical constants 0.0375 and 0.8, respectively. In addition, we
proposed an anisotropic diffusion tensor with the form

(17)

where Drbc is the RBC-enhanced isotropic diffusivity and Dmig is the cross-stream
diffusivity. Drbc is caused by the rotational motion of RBC, similar to small-scale eddies in
turbulent flow, and the random interaction of the RBCs. Drbc has the form

(18)

and Dmig caused by inward migration of cells has the form

(19)

The coefficients in the anisotropic model were determined using the same method used by
Sorensen et al (1999a). The above models typically yield diffusivities of platelets several
orders of magnitude greater than the Brownian diffusivity. Additional studies combined the
various enhanced diffusion models with the ECD model to better understand the influence of
diffusivity on the ECD.

Case 1.2 employed periodic boundary conditions at the inlet and outlet to simulate an
infinitely long domain. The flow was simulated for 300 s which allowed a steady-state
profile to be reached. In case 1.3, the domain was initially devoid of platelets and the
duration of the simulated flow was limited to 75 s to correspond with the results of Sorensen
et al (1999a, 1999b).

Case 2 entailed simulations in a cylindrical geometry to approximate the observations of Plt
and RBC distributions by Aarts et al (1988), and RBC and WBC distributions by Goldsmith
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and Marlow (1979) and Goldsmith and Spain (1984). The tube diameter and length was 3
mm, respectively, for the Aarts simulation, and 180 µm and 5 cm for Goldsmith simulation.
The wall shear rate used by Aarts et al was 800 s−1. The corresponding average velocity
used by Goldsmith was 1.38 mm s−1 and the velocity field was again assumed fully
developed and Newtonian:

(20)

and

(21)

where U is the mean velocity and R is the tube radius. The RBC concentration fields were
set to match the experimentally observed concentration profiles and the final concentration
profiles for platelets and WBCs were compared to the corresponding experimental results.

For each of the cases above, the transport equations were solved using the finite element
package COMSOL 3.1 (Comsol AB). The domain was discretized using a structured mesh
that was uniform in the x-direction and logarithmic in the y-direction for improved accuracy
at the boundary. Memory allotment was exceeded before mesh independence could be
established, but since the mesh exhibited m + 1 convergence, the mesh size was selected for
an error of 1 × 10−8. The time derivatives were solved using the adaptive step algorithm,
backward differentiation formulation (BDF), built into Comsol with a relative tolerance of
0.001 and absolute tolerance of 0.0001.

The model was evaluated using the following six criteria, given by Pope (2000) for
appraising fluid dynamic models: (1) level of description, (2) completeness, (3) cost, (4)
ease of implementation, (5) range of applicability and (6) accuracy. The level of description
compares the information provided by the model to the desired information. A model is
deemed complete if it only requires material properties, boundary conditions and the initial
conditions, i.e. does not require problem-specific parameters or definitions. The cost of the
model deals with the number of unknowns, the required mesh (spatial and temporal) and the
number and linearity of the equations. These directly impact the computational cost in terms
of memory and time. Ease of implementation regards the time and effort required to
implement the model. The range of applicability is a measure of the versatility of the model
to alternative applications (geometries). The final measure, accuracy, indicates how well the
model represents the real world results.

