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Abstract

One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from
genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability
describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental
change. Here I propose that we can link the details of the genetic architecture of a quantitative trait—i.e., the number of
underlying genes and their relationships in a network—to population recovery rates by way of heritability. I test this
hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear
genotype-phenotype map, 16–256 genes underlying the trait, and a variety of mutation and recombination rates and
degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that
systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and
recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology,
the width of the fitness function, pre-change additive variance, and certain interactions account for ,75% of the variance in
population recovery times after a sudden environmental change. These results suggest that not only the amount of additive
variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait
can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of
network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working
to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment.
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Introduction

A primary goal of biology is to bridge levels of organization.

Biologists working in the arena of cell and molecular biology tend

to focus on the genotype-phenotype map (GPM), whereas

ecologists tend to focus on the phenotype-environment map.

The phenotype is the common interface between these two

mappings. We would like, ultimately, to have an understanding

that spans from genotypes to the environment, including an

understanding of how the environment (which encompasses both

biotic and abiotic components) impacts genotypes; focusing on the

causes and consequences of phenotypic evolution is a prime

starting point. The presence of heritable variation in organismal

phenotypes is a key component of evolution [1–3]. The degree to

which a trait is heritable plays an important role in predicting the

response to selection: the higher the heritability, the faster a trait

can change, whereas lower heritabilities slow phenotypic change

and minimize the effects of external perturbations [2,4,5].

Knowing a trait’s heritability is important to many fields, such

as agricultural sciences—in which artificial selection is used to

maximize a desirable trait—and evolutionary ecology, in which we

want to understand how evolution and ecology interact to drive

patterns seen in nature [6–8]. The ratio of genetic (additive or

total) variance to phenotypic variance describes the (narrow- or

broad-sense) heritability of a trait. It is a mathematical fact that a

given level of genetic variance may be achieved with any number

of loci [1]. A different question is whether or not this actually

occurs, and if there are any further implications of dividing the

variance across a variable number of loci.

Assume that two species each possess an ecologically-analogous

trait, but that due to their different evolutionary histories, the

number of genes underlying variation in the trait is twice as large

in one species as it is in the other. The first implication of this

assumption is that the average contribution of each gene to trait

variation is smaller in the species with more underlying genes. We

know that the rate of change of genetic variance is inversely

proportional to the number of underlying loci [9,10], and

therefore the species with twice as many loci will lose gene

variation at approximately half the speed of the other species. If

the GPM is purely linear, then heritability should be minimally

affected because the proportion of phenotypic variance lost (due to

genetic variance lost) will be the same.

We have reason to believe that the GPM is not purely linear,

however, but is better-represented as a hierarchical network of

nodes (genes) and edges (functional relationships) [11–13]. That is,

rather than viewing the GPM as a list of genes with arrows
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pointing directly from each gene to a trait, some genes have arrows

pointing to other genes, which may point directly to the trait, or

may point to other intermediary genes before the path arrives at

the trait. This has been termed a multilinear model [14,15], such

that the GPM is not nonlinear per se, but is more complex than a

purely linear model as described above. If these networks

introduce directional epistasis, which ‘‘hides’’ and ‘‘releases’’

genetic variation [14,15], then the effect of a change in genetic

variance may not have a 1:1 impact on phenotypic variance

(specifically, the portion of phenotypic variance attributable to

genetic variance). Gene regulatory networks are thought to follow

a scale-free (i.e., power law) degree distribution [11]; we can

hypothesize that variation in network topology alters path lengths

across the network and therefore systematically affects the degree

of epistasis. Together, these underlying principles suggest that the

number of genes and their relationships in a network could both

affect heritability. Data from the Mackay lab for a dozen Drosophila

melanogaster traits [16–18] suggests that a relationship between

network characteristics and heritability exists (Figure 1).

Ecologists increasingly recognize that evolution can alter

ecological dynamics (and vice-versa), rather than considering

distinct ecological and evolutionary time-frames [19–22]. Gomulk-

iewicz and Holt [23] formalized the link between trait heritability

and population adaptation after an environmental change,

showing that higher heritabilities, which confer more rapid

adaptation, decrease the chance of extinction due to maladapta-

tion. The basic model has been extended to include cases of

phenotypic plasticity [24], as well as the implications of differing

heritabilities for community assembly [22,25]. Bell and Gonzalez

[26] recently tested the general hypothesis of population rescue by

evolution using yeast and found the U-shaped curve of population

decline and recovery predicted by Gomulkiewicz and Holt.

Previous research and current goals
Prior research has considered gene networks underlying

quantitative traits, rather than purely linear genotypes. Here I

describe three papers that are most-similar to the questions I

consider. Each of these is different from the present contribution in

that the authors focused on variation in the density of connections

among the genes in the networks rather than variation in the

number of genes or the overall degree distribution. Frank [27]

examined the evolution of networks that are selected based on

their ability to produce different phenotypes in two distinct life

periods. Unlike the present model, which considers only one input

per gene but multiple outputs, Frank’s analysis was primarily

concerned with the evolution of the number of inputs per gene. He

found that trait heritability was a function of an interaction

between the average number of inputs per gene and mutation rate,

with maximum heritabilities at intermediate mutation rates.

