
Jak2 Is a Negative Regulator of Ubiquitin-Dependent
Endocytosis of the Growth Hormone Receptor
Joyce Putters1, Ana C. da Silva Almeida1,2, Peter van Kerkhof1, Agnes G. S. H. van Rossum1,2, Ana

Gracanin3, Ger J. Strous1*

1 Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands, 2 Drug Discovery Factory BV, Bussum, The

Netherlands, 3 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

Abstract

Background: Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of
certain cytokine receptors is mediated by the ubiquitin ligase SCF(bTrCP). In several instances, Janus kinase (Jak) family
members can stabilise their cognate cytokine receptors at the cell surface.

Principal Findings: In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents
endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces
down-regulation of the growth hormone receptor by SCF(bTrCP). Using c2A human fibroblast cells we show that both
growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly
suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate
the importance of cellular concentration on growth hormone receptor function. Both Jak2 and bTrCP bind to neighbouring
linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth
hormone sensitivity is regulated by the cellular level of non-committed Jak2.

Conclusions/Significance: As signal transduction of many cytokine receptors depends on Jak2, the study suggests an
integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the
receptors.
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Introduction

In mammalian cells the Janus kinase (Jak) family of protein

tyrosine kinases comprises Jak 1,2,3 and Tyk2. All Jak family

members are widely expressed except for Jak3 that is restricted to

cells of the hematopoietic system. Jak molecules associate non-

covalently with a membrane-proximal region in cytoplasmic tails

of cytokine receptors and play crucial roles in the initial steps of

cytokine signalling [1,2].

At the C-terminus, Jak family members contain the tyrosine

kinase domain preceded by a pseudokinase domain. The N-

terminal half of Jak comprises a postulated FERM domain (four-

point-one, ezrin, radixin, moesin) that binds to cytokine receptors

and a potential SH2 domain [3]. Specific mutations in the FERM

domain inhibit cytokine receptor association and concomitantly

abrogate Jaks’ ability to respond to ligand binding. Binding of the

FERM domain to receptors has also been proposed to assist in cell

surface localisation of several cytokine receptors [4,5,6,7,8,9].

Growth hormone (GH) is a multifunctional, clinically important

cytokine hormone that acts through its type I cytokine receptor,

the growth hormone receptor (GHR). The type I cytokine receptor

family further includes the prolactin (Prl) receptor, the erythro-

poietin (Epo) receptor, and the thrombopoietin (Tpo) receptor

[10,11]. All cytokine receptors lack intrinsic kinase activity.

Instead, a conserved proline-rich domain in their cytosolic tail,

box-1, functions as a binding site for Jak family members. In the

case of GHR, ligand binding results in the activation of Jak2

molecules [12] that in turn phosphorylate each other’s tyrosine

residues , the receptor’s cytosolic tail and downstream signalling

molecules [13]. Both liganded and unoccupied GHRs are

endocytosed via clathrin-coated vesicles and subsequently trans-

ported via endosomes to lysosomes [14]. Previously, we have

shown that both endocytosis and transport to lysosomes require an

active ubiquitin conjugation system and a 10-amino acid motif

(UbE-motif inside the conserved box-2 region) in the cytosolic tail

of GHR [15]. The SCF(bTrCP) ligase drives endocytosis and
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degradation of the GHR by binding with its WD40 domain to the

non-conventional UbE motif of GHR [16].

GHR signalling depends on relative rotation of the pre-

dimerised receptor subunits aligning two Jak2 molecules upon

GH binding [17,18]. Recent studies show that the Jak family also

plays non-catalytic roles in regulating the cellular localisation and

trafficking of cytokine receptors [6,19]. For the GHR, increased

Jak2 expression levels increase the fraction of mature GHRs [9].

GHR endocytosis provides an important means to control GH

sensitivity. Patients with cancer-induced wasting are relatively

GH-insensitive and have low GH binding protein titers, indicative

for rapid endocytosis of GHRs [20]. It is therefore important to

understand the cellular mechanisms involved in the regulation of

GHR endocytosis.

Here, we demonstrate that Jak2 binding specifically inhibits

GHR endocytosis, independent of its kinase activity. Studies by the

group of Ihle have shown that phosphorylation of tyrosine 119 of

Jak2 abrogates the interaction of Jak2 with several cytokine

receptors [21,22,23]. Based on this and our own experiments, we

hypothesise that GH stimulation releases Jak2 from the GHR.

Combining fractionation studies with bioluminescence resonance

energy transfer (BRET), we show that Jak2 activation indeed

results in release of phosphorylated Jak2 from the GHR, after

which the GHR is allowed to internalise via SCF(bTrCP)-

mediated endocytosis and to be degraded.