4. Results
4.1. Model calibration in fully developed, steady-state flow between flat plates

The closed-form solution (equation (10)) of transport between parallel plates using the ECD
model exhibited the expected near-wall excess of platelets regardless of the hematocrit
profile (see figure 3). Figure 3 also shows the sensitivity of predicted platelet profile to the
model parameters N and ψi. Increasing N increased the Plt concentration in the boundary
layer and reduced the core concentration of platelets. Due to this behavior, ψi is a better
parameter for fine tuning the model. Irrespective of the hematocrit profile, the model was
more sensitive to ψi than to changes in N. The profile approached an asymptotic limit with
increasing N and/or ψi.
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The regression of the closed form solution to the empirical profile of Hubbell yielded values
N = 2, ψ1 = 6.8 and ψ1 = 10.1 for the parabolic hematocrit profile (normalized mean-squared
error of 0.0542). The linear case (N = 1) also provided a reasonable fit (mean-squared error
of 0.0795), with ψ1 = 13.2. The 95% confidence interval for ψ1 was 11.9–14.5. The core
concentration was predicted relatively well. However, the profile was less blunt compared to
the experimental observations. The predicted platelet boundary layer thickness was 1/4th of
the channel height, versus approximately 1/6th reported by Hubbell (see figure 4). Using the
blunt profile, the optimal value for N and ψ1 were 1 and 11.4, respectively. The 95%
confidence interval for ψ1 was 10.8–12.0. The R2-value for the linear case (N = 1) calculated
simultaneously for both profiles was 0.943, which was higher than the quadratic case (N = 2)
0.893. For N = 1, the optimal values of ψ1 when using the parabolic profile versus blunt
profile were found to differ by only 16%, despite the 19% differences in hematocrit profiles.
This would imply that the choice of hematocrit profile should not dramatically affect the
optimal value of ψ1. The core concentration using the blunt profile was flatter and matched
the empirical fit of Hubbell, yet preserving the near-wall excess (figure 4). The transition
region was also more accurately reproduced by the blunt profile. There was not a significant
difference between the linear and quadratic models (p = 0.11) which was further
corroborated by the corrected Akaike’s information criterion (5.4) being greater than zero.

4.2. Results: 2D flow between parallel flat plates
Based on calibration results above, numerical simulation of flow between parallel plates was
performed using both blunt and parabolic profiles with N = 1 and their respective optimal
value of ψ1*. The results were compared to the empirical data and to enhanced diffusivity
models (see figures 5–7).

4.2.1. Case 1.1: steady state—Without loss of generality, all enhanced diffusivity
models caused a rapid dissipation of the near-wall excess downstream of the inlet. For
example, figure 5(c) illustrates 50% depletion of the peak platelet concentration at 4 mm
downstream using the Sorensen model (equation (16)). These iso-concentration contours
revealed the effect of the isotropic dispersion of platelets reflected in the relatively uniform
concentration level. By contrast, the ECD model maintained the general form of the skewed
platelet profile from inlet to outlet regardless of RBC profile (see figure 5(d)). Figure 6
compares the ECD model to the best-performing enhanced diffusivity model, the Zydney–
Colton (Z-C) model (equation (15)), in terms of the platelet concentration profiles at every 2
mm of axial length. The Z-C model underpredicts the near-wall platelet concentration at the
exit by almost 60% compared to the empirical data. Figure 6 also shows that the growth of
the platelet boundary layer was higher for the Z-C model, almost doubling by the outlet,
while the ECD maintained almost a constant boundary layer. The ECD model (with
parabolic Ht profile) predicts an increase over the length of the domain, resulting in an
overprediction of 33% at the outlet.

Figure 7 compares the longitudinal development of the near-wall concentration for the ECD
model (with both parabolic and blunt profiles) to both the Keller (equation (14)) and
anisotropic enhanced diffusivity models (equation (17)). The ECD model using the
parabolic profile predicts an increase of 33% over the length of the domain while the
concentration predicted using the blunt profile shows a 6.5% decrease. The Keller diffusion
and anisotropic diffusion models show a rapid decrease in the near-wall concentration
within the first 4 mm followed by a slower rate of transport.

Table 1 provides a quantitative summary of these data in terms of the ratio of simulated
versus experimental wall concentration and the overall RMS difference, the ratio of core
concentration to wall concentration, and the error in the near-wall excess at 2 mm, 8 mm and
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1.4 mm. The R2-value for the predicted profiles was calculated at 1.4 mm as compared to the
experimental profile. The ECD model using the blunt profile had the best performance over
the length of the domain. The Keller model had the worst performance over the entire
domain, losing 64% of the near-wall excess within the first 2 mm. The Z-C model was
simulated using both the bulk hematocrit and a spatially dependent (blunt) hematocrit
profile. The variable hematocrit model showed improved behavior over the bulk model with
RMS values greater than 15% (54.3%, 27.9%, and 16.7%) below the bulk version. This
means that the dispersal of platelets from the near wall into the free stream is delayed until
further downstream. The anisotropic model did not show any improvement over the other
enhanced diffusion models. The enhanced diffusion models showed an average decrease of
66% as the platelets dispersed to the core region of the flow.