Although he tested several network sizes, he did not find an effect

on developmental evolution and did not test for an effect of

network size on heritability. Kimbrell and Holt [28] used a model

similar to that of Frank, but considered the ecological implications

given a source patch in which individuals are adapted to the

environment and a novel patch which functions as a sink (negative

population growth) until an adapted population has evolved. They

found that network connectivity among 10 genes could drastically

alter the ability of individuals canalized to the source patch to

adapt to the novel conditions of the sink patch; specifically, lower

connectivity conferred a higher rate of adaptation than high

connectivity. Most-recently, Repsilber and colleagues [29] consid-

ered a trait underlain by networks of 3–10 genes and varying

connectivity. Among their conclusions was the fact that network

architecture was related to rates and accuracy of adaptation, as

well as habitat heterogeneity. They did not examine the link

between network size and trait heritability, and although they

varied network size, the computational complexity of their model

limited the maximum size to ten genes, far smaller than the size of

currently estimated networks for organismal phenotypes.

This contribution is focused on the effects of two network

characteristics, size and topology (distribution of the out-degree of

genes), on heritability and population recovery times. There are

two basic goals: first, I examine the characteristics of a network

model of genetic architecture as compared to purely linear

genotypes (as might represent classical quantitative and population

genetics). Second, I test two central hypotheses: 1., The heritability

of a quantitative trait is primarily determined by the size and

topology of the underlying gene network when the population

exists in a stable environment; and 2., Specifying the network

underlying a quantitative trait, rather than heritability, produces

population recovery patterns similar to that of previous research in

which heritability is specified. I test the hypotheses using an agent-

based model in which individuals in a single population possess an

ecologically-important trait that is encoded by a Boolean network

of varying topologies, and sizes ranging from 16 to 256 genes. In

order to maintain computational tractability I simplify network

connectivity such that any gene is regulated by a single upstream

gene and feedback is not present. This latter characteristic is the

same as the estimation of Directed Acyclic Graphs, a common

bioinformatics approach in systems biology [30]. First, the results

support the analytical solutions relating number of underlying loci

to the rate of change of genetic variance, but the rates of change

are lower, relative to linear genotypes, with the directional epistasis

that network structures introduce. Second, I recover a negative

relationship between network size and heritability. Third, this

network-heritability relationship scales up to population recovery

after an environmental change, such that species with small

Figure 1. Fruitfly trait heritability as a function of network size.
The broad-sense heritability for twelve quantitative traits in Drosophila
melanogaster as a function of the estimated size of the underlying gene
regulatory network. When network topology (average connectivity) is
considered in a regression model, R2<0.68 (p = 0.023). Note that the
data points are drawn from what must be considered an exploratory,
hypothesis-generating method that requires extensive testing to
confirm the networks. Data from [16–18].
doi:10.1371/journal.pone.0014645.g001
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networks have higher heritability and faster recovery. The

extension to ecological outcomes suggests that integrating the

information that genomic methods afford (e.g., identifying the

genes underlying a quantitative trait) can expand our understand-

ing of evolutionary ecological dynamics in a mechanistic manner.

Results

Basic genetic architecture performance
Negative epistasis was observed (5% of cases), but positive

epistasis was far more common (89% of cases) in these networks

(Figure 2A). The amount of epistasis was strongly related to the

size and the topology of the network and an interaction of the

terms. Weighted epistasis increases slightly with network size when

the networks possess a scale-free out-degree distribution, but

declines with network size when network topology is random

(Figure 2B). (Interestingly, if epistasis is not weighted—the

weighting is required to meet the assumption of homoskedasticity

for the preceding analysis—then epistasis declines with network

size for both scale-free and random networks.) Epistasis is absent if

we assume the GPM is purely linear.

The rate of change of additive genetic variance during the first

250 generations of the simulation was strongly predicted from the

number of underlying genes given both network and purely linear

genetic architectures (R2 = 0.81 [P,2.2e216] and R2 = 0.95

[P,2.2e216], respectively). Topology (random vs. scale-free) is

important when the genetic architecture is a network (Figure 3A)

and the width of the fitness function is a minor factor. This is in

contrast to linear genetic architecture where there is no topology

and fitness function width is an important factor (Figure 3C).

Notably, the rate of change of additive genetic variance tends to be

much lower (approximately half) given a network GPM relative to

a linear GPM. In addition, for these simulations, additive genetic

variance actually increased (to varying degrees) in 32-gene and

larger networks. In contrast, the phenotypic variance rate of

change is approximately twice as fast given a network GPM

relative to a linear GPM across all but the largest networks

(Figures 3B and 3D).

More important with respect to the topic of quantitative trait

heritability is the comparison of the genetic and phenotypic rates

of change within a category of GPMs. Given a linear GPM, the

rates of change of additive genetic variance and phenotypic

variance are very similar (Figures 3C and 3D); as a result,

heritabilities are only slightly different between network sizes (see

next section). By contrast, the phenotypic variance rate of change

is much faster than the additive genetic variance rate of change

given a network GPM at small network sizes and the rates only

begin to converge as network size becomes large (Figures 3A and

3B). As such, substantial additive genetic variance remains hidden

by the network topology even when phenotypic variance is rapidly

removed.