Results

Jak2 specifically inhibits GHR endocytosis independent of
its kinase activity

Recently, we showed that the E3 ligase SCF(bTrCP) is required

for GHR endocytosis via the UbE-motif of the GHR [16]. Other

studies revealed that Jak2 stabilises the GHR [9,24]. In Fig. 1D the

different binding motifs are illustrated. To investigate whether

Jak2 mediates GHR stabilisation by inhibiting GHR endocytosis,

we expressed Jak2 in GHR-expressing Hek293 cells and incubated

the cells with Cy3-GH to monitor GHR endocytosis. Cy3-GH

uptake was strongly inhibited in cells expressing exogenous Jak2,

while cells that did not express exogenous Jak2 contained less Cy3-

GH, all of it being intracellular en route to the lysosomes (EV)

(Fig. 1A). Exogenously expressed Jak2 did not interfere with

clathrin-mediated endocytosis in general as is shown in Fig. 1A for

transferrin, right panels, where we compared Cy3-GH and

transferrin uptake. Hek293 cells that did not express GHR

showed no Cy3-GH labelling (not shown), indicating that the

entire fluorescent label originated from GHR activity. Thus,

(over)expression of Jak2 causes a clear disruption of GH/GHR

endocytosis.

To investigate whether the endocytosis inhibition depends on

the interaction between GHR and Jak2, we took advantage of a

study by Funakoshi-Tago and co-workers who showed that

replacing a tyrosine residue with a glutamic acid at position 119

abrogates Jak2 binding to a subset of cytokine receptors, including

the GHR [21]. Fig. 1A, lower panel, shows that expression of

Jak2(Y119E) did not affect Cy3-GH uptake, indicating that Jak2-

GHR interaction is needed for the inhibition of endocytosis of the

GHR. We then asked whether Jak2 kinase activity is required. As

Cy3-GH activates both GHR and Jak2, we transfected the cells

with a DNA construct expressing only the N-terminal half of the

molecule including FERM and SH2 domains, devoid of the

(pseudo)kinase domains. As seen in Fig. 1A, Jak2(1-525) inhibited

GHR endocytosis similar to wild-type Jak2. These data are in full

agreement with work of Deng et al. who showed that binding of

Jak2 is sufficient to inhibit GHR down-regulation [24]. To confirm

that Jak2 indeed inhibits GHR endocytosis we determined the

initial uptake rates of 125I-GH in cells co-transfected with GHR

and Jak2. As seen in Fig. 1B, about 40% of 125I-GH was

endocytosed within 10 min, whereas less than 10% endocytosed if

Jak2 was co-expressed. This uptake rate is very similar if GH is

bound to a GHR that lacks the bTrCP binding site (UbE motif).

Co-expression of Jak2 had no significant additive effect on GHR

endocytosis. Together, these results demonstrate that overexpres-

sion of Jak2 inhibits GHR endocytosis.

To further substantiate the results we expressed the various Jak2

species in the GHR-expressing cell line. Fig. 1C, upper panel,

shows that both wild-type and Jak2(1-525) increased the steady

state levels of several fold, dependent on the efficiency of

transfection. The increase was solely due to decreased endocytosis

of the mature (130kD) GHR, because the steady state levels of

GHR in the endoplasmic reticulum (110kD) were unchanged.

Notably, although expressed to the same level, the Jak2 binding

mutant Jak2(Y119E) had little effect on the steady state of GHR.

Incubation with GH slightly increased the apparent molecular

weight of mature GHR in the presence of wild-type Jak2 but had

no effect if the truncated form of Jak2 was co-expressed. Next, we

analysed the Jak2-GHR interaction. As expected, both wild-type

and truncated Jak2, but not Jak2(Y119E) co-immunoprecipitated

with the GHR (Fig. 1C, panel 4). Exogenous Jak2(1-525) was

unable to phosphorylate the GHR upon GH addition, while

Jak2(Y119E) induced a very low level of phosphorylation as

compared to wild-type Jak2, probably due to a low residual affinity

of the mutant Jak2 for box-1 (lanes 4, 6, 8), indicating that Jak2-

GHR binding is essential for GHR phosphorylation (Fig. 1C).

Together, we conclude that Jak2 binding to the GHR inhibits

GHR endocytosis independent of Jak2 kinase activity.