The results above used the Brownian value for diffusivity of platelets. Additional
simulations with the ECD model were performed using four different diffusivity functions.
These were the anisostropic model; the spatially dependent form of the Z-C model; the
stream-wise component of the anisotropic model and a modified version of the stream-wise
diffusion using the form

(22)

The latter function was introduced to account for the local hematocrit. The first three of
these diffusivity models resulted in a depletion of the near-wall excess at the outlet,
underpredicting the near-wall concentration by 18.6%, 25.2% and 25.5%, respectively. The
combined models did perform better than the best-performing enhanced diffusivity model
(Z-C) with an error −58%, but underperformed the ECD model with Brownian diffusivity,
with an error of −6.7%. The hematocrit-modified diffusivity (equation (21)) was the best-
performing model, with an error of only −1.5%. It should be noted that the effective RBC-
enhanced diffusion of the ECD model is 5 Db, as compared to 1000 Db for the enhanced
diffusivity models.

To verify the integrity of the numerical solution, the conservation of mass for each of the
cases above was compared to a negative control benchmark, in which the walls are allowed
to be permeable. As compared to the latter case, in which 39.3% of the platelets were lost,
the unmodified diffusivity resulted in 2 × 10−10% loss, and the modified models ranged
from 1.6 × 10−2% to 3.6 × 10−7% loss. The ECD models exhibited the greatest losses of the
models tested, 1.6 × 10−2% and 1.6 × 10−3% for the parabolic and blunt profiles,
respectively. This was comparable to the Keller model, yet four orders of magnitude less
than that of a free wall.

4.2.2. Case 1.2: unsteady with initially uniform concentration—When the profile
was permitted to develop temporally from an initially uniform concentration (1.5 × 108 Plts
ml−1), the model predicted the generation of near-wall excess comparable to the steady-state
case (case 1.1.) (see figure 8). This temporal development was more rapid with the parabolic
hematocrit profile as compared to the blunt profile; however, both profiles yielded virtually
equivalent steady-state results. The choice of hematocrit profiles also affected the shape of
the intermediate [Plt] profiles. Compared to the relatively smooth transition exhibited by the
parabolic profile (shown in figure 8), the blunt hematocrit profile caused an initial excess in
the transition region between 10 and 30 µm from the wall, which propagated toward the
wall.
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4.2.3. Case 1.3: unsteady with an initially zero concentration—An additional
unsteady simulation was performed to determine the effect of the ECD model on the rate of
development of the steady-state concentration profile. Accordingly, an empty domain was
used as the initial condition, similar to that employed by Sorensen et al (1999a, 1999b). The
boundary condition at the inlet was the empirical platelet profile. In this simulation, the
steady-state profile was achieved within approximately 30 s. This is illustrated in figure 9 by
the transient growth of the near-wall (0.5 µm) concentration at 1.4 cm downstream of the
inlet. There is a delay of approximately 5 s before platelets start arriving in that region,
where convection alone would imply a delay of 28.5 s before the arrival of platelets. By
comparison, the enhanced diffusivity models represented by the Sorensen function result in
the arrival of platelets within 1 s due to the three orders of magnitude difference in
diffusivities. The platelets arrive almost immediately using the enhanced diffusion, while
there is a slight time delay using the ECD model. This delay agrees with experimental data
presented by Folie and McIntire (1989) who showed a slight delay before deposition started.

4.3. Platelet distribution in tube flow
The model, optimized for flow in parallel plates, only had slight difficulty in predicting the
experimental results of blood flow in a tube by Aarts et al (1988). For low concentrations of
platelets, the model predicted the core concentration well, but underpredicted the near-wall
excess (see figure 10). For the highest concentration of platelets, the reverse was seen. The
RMS error between experimental and predicted results for the four platelet concentrations
studied (50, 120, 250, 500 kplt µl−1) was 43.4 (87%), 66.0(55%), 93.5(37.4%) and 94.1
(19%), respectively. Therefore, the model performed best at higher concentrations of
platelets.

4.4. White blood cell distribution in tube flow
The final test for the model was to predict the outward migration of WBCs. The ratio of core
concentration to wall concentration was 3.8.

Figure 11 compares the experimental data from Goldsmith and Spain (1984) to the
simulation results with ψ1 set to 1. These experimental results were reported as ratio of the
WBC count in each of five annular subregions to the total WBC count. The simulation
results were likewise compared to these experimental data using the ratio of the analogous
numerical integral of WBC concentration in each region.