Focal hypotheses
Hypothesis 1. Differences in the initial levels of additive

and phenotypic variance, and differences in the rate of change

of each variance component, results in systematic differences in

the average trait heritability in a constant environment. The

number of genes in the network, the topology of the network,

the recombination rate, and average additive genetic variance

before the environmental change account for 83% of the

variance in average heritability of the quantitative trait in the

50 generations before the environmental change (Table 1).

Smaller networks, scale-free network topology, and low

recombination rate all confer higher heritability (Figure 4A).

Figure 2. Epistasis in the Boolean gene networks used in these models. Panel A shows the distribution of 24000 epistasis estimates across all
network sizes and topologies. Directional epistasis is prevalent (94% of all single- versus double-mutants). Panel B shows mean weighted epistasis
(695% CI) as a function of network size and topology. The weighting, with weights calculated as the standard deviation of epistasis within network
size, was required to achieve homoskedasticity for statistical analysis. Without weighting, a strong negative relationship between epistasis and
network size is observed (data not shown).
doi:10.1371/journal.pone.0014645.g002

Gene Networks to Heritability
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The term for additive genetic variance was not significant on its

own (p = 0.41), but an interaction with network size was

significant and accounted for 7% of the variance in

heritability. Note that the global model (all predictors and

first-order interactions) possessed the lowest AIC by 300 points,

but with 240 model terms, was far less interpretable than the

AIC next-best model with network size, network topology,

recombination rate, average additive variance, and interactions

as predictors.

In contrast, heritability increases with an increasing number of

genes in simulations where genetic architecture is linear, but the

rate of change of heritability relative to the number of underlying

genes is small (about J) relative to the rate of change given a

network GPM. Parameter estimates for linear versus network

number of genes and heritability were 2.1e24 and 29.1e24,

respectively. (Note that in order to arrive at these parameter

estimates, I treated network size as a continuous variable, as

opposed to treating it as a factor in all other analyses; see Methods.)

Figure 3. The rates of change of genotypic and phenotypic variance over 250 generations in a constant environment. On the left, the
mean (695% CI) rate of change of additive genetic variance (dVA/dt; Panel A) and phenotypic variance (dVP/dt; Panel C), given a network genetic
architecture, as a function of network size and recombination rate. On the right (Panels B and D), the same parameters given a linear genetic
architecture. The results are generally consistent with the analytical solutions assuming additivity of Crow and Kimura [9] and Bürger [10].
doi:10.1371/journal.pone.0014645.g003

Gene Networks to Heritability
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In addition, the width of the fitness function plays a role in

determining heritability under a linear genetic architecture but not

a network (Figure 4B).

Hypothesis 2. Population recovery times following a sudden

environmental change are primarily determined by network size,

the degree of environmental change, the average additive variance

and an interaction between network size and the width of the

fitness function (Table 2). The full-interaction model R2 = 0.90

(P,2.2 e216), but most individual terms explained little variance

alone; Table 2 is based on a simpler model with much lower AIC

(two hundred points lower) including only network size, fitness

function, average pre-change additive genetic variance, and

degree of environmental change (R2 = 0.74, P,2.2e216).

Populations in which the underlying network is small generally

recover from the sudden environmental change fastest (Figure 5);

recovery takes longer the more severe the environmental change,

and recovery is faster when the fitness function is wider. The

notable exception is the higher average recovery time for the 16-

gene networks, which is a result of some populations going extinct

after the change in some simulation runs (i.e., they never recover).

In these cases, it appears that the rate of change of mutational

variance is much lower than the rate of change of genetic variance

given the small networks, all variation is lost during canalization,

and without variation the trait cannot evolve. When populations

survive the environmental change, however, there is a surge in

additive variance after the environmental change. The degree of

environmental change enters the model for predicting heritability

(larger impact = larger change in heritability), but the proportion

of variance explained is very small and the overall model fit

declines (R2 = 0.772; Table 3). When the genetic architecture is

linear, population recovery after a sudden environmental impact is

nearly identical to the scenarios in which genetic architecture is

represented as a network.

Given that the rates of change of additive genetic variance is

dependent on network size (and topology), a natural objection is

that there are different levels of additive variance at the time of

environmental change (i.e., at 250 generations). This is true:

smaller networks possess more additive variance than larger

networks, and the amount of additive variance explains a small

portion of recovery time. In addition to the statistical control

introduced by including the pre-change additive genetic variance

in the models discussed above, to experimentally control for the

Figure 4. Quantitative trait heritability after 250 generations, given network (A) or linear (B) genetic architectures. The mean
heritability (695% CI) of the ecologically-critical trait when the genetic architecture is defined as a network, as a function of network size and
topology; smaller networks and scale-free topology increase heritability (Panel A). The mean heritability (695% CI) of the trait when the genetic
architecture is purely linear, as a function of number of genes and the width of the fitness function (see Methods). Contrary to the network
architecture, when the architecture is purely linear heritability is (weakly) positively related to the number of underlying genes.
doi:10.1371/journal.pone.0014645.g004

Table 1. Factors influencing quantitative trait heritability in a
stable environment.

Factor Effect % Variance p-value

Direction Explained

Network Size (2) 47 ,2.2 e216

Network Topology (2) 10 ,2.2 e216

Recombination Rate (2) 14 ,2.2 e216

Pre-change VA ( ) 0 0.41

Network Size * VA (+) 7 ,2.2 e216

Effect direction refers to whether the relationship between heritability and the
predictor is directly or inversely proportional. Additional interaction terms not
presented here accounted for the remaining 5% of variance, but each at ,1%.
doi:10.1371/journal.pone.0014645.t001

Gene Networks to Heritability
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differences, I ran another set of simulations in which the

environment changed when the population’s VA crossed thresh-

olds of 5, 10, or 20. The environmental change did not occur by

the 1500th generation for some runs because the VA had not

reached the threshold, and those simulations were terminated. A

large number of simulations did work for all network sizes,

however: for network sizes 16, 32, 64, 128, and 256 there were,

respectively, 216, 187, 193, 214, and 178 successful simulations.

Two interesting results were apparent. First, the degree of

environmental change plays the largest role in determining

recovery times (Table 4), and essentially de-couples the relation-

ship between either network size or pre-change additive genetic

variance and recovery time when the impact is large (Figure 6a, b).

If we average over the different degrees of environmental change,

then the relationship between network size and recovery times is

more apparent than the effect of different levels of additive genetic

variance (Figure 6c), as is born-out in Table 4. Second, pre-change

heritability tends to be higher for smaller network sizes, generally

without respect to VA threshold (Figure 6d). The exceptionally-

high value for 256-gene networks with a VA threshold of 20 likely

stems from the small number of successful simulations with this

combination (n = 34, whereas most other combinations n = 72).

Discussion

Biology is rapidly approaching the stage at which data can be

gathered from the level of entire genome sequences up through

communities [31–33]. Successful integration will require bridging

at least three distinct levels of organization, the genotype, the

phenotype, and the ecotype (i.e., the environment). I suggest here

that heritability could be a bridging concept, and test the

hypothesis using a series of agent-based models, comparing trait

heritability of network-based genetic architecture against scenarios

in which the genotype is purely linear (additive), and examining

the end effect on population recovery after a sudden environmen-

tal change. The results suggest that variation in the number of

genes and the network topology can drive differences in

population recovery rates, for two reasons. First, as variation is

partitioned among a greater number of genes, the average effect of

each gene is reduced and the rate of phenotypic change is reduced.

Second, the directional epistasis introduced by the network

architecture distorts the GPM so that additive genetic variation

evolves differently—i.e., is hidden and released—than how

Figure 5. Population recovery times given network genetic
architectures. Mean time (695% CI) required for a population to
recover to pre-impact population size after a sudden environmental
change when the genetic architecture is defined as a network, as a
function of network size and the degree of environmental change (dE;
arbitrary units). Population recovery takes long if either network size or
the degree of environmental change is greater.
doi:10.1371/journal.pone.0014645.g005

Table 2. Primary factors influencing population recovery time
following a sudden environmental impact.

Factor Effect % Variance p-value

Direction Explained

Network Size (+) 25 ,2.2 e216

Fitness Function Width (2) 11 ,2.2 e216

Pre-change VA (+) 10 ,2.2 e216

Environ. Change (2) 1 1 e24

Env. Cange 6 Fit. Width (2) 12 ,2.2 e216

Effect direction refers to whether the relationship between population recovery
time and the predictor variable (Factor) is directly or inversely proportional.
doi:10.1371/journal.pone.0014645.t002

Table 3. Factors influencing quantitative trait heritability
following a sudden environmental impact.

Factor Effect % Variance p-value

Direction Explained

Network Size (2) 47 ,2.2 e216

Network Topology (2) 13 ,2.2 e216

Recombination Rate (2) 17 ,2.2 e216

Environ. Change (+) 1 2.7 e26

Effect direction refers to whether the relationship between heritability and the
predictor is directly or inversely proportional.
doi:10.1371/journal.pone.0014645.t003

Table 4. Factors influencing recovery time when the
environment changes at a given (5, 10, or 20 units) level of
additive genetic variance.

Factor Effect % Variance p-value

Direction Explained

Network Size (+) 4 5.5 e215

Pre-change VA (2) 2 6.0 e211

Environ. Change (+) 24 ,2.2 e216

Net. Size * Env. Change ( ) 12 ,2.2 e216

Pre-VA * Env. Change ( ) 6 ,2.2 e216

Effect direction refers to whether the relationship between heritability and the
predictor is directly or inversely proportional.
doi:10.1371/journal.pone.0014645.t004

Gene Networks to Heritability
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Figure 6. Recovery time (A-C) and pre-change heritability (D) when experimentally controlling for additive genetic variation. When
the environmental change is smaller (20 units), the relationship between network size and recovery time is clear, but when the impact is larger (30
units), the relationship is lost (Panel A). Panel B partitions recovery time between the additive genetic variance trigger (VA trigger) for the
environmental change and degree of environmental change, demonstrating the effect of the environment with respect to the role of VA. Averaging
over degrees of environmental change and considering recovery time as a function of network size and VA, the positive relationship between
network size and recovery time is more apparent that solely considering the VA (Panel C). Panel D shows that, although there is an equivalent amount
of additive variation present in the population for each network size, smaller networks tend to have higher pre-change heritability (i.e., pre-
heritability) than larger networks.
doi:10.1371/journal.pone.0014645.g006

Gene Networks to Heritability
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phenotypic variation evolves. These two factors conspire to affect

the trait’s heritability, which, as a measure of the potential rate of

phenotypic change, describes how quickly populations should

recover.