5. Discussion
A proper mathematical model of platelet-mediated thrombosis requires an accurate
prediction of the transport and concentration field of platelets. The prevailing enhanced-
diffusivity (ED) models are unable to predict or preserve flow-induced platelet
concentration. Because they presume passive diffusion, they will inevitably lead to the
uniform steady-state concentration field. However, it is well known that regions of the
enhanced platelet concentration may occur in flowing blood—due to active transport
mechanisms such as lift and drag (Zhao et al 2006). This phenomenon can be simulated
through mechanistic models in which the hydrodynamic forces and cellular collision are
explicitly accounted for. However, such models are impractical for large-scale problems.
This was the motivation for introducing a microstructurally motivated phenomenological
model, in which the components have physical relevance and account for anisotropic active
transport of platelets.

Table 2 compares the enhanced diffusivity model and the ECD using the criteria of Pope for
assessing the quality of a model. The ECD model, although similar to the enhanced
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diffusivity models in many aspects, showed a higher accuracy in predicting the
concentration field and a wider range of applicability. Because of its ability to produce an
experimentally accurate concentration field from a variety of initial conditions, it offers
promise of predicting platelet concentration in other, arbitrary flow geometries. This would
greatly improve its value as a design tool for blood-wetted devices.

The advantage of this model is illustrated by its ability to accurately predict the near-wall
excess of platelets that occurs in blood flow within small tubes and parallel plates. The ECD
predicted a near-wall excess of seven to eight times the core concentration, which agrees
well with experimentally observed values (Aarts et al 1988, Eckstein et al 1989). The only
other known model that can predict this phenomenon is the drift flux model, which however
requires a priori knowledge of the platelet concentration (Eckstein and Belgacem 1991).

Experiments by Wagner and Hubbell (1990) of platelet deposition in parallel plates argued
that the upstream deposition along the wall was limited by the adhesion kinetics, while
downstream deposition was limited by the lateral transport of platelets. Folie and McIntyre
(1989) likewise showed that there was a consistent delay time between the initiation of flow
and initial platelet deposition. Both ED and ECD models showed that the concentration near
the inlet quickly reaches the peak value which is maintained by convection and diffusion
coinciding with rate-limited deposition (case 1.3). The enhanced diffusion models result in
almost instantaneous arrival of platelets at the wall, even at the outlet of the channel (≪1 s),
which would result in immediate deposition of platelets using the deposition model of
Sorensen et al (1999a). The ECD model showed a delayed arrival of platelets (~5 s) that was
more consistent with the experimental results (see figure 9). It should be noted that some of
the delay may also be due to micro and molecular scale events governing platelet adhesion,
such as a cell-surface interaction and the formation of adhesion bounds. The flux of platelets
to the wall is clearly driven by lateral transport since the near-wall concentration starts to
increase at 5 s, as compared to 28.5 s for convection alone.

The actual form and parameters of the diffusivity function are still uncertain, and are crucial
for the spatial and temporal development of platelet profiles, hence deposition of cells onto
walls. The numerical experiments coupling passively enhanced diffusivities with the active
transport showed that the true RBC-enhanced diffusivity for platelets is of the same order as
the Brownian diffusion, as compared to the ED models (e.g. ZC and anisotropic diffusion)
that predict the increase of diffusivity by three orders of magnitude. Consequently, these
models were unable to maintain a near-wall excess. Even the stream-wise diffusivity, one
order higher, prevented the formation of a platelet excess.

Previous diffusivity models were calibrated to experimental data using average values of
hematocrit andwall shear rate. This study showed the critical importance of a spatially
variable hematocrit field on the performance of enhanced diffusivity models, whether
coupled with ECD or not. This was illustrated in case 1.1, for example, in which the stream-
wise diffusion model in combination with the ECD model produced a platelet profile within
1.5% of the experimentally reported profile. The same model with a uniform hematocrit
field resulted in over ten times the loss.

While diffusivity is one important factor in the development of the platelet-rich boundary
layer, this study ignored the development of the RBC profile over time and space. In all
experiments, it was assumed that the RBC profiles were fully developed. In case 1.2, for
example, the RBC profile would likewise develop over time. Due to the assumption of a
fully developed profile, it took more time to develop to steady state using the blunt
hematocrit profile than the parabolic one. This was due to the low value of hematocrit and
hematocrit gradient at the wall. A temporally developing hematocrit profile would start with
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a sharp gradient near wall and slight cellular depletion near the wall which would expand
over time. This caused increased platelet transport as compared to the steady-state
hematocrit profile. A related factor due to RBC migration that is not taken into account by
the ECD model was the motion of plasma contrary to the RBCs. This counter-flux would
increase the rate of margination as the RBC profile develops (Kao 2000). This is tantamount
to the addition of an unsteady term in the function for diffusion. It is uncertain how the
absence of these terms would affect the over-all results.