The extensive directional epistasis observed with these networks

parallels the empirical and computational results observed by He

and colleagues [34]. Also consistent with numerical analysis [35],

epistasis declines dramatically with increasing network size: the

smaller the mutational effects—as a result of the larger network

dividing the task among more genes—the greater the reductions in

epistatic effects. As Carter and colleagues encouraged based on

their analysis [14], empirical research should consider that

directional epistatic variance can be converted to additive variance

and thereby influence offspring phenotypes.

Regardless of the specification of genetic architecture class—

linear versus network—the rate of change of genetic variance is

inversely related to the number of genes underlying the trait, in

agreement with the analytical results of Crow and Kimura [9] and

Bürger [10]. There were, however, significant differences in the

rates of change between purely linear and network genetic

architectures, most strikingly in that the rate of change of genetic

variance in networks was about one-half the rate of change in

linear architectures. In contrast, the rate of change of phenotypic

variance was nearly twice as fast given a network as it was given a

linear genotype. This highlights the conjecture that networks

inherently introduce redundancy [36] and the analytical conclu-

sion that epistasis hides (and reveals) variation [14,15,37]. The

network architecture permits a more rapid approach to an optimal

phenotype while maintaining more genetic variability.

Heritability
The effects of directional epistasis hiding and releasing additive

genetic variation, and doing so increasingly more as network size

increases, results in heritability being regulated by network size

and, to a lesser degree, topology and recombination rate. This

holds true whether heritability is measured after a 250-generation

canalization period or an arbitrary period of time before the

population reaches a given level of additive genetic variance. Does

the number of underlying genes influence heritability in real

organisms? Importantly, the observed negative relationship

between network size and heritability is the same direction as for

Drosophila data (Figure 1), but examples of the same traits from

different taxa are needed and should become available in the

future. These results, although based on a simplified network

model (see Caveats and Conclusion), suggest an empirically

testable hypothesis: if no correlation exists, then classical, purely

additive models are most appropriate, but if a negative correlation

is still apparent, then networks offer a better model. Observing

such a correlation does not guarantee that the model used here is

the generating model of reality—and it likely is not truly correct,

due to the simplified network structure—but should be indicative

of considering network size (and connectivity) into the future.

The apparent relationship between network size and heritability

suggests that ‘‘evolvability’’ should be evolvable by the processes of

gene duplication and gene loss [38–41]. Heritability evolves as

genetic variance increases or decreases with respect to a given level

of phenotypic variance, and the rate of change due to these

changes should be faster than the (typically) much slower rate of

gene duplication and loss. But possible rates of change, and the

range of heritabilities that can be explored in a given time-frame,

should be regulated in part by the number of genes underlying a

trait. Species vary widely in genome size, the number of estimated

genes (e.g., [42]), and the number of alternative isoforms from

splicing [43]. This suggests that there could be variation in the size

of networks underlying particular traits; selection for higher trait

heritability should favor individuals whose networks are smaller. A

test of this hypothesis may consist of estimating the gene regulatory

networks underlying one or more traits in several ‘‘closely’’ related

species, e.g., the sequenced Drosophila [42], and testing for both

differences in network size underlying particular traits and a

negative relationship between network size and heritability.

Kellermann and colleagues [44] recently showed correlations

between range size and the heritability of cold and desiccation

resistance traits in Drosophila; we can hypothesize that some

proportion of those differences are rooted in the sizes (and

topology, connectivity) of the underlying gene regulatory networks

for the traits.

Population Recovery
The rate of adaptation to novel ecological conditions—as

modeled here—may be an important factor in the face of sudden

landscape modifications or, more generally, with respect to source-

sink dynamics in a multi-patch environment [28,45,46]. In

general, the smaller the network, the higher the heritability, and,

as expected [23], the faster the population recovery from a sudden

environmental change. But the role of heritability, and more

specifically the additive genetic variance present in the population,

tends to be less of a factor than the number of underlying genes,

which regulates the rate of change of genetic variance [9,10].

There must be additive genetic variance present in the population

for any evolution to occur, but whether that variance is distributed

across a few or many genes is important to the rate of trait

evolution and population recovery because the average contribu-

tion of each gene is inversely proportional to the size of the

network in which it is a player. The increase of additive genetic

variance after the environmental change (which induces a

population bottleneck) keeps with the analytical results of Naciri-

Graven and Goudet [37] and several experimental studies that

they reference. A straight-forward empirical and experimental test

of this simulation result—if, in fact, network size underlying a

particular trait varies between species—is to find two species with

different-size networks, equalize additive variance for the trait, and

then measure the response to selection. If responses are not

identical, and specifically if the response is slower for the species

whose underlying network is larger, then the hypothesis of the

importance of network size is supported. The general results also

hold for network connectivity, a scenario which has been

examined in greater detail by Kimbrell and Holt [28] and

Repsilber and colleagues [29]. These simulation results may be

tested by comparing the recovery times of two similar species with

different size (and different topology) networks for a trait, e.g.,

examining a second yeast species in an experiment paralleling that

of Bell and Gonzalez [26].

Caveats and conclusion
Like all models, these simulations are simplified versions of

reality, and these simplifications need to be considered when

making inferences about particular patterns that should be (or are)

observed. First, I use a simplified representation of the networks

themselves. Real regulatory networks are more dynamic than

those considered here, increasing (or constraining) organism’s

ability to fine-tune given a particular environment at a particular

time [47]. Furthermore, genes in real organisms are often co- or

multiply-regulated: for example, the even-skipped gene that is part of

the embryo patterning pathway in Drosophila development

possesses at least seven enhancers that permit differential

expression of the gene [48]. Together, these dynamics provide

organisms phenotypic plasticity (developmental or otherwise) that
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allows them to cope with different selective challenges they face

during their life (e.g., [49]). In this work I have assumed that each

network confers an average phenotype during the individual’s life

that either meets or does not meet the average challenge presented

by the environment. Future computational research should

consider more realistic networks—combining the size of the

networks considered here and the multiply-and feedback-regulated

networks of previous researchers [27–29]—to analyze these

different factors together and build towards a better set of

theoretical expectations.

Second, I have removed all direct environmental effects on the

GPM in order to focus on heritable variation. The indirect effect

of selection removing particular genotypes from a parental

generation is present, but environmental variance is an important

aspect of heritability in nature. It seems likely that there is a point

at which environmental variance will overwhelm any of the

network-induced effects on heritability, but that remains to be

explored. Keeping with the preceding paragraph, future research

should consider these direct environmental effects.

Third, every gene in a Boolean network, in its raw form, is

essentially equivalent with every other gene in the network: there

are two alleles (0 and 1), and each is substitutable with one another

in the network. In reality we know that a guanine nucleotide

exchange factor won’t become a heat shock protein as a result of a

single mutation. As such, we have to recognize the real

biochemical limitations that particular genes impose on the

evolution of a quantitative trait, and recognize that there are

regions of phenotypic space that may simply be inaccessible

[50,51]. That noted, all genes have evolved from some ancestral

gene, and given sufficient time, a sequence may grow, shrink, or

change nucleotide sequence to become another gene composed of

the same four-letter alphabet. Unique molecular evolutionary

histories resulting in phenotypic convergence are well-known

[52,53], but there are also several known cases of gene

convergence from disparate taxa [54] and convergence in gene

regulatory networks [55].

Finally, even though nature abhors a vacuum [56], in this paper

I consider a single species existing in a single patch. Given that we

know heritabilities for a quantitative trait can vary between species

[7], and assuming that the genetic architecture of the traits plays a

significant role in shaping heritability, we should ask why larger

networks ever exist. According to this analysis, if a species’ trait can

adapt faster to a novel environment when the network is smaller,

then all species should be driven to the smallest possible network

for any trait in order to gain an adaptive advantage. But this is not

the case. In forthcoming papers pending acceptance, I consider

population dynamics in a fluctuating environment; competition

between two species; and multiple-patch scenarios, the results of

which refine the conclusions presented here.

In conclusion, I find: one, the size and topology of the network,

plus the recombination rate in some cases, underlying a

quantitative trait can strongly influence the trait’s heritability. In

particular, smaller, scale-free networks and low recombination

rates increase heritability. In such networks, the rates of change of

additive genetic variance and phenotypic variance are most

dissimilar: networks allow phenotypic variance to change quickly

while (hidden) additive variance changes slowly, thus resulting in

higher heritability. Two, the effect of genetic architecture on

heritability translates to altered population recovery times after

sudden environmental changes, such that species with a small

network tend to recover faster than species with larger networks.

Conditional on further work refining these results, and in

consideration of similar research focused on the density of

connections in a network, these results provide a set of

expectations bridging the genotype-ecotype map may be empir-

ically tested.

Materials and Methods

Model Presentation
I focus on individuals of a single species living in a single patch

with an environmental variable that remains constant through

time (Hypothesis 1) or that changes from one steady state to a new

steady state after a period of canalization (Hypothesis 2). The

variable in the model is an environmental ‘‘driver’’, that is, a

variable whose value is not affected (or is minimally affected) by

the presence or activity of individuals in the landscape. Examples

of environmental drivers include temperature, salinity, and pH.

Individuals possess a single quantitative trait that maps to the

environmental variable. For the three environmental driver

examples above, this might include thermoregulatory ability,

osmoregulatory ability, or ability to regulate pH. The trait is

encoded by a directed Boolean network of 16, 32, 64, 128, or 256

genes, the state of each determined dynamically (see below). The

topology of the network is initiated as either random (no

preferential attachment) or scale-free (with preferential attach-

ment) in its out-degree distribution [11]. Randomly-connected

networks show an approximately Poisson degree distribution,

whereas scale-free networks exhibit an power law degree

distribution [57]. I use a lottery model algorithm to form the

scale-free networks, i.e., the probability of an existing gene

acquiring a connection to a new gene is proportional to the

number of existing connections [57].