In general, the parameter ψ1, assumed constant in these studies, could be a function of shear
rate, time, fibrinogen concentration, RBC shape and RBC deformability. The later three
factors would depend on the experimental condition of the blood which may vary
significantly from sample to sample. Indeed, Goldsmith and Spain (1984) indicated that
RBC aggregation during low shear flow resulted in an enhanced ‘cell-free layer’. This
implies that the parameter should also be treated as a function of RBC aggregation, which in
turn is dependent on the above factors. This is indicative of the challenges associated with
identifying a universal form for the parameter ψ1.

The current model predicted a monotonically increasing radial concentration of platelets
toward the wall in tubes. This is consistent with the observation of Aarts et al (1988)
However, the experiments of Eckstein et al has shown an unimodal platelet profile, in which
the peak concentration is displaced a small distance from the wall, and an attenuation of
platelet concentration develops adjacent to the wall (Eckstein and Belgacem 1991, Waters
and Eckstein 1990). In the absence of RBCs, Aarts et al showed an inward migration of
platelets. In both circumstances, the transport of cells away from the wall is due to the
variation in collision frequency caused by the gradient in the shear rate, which was not
included in the ECD model. These kinetics could however be included through an additional
flux term (Phillips et al 1992) having the form

(23)

where Kc is a constant of order 1, a is the radius of the platelets, Vplt is the volume per
platelet and γ̇ is the shear rate.

The ECD model was able to predict the outward migration of WBC under high shear
conditions, in good agreement with experimental observations. However, at low shear rates,
inward migration of WBCs has also been observed. In the context of the ECD model, this
would imply migration against the RBC concentration gradient, and hence a negative value
of ψ1. This is possible mathematically but the model is counter-intuitive and evades physical
interpretation.

The ultimate application of the ECD model, or any platelet transport model, is its ability to
predict platelet transport in flows of arbitrary geometries. The current model is limited in
this regard inasmuch as the hematocrit profiles and coefficients of the diffusion have been
prescribed based on experiments in parallel plates. Therefore to be fully independent of
empiricism, future extrapolation of the ECD model would require coupling with a model of
blood flow capable of accurately predicting the hematocrit field, and recalibration of the
generalized diffusivity function, i.e. that proposed by Zydney and Colton (equation (15)),
using spatially dependent hematocrit and shear rate.
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6. Conclusion
The ECD model, developed herein, was able to accurately model the exclusion of WBC and
platelets toward the wall as observed in whole blood flowing in channels and tubes. Despite
its simplicity, the model matched previously reported experimental data for platelets (Aarts
et al 1988) and WBCs (Goldsmith and Spain 1984) in tubes and for platelets in rectangular
channels (Wagner and Hubbell 1990) without requiring a priori knowledge of the final
platelet distribution. By treating the cellular species as a dilute suspension, it is therefore
possible to model the behavior of whole blood in large geometries, which would be valuable
for design of blood-wetted devices and the study of hemodynamics in the vasculature.

Appendix. The continuum assumption
The continuum assumption was analyzed to confirm that the cellular concentrations were
sufficiently small that they cannot be treated as a continuum in the classical sense.
Normally, the fluid–continuum assumption is determined from the mean free path (MFP)
and thermal kinetic energy (TKE). The MFP is the average distance that a particle of a
particular species travels before colliding with another particle of the same species. The
TKE relates to diffusivity and Brownian motion but also governs the time between
interactions or frequency of collisions. The TKE of large particles is treated as zero;
therefore, the MFP must also be small.

Stickel et al proposed a method for calculating MFP for dilute and compact particles’
suspensions using purely geometric considerations and rigid spheres as a model particle
(Stickel et al 2006, 2007). The MFP for a perfectly dilute suspension of particles is

(A.1)

where a is the particle radius and ϕ is the volume fraction. This formulation assumes that a
is much less than the MFP. The MFP of densely packed cells is given by the equation:

(A.2)

which results in a MFP of zero for particles that are optimally packed.