At the start of a run, every individual’s network is randomly

determined (as guided by the constraints of topological specifica-

tion); with these relatively small populations, it is very unlikely that

any two individuals possess the same exact network at simulation

initiation. The binary state [0, 1] of each gene in the network

except the upstream-most is determined by comparing the state of

the gene immediately upstream to the functional relationship of

the gene pair (Figure 7a, encoded by chromosome of 7c). The state

of the upstream-most gene is determined randomly for each

individual at simulation initiation, and is then inherited for

subsequent generations. Some genes may act as repressors and

others as activators, and the state of the downstream gene is

determined by the match or mismatch between the state of the

upstream gene and the function (Figure 7b). For example, if the

upstream gene is ‘‘on’’ (state = 1) and is a repressor (function = 0),

then the downstream gene takes the ‘‘off’’ state (state = 0).

Alternatively, if the upstream gene state is 0 and it is a repressor,

then the downstream gene takes the ‘‘on’’ state. Each gene except

the basal-most has a single input to ease computational

requirements (the number of calculations increases according to

22k

with k inputs [27]), but may have one or more outputs (i.e.,

may be pleiotropic). All network information is stored on a single

chromosome consisting of two parts (Figure 7c). First, the topology

is defined by a ‘‘tails list’’ of the downstream genes; the ‘‘heads list’’

(the controlling, upstream genes) is inferred from the index

position of each tail list element. The relationship between heads

and tails genes is randomly determined at the start of a simulation

run, but, as noted above, the out-degree distribution is constrained

by the scale-free versus random topological assignment. Figure 7a

is an example 13-gene network whose states have been calculated

given the information from the chromosome in Figure 7c.

Each individual’s phenotype is determined by summing the

states of all terminal genes in the network, i.e., genes with out-

degree = 0, and scaling the value to the range of the environment

( = 140). So, for example, the network in Figure 7a possesses eight
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terminal genes, four of which are ‘‘on’’, thus the individual

possesses a phenotype of 70 ( = (140/8)*4). I am thereby assuming

that there are no biochemical limits given a particular network

size; individuals with a 16-gene network can approximate a

phenotype of 140, as can individuals with a 256-gene network.

The consequence for this re-scaling is that smaller networks have

lower resolution than larger networks, which is a reasonable

assumption given that dividing any particular task among fewer

actors will result in lower overall accuracy. I stored the phenotypes

of each individual’s parents and used mid-parent regression to

estimate the trait’s heritability in the population. Additive genetic

variance was derived by multiplying the phenotypic variance by

the heritability.

Each individual’s phenotype is translated to a fitness relative to

the environment using a Gaussian function of the form,

RF~e{0:001�Dv,

where D is the absolute value of the difference between the

environment and the individual’s phenotype, and v is a value that

changes the breadth of the selection function. I varied v from 1.5

(high tolerance for a phenotype-environment mismatch) to 2.5

(low tolerance for a phenotype-environment mismatch) in the

simulations. In this way I assume that the environmental effect is

absolute and the phenotypic variance of the population plays no

role in how an individual is selected. Each individual’s RF does not

affect the number of offspring produced, but does affect the

probability that an individual will survive to reproduce.

Individuals are sexually-reproducing hermaphrodites who mate

at random. The number of offspring from a mating is determined

by drawing a random value from a Poisson distribution with

l= 1.5. Gametes undergo recombination during a diploid meiotic

stage to create an offspring chromosome that is a mixture of

parental alleles, which in this model are the tails list and the

functional relationships. The first element of the offspring

chromosome is chosen from the first element of one parent, then

subsequent elements are taken from the same parent until a

random uniform number less than the recombination rate

(r = 0.05, 0.25, or 0.5) is drawn, at which point the element is

drawn from the opposite parent. This continues the length of the

chromosome. Mutation, as determined by testing a uniform

random number against the mutation rate (1e23, 1e24, 1e25) for

each chromosomal element, occurs after the new chromosome is

created. Although these mutation rates appear high, as noted by

Frank [27], because the trait is directly related to fitness, the

effective mutation rate is about one order of magnitude lower. All

mutations are non-synonymous and may affect either the

controlling function of a gene (an activator mutates to suppressor)

or the relationship to another gene (i.e., alter network topology).

Death occurs after reproduction in three stages. First, all parents

are killed to prevent over-lapping generations. Next, the new

generation is culled according to each individual’s relative fitness:

if the RF is less than a uniform random number, then the

individual dies. Last, a carrying-capacity is enforced by randomly

killing individuals to bring the population below K = 500.

I examined patterns of epistasis in the gene networks by creating

four identical individuals and randomly generating two mutations

that would occur in either the functional relationship (activator

versus repressor) or the topology of the network. I then mutated

one individual with one mutation, mutated a second individual

with the second mutation, and mutated the third individual with

both mutations, creating both single mutants and a double mutant.

The fitnesses of all four individuals was calculated as described

above. Epistasis was measured as the fitness of the double-mutant

minus the product of the single-mutant fitnesses, e= wab–wawb

[35]. I tested the role of network size (six levels), network topology

(two levels), and the location of the mutations (functional

relationship versus topological mutation) on epistasis using 1000

randomly-generated networks for each treatment, for a total of

24000 runs.

Treating the genetic architecture of a quantitative trait as a

hierarchical network is inherently different than a purely linear

(additive) system of the type central to classical analytical genetics.

To test that the basic model structure (i.e., using a Boolean genetic

system) did not violate the analytical results of Crow and Kimura

[9] or Bürger [10]—specifically, that the rate of change of genetic

variance was inversely related to the number of underlying loci—I

changed the network model discussed above by defining the

genetic architecture as a linear Boolean [0,1] string. The network

representation of the GPM results in a mutational target size of

2n–1 because the edges between nodes can mutate (i.e., the

relationship among the genes can change). To compensate for this

Figure 7. An example network, functional map, and chromo-
some. Part A shows an example 13-gene Boolean network. Black nodes
are up-regulated (‘‘on’’; state = 1) genes and white nodes are down-
regulated (‘‘off’’; state = 0). If an edge connecting two nodes is black, the
‘‘head’’ gene (upstream) activates the ‘‘tail’’ gene (downstream), and if
an edge is gray, the head represses the tail gene. Part B provides the
functional map; for example, if the head gene is ‘‘off’’ and the edge
connecting the head and tail genes is an activator, then the tail gene is
off (upper-right quadrant). Part C shows the chromosome correspond-
ing to the network in Part A. Each block represents a gene (numbers
along the left-hand side); within each block, the top number defines the
‘‘head’’ (i.e., immediately-upstream) gene while the bottom number
defines the functional relationship (e.g., if 0, then the head gene is a
repressor).
doi:10.1371/journal.pone.0014645.g007

Gene Networks to Heritability

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e14645



near-doubling of mutational target size given network genetic

architecture, I doubled the mutation rates from 0.001, 0.0001,

and 0.00001 to 0.002, 0.0002, and 0.00002 in the linear

genotype simulations. Recombination rates are unaffected by

the difference because nodes and their relevant edges are

coupled in the network model. Phenotypes were calculated as

the sum of all loci scaled to the range of environmental values

available, as in the network model; phenotypic variance was

calculated directly from the population; heritability was

calculated using mid-parent regression; and additive genetic

variance was calculated as the product of phenotypic variance

and heritability at each time step.

Analysis
For all analyses, except where noted in the preceding text, the

predictor variables were factors rather than continuous variables.

Thus, although a nonlinear relationship is suggested in some

figures, it was not required in the models. Although not

presented, I also evaluated models in which network size was a

continuous variable, and the inclusion of a second-order

polynomial fit the data far better than a strictly linear model.

For all analyses, I examined histograms, quartile-quartile plots,

and predicted versus observed plots to ensure that model

assumptions of normality (or Laplacian errors, in the cases of

epistasis analysis [see below]) were met.

I tested the role of genetic architecture on epistasis using a

generalized linear model (glm) with network size, network

topology, mutation rate, and recombination rate as predictor

variables. The epistasis data were highly kurtosed and exhibited

extensive heteroskedasticity, with smaller networks showing higher

variance in epistasis than larger networks. I used a Laplace

distribution and an identity link function in the glm to

accommodate the leptokurtosis. I weighted epistasis by its standard

deviation within network sizes to homogenize variances.

I used two sets of simulations to test the effects of genetic

architecture on rates of change of genetic and phenotypic

variance, quantitative trait heritability, and population recovery

times. In both sets, I initialized a population of 500 individuals in a

single patch with the central environment value ( = 70) and ran the

simulation for 250 generations. The value of the environment

dropped suddenly either 20 or 30 units at generation 251 (i.e., after

a 250-generation canalization period), and each simulation

continued an additional 750 generations or until the population

went extinct. For scenarios in which the genetic architecture was a

network, the experimental design used five network sizes (n = 16,

32, 64, 128, 256); two topologies (scale-free or random); three

mutation rates (1e23, 1e24, and 1e25); two recombination rates

(0.05 and 0.5); two fitness exponents (1.5 and 2); and two degrees

of environmental change (20 and 30 units). I replicated each

experiment three times, for a total of 720 simulations. I used the

same experimental design as above in the scenario where genetic

architecture was purely linear, except that there was no term for

topology (total of 360 simulations). As discussed in Results, I

extended the network simulations further by changing the

environment when a particular amount of additive variance was

reached by the population; analyses followed those described

above.

I used only the pre-impact data (i.e., the first 250 generations) to

estimate the effect of each predictor on rates of change of additive

genetic and phenotypic variance, and quantitative trait heritability

in a stable environment. I used a linear regression of additive

genetic and phenotypic variance against time to estimate the rate

of change for each run of the simulations. The rate of change of

each parameter was then the response variable in a linear model. I

used the average heritability over the last 100 generations as the

response variable in a multi-way ANOVA to partition variation in

heritability among the predictor variables. A slight skew in

heritability distribution required log-transformation prior to

analysis to ensure normally-distributed residuals.

I used the data from all time steps for each run to calculate

recovery times. To set the baseline population to which the

population had to return to be considered recovered, I first

calculated the average population size for the 50 generations

immediately preceding the environmental change. Time-to-

recovery was then defined as the number of generations between

the environmental change and the first generation in which the

population had returned to the pre-change size. I used an

ANOVA in which time-to-recovery was the response variable for

both the network and linear network architectures. For some

analyses, a full-interaction model resulted in far too many terms to

be readily interpretable; I used Akaike’s Information Criterion

(AIC) to determine how different the best interpretable model was

from the AIC-best model [58]. All simulations were run in

NetLogo 4.1 [59], and all statistical analyses were completed in R

2.10 [60]. The epistasis analysis was completed using the VGAM

package for R [61].
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