RBCs were modeled as disks, platelets as oblate spheroids and WBC as spheres for the sake
of determining the optimal packing fraction. The optimal packing fraction for a
geometrically continuous bed of particles was determined from the relationship

(A.3)

where Vcellular is the volume within the total volume taken up by cells and Vtotal is the
overall volume. Since RBCs change shape, they can only achieve a simple rectangular
packing structure as disks in unstressed flow and it is assumed that they attain a body center
cubic structure when forming ellipsoids under stress. The optimal packing for WBCs and
platelets was considered body center cubic. The resulting optimal packing fractions for
RBCs, platelets and WBC are 0.78, 0.60, and 0.52, respectively.
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Using average volume fraction values for blood, ϕ = 0.4 for RBCs and 0.01 for both
platelets and WBCs, yields a compact MFP of 1.01, 36.1 and 196 µm and a dilute MFP of
2.01, 36.7 and 200 for RBC, platelets and WBCs, respectively. The MFP for the platelets is
therefore an order of magnitude greater than that of the RBCs, while the MFP for WBCs is
two orders higher. In other words, the WBCs and platelets travel approximately 16
diameters, respectively, before interacting with another cell of that species, while RBCs
collide without having to travel a full cell radius. The MFP for platelets and WBCs are
within 2% of the idealized dilute suspension. The MFP for the RBC phase is half that of the
ideally dilute suspension. Therefore, platelets and WBC should be treated as a dilute species.
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Figure 1.
Simulation domain representative of the standard parallel plate experiment. B represents the
half-height (0.01 cm) and L is the channel length (1.6 cm).
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Figure 2.
Prescribed hematocrit profiles for the parallel plate simulations.

Hund and Antaki Page 19

Phys Med Biol. Author manuscript; available in PMC 2011 February 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Sensitivity analysis of the fully developed, steady-state solution to the parameters N (top)
and ψ* (bottom) using both a parabolic (left) and a blunt (right) profile for hematocrit.
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Figure 4.
Platelet concentration profiles per unit flux (top) and normalized error (bottom) using the
optimal values for the model parameters compared to the experimental profile. The inset
plot compares the near-wall profiles.
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Figure 5.
Platelet concentration field between parallel plates. (A) illustrates the geometry to scale; (B)
experimental profile (scaled 200:1 in the y-direction) (C) predicted concentration using the
enhanced diffusivity of Sorensen (Sorensen) illustrating rapid dispersion of platelets (50% at
0.4 cm); (D) ECD model which maintains the elevated near-wall concentration.
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Figure 6.
Normalized platelet concentration profile at 2 mm intervals along channel for the (A)
Zydney–Colton-enhanced diffusivity model and the (B) ECD model using the blunt
hematocrit profile.
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Figure 7.
Error between predicted and experimental near-wall platelet excess for four of the models
studied.
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Figure 8.
The development of the platelet-rich boundary layer predicted by the ECD model with
parabolic hematocrit profile.
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Figure 9.
Concentration of platelets at a near-wall location (0.5 µm from the wall and 1.4 cm from the
inlet) predicted by the Sorensen-enhanced diffusion model, the ECD model and pure
convection.
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Figure 10.
Comparison of predicted and experimentally measured platelet profiles for several bulk
concentrations of platelets in tube flow.

Hund and Antaki Page 27

Phys Med Biol. Author manuscript; available in PMC 2011 February 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Comparison of normalized WBC distribution predicted by the ECD model in tube flow
compared to the experimental results of Goldsmith and Spain.
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Table 2

A comparison of model characteristics based on the criteria of Pope (2000).

Enhanced diffusion ECD model

Level of description

• Accurately models transport

• Lacks cell–cell interaction forces, or aggregation

• Accurately models transport and distribution

• Lacks cell–cell interaction forces, or aggregation

Completeness

• Total self-contained • Requires the Hematocrit field

Cost and ease of implementation

• Easily implemented in existing software

• Stability and discretization well understood

• 1 Equation

• Takes advantage of the CD knowledge base

• Can be implemented into existing software with some modifications

• Stability and discretization well understood

• 1 Equation

• Takes advantage of the CD knowledge base

Range of applicability

• Simple geometries with parallel streamlines • Complex geometry

Accuracy

• Only accurate for deposition

• Inaccurate for field distribution

• Accurate for transport and distribution
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