Jak2 acts upstream of SCF(bTrCP)
Based on our conclusion that Jak2 binding is sufficient to inhibit

GHR endocytosis, we hypothesised that Jak2 must leave the GHR

before the endocytosis machinery, including SCF(bTrCP) and

clathrin, can proceed [16]. Although GHR does not seem to be an

essential target for ubiquitination, the receptor becomes ubiqui-

tinated during the process of endocytosis [25]. Here, we use GHR

ubiquitination to measure progression of the GHR in the

endocytosis process. In this scenario, it is expected that bTrCP

gene silencing prevents GHR (K48) polyubiquitination, while

clathrin silencing might accumulate (K48-ubiquitinated) GHR at

the cell surface as it acts downstream of SCF(bTrCP). Dependent

on the effectiveness, silencing of bTrCP caused a 5–10 fold

accumulation of the mature (130kD) GHR at steady state, whereas

its synthesis (110kD) remained unchanged. Upon bTrCP silencing,

especially if GH was added to the cells, GHR ubiquitination was

clearly inhibited (Fig. 2A). To ascertain that this polyubiquitin

signal was K48-linked as is expected if SCF(bTrCP) is the

ubiquitin ligase, we overexpressed wild-type and mutant ubiquitin

that cannot make K48 and K63 polyubiquitin chains (K48R and

K63R), respectively [26,27,28,29]. As seen in Fig. 2B, ubiquitin

K48R overexpression could not form poly-ubiquitin chains on

GHR, whereas transfection of ubiquitin K63R had no effect.

Thus, very likely bTrCP is involved in K48-linked ubiquitination

of GHR during endocytosis.

Cargo selection into clathrin-coated pits is a general mechanism

for cells to specifically transport membrane proteins into

endosomes. Previously, we showed that GHR endocytosis occurs

clathrin-mediated [30,31]. In Fig. 2A, right panel, we show that

silencing of clathrin indeed caused a very strong accumulation of

ubiquitinated GHRs, especially if the cells were treated with GH.

Quantification of the amounts of GHR is difficult due to variable

Jak2 and GHR Endocytosis
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and inefficient electrophoretic transfer of ubiquitinated proteins.

To ascertain that the ubiquitin signals originate from GHR we

used 1% boiling SDS buffers in all ubiquitination experiments to

lyse the cells and to prevent (ubiquitinated) proteins to associate to

GHR. We conclude that GHR ubiquitination occurs before

endocytosis and depends on SCF(bTrCP) activity.

If Jak2 binding prevents the activity of SCF(bTrCP), exogenous

Jak2 should accumulate GHR at the cell surface in a non-

ubiquitinated state. Therefore, we overexpressed wild-type and

mutant Jak2 in the GHR-expressing cell line and measured GHR

ubiquitination. Upon wild-type Jak2 and Jak2(1-525) overexpres-

sion, GHR was stabilised, but GHR ubiquitination was decreased,

demonstrating a strong inhibition of GHR ubiquitination (Fig. 2C,

lane 4). To quantify the effects we measured the ratios of

ubiquitinated GHR over total mature GHR: both in absence and

presence of GH the ubiquitination of GHR was 4–10 times lower

if either wild-type Jak2 or Jak2(1-525) was overexpressed

compared to control cells (empty vector). As expected, Ja-

k2(Y119E) showed GHR ubiquitination comparable to control

cells. We conclude that Jak2 binding inhibits GHR ubiquitination

and probably acts upstream of SCF(bTrCP) and clathrin.

Phosphorylated Jak2 dissociates from the GHR
So far, we have shown that Jak2 inhibits GHR endocytosis non-

catalytically. According to our hypothesis, Jak2 needs to detach

from the receptor to allow endocytosis. As shown by Funakoshi-

Tago et al., phosphorylation of Y119 of Jak2 induces Jak2

dissociation of several cytokine receptors [21]. This implies that

GH stimulation results in Jak2 release. As many studies have been

performed with cell lines expressing exogenous GHR, large

Figure 1. Jak2 inhibits GHR endocytosis. A. GHR-expressing Hek293 cells were transfected with empty vector (EV), Flag-Jak2, Flag-Jak2(Y119E) or
Flag-Jak2(1-525). One coverslip was incubated for 15 min with Cy3-GH at 37uC, fixed and stained with anti-Flag (left panels). For EV- and Jak2-
transfected cells, cells were also incubated with Cy3-GH and Alexa488-transferrin (Tf) for 15 min at 37uC (right panel). Bar, 5 mm. B. Hek293 GHR or
GHR(UbE mutant)-expressing cells were transfected with Jak2 DNA or empty vector and, after 2 days, incubated for 2h on ice with 180 ng/ml 125I-GH.
To measure uptake kinetics unbound label was removed and the cells were incubated at 37uC for 10 min. C. Hek293 cells were transfected as in 1A
and treated with GH for 15 min at 37uC as indicated. Total cell lysates (TCL, upper panel) and GHR immunoprecipitations (lower panel) were analysed
on western blot (WB) using anti-Flag, or anti-phosphotyrosine (pY). 130, mature GHR; 110, precursor GHR. Data are representative of three
independent experiments. D. Diagram showing the different binding motifs in the dimerised GHR; Jak2 binds Box1, TrCP binds UbE). The
transmembrane domains are the dimerisation domains.
doi:10.1371/journal.pone.0014676.g001
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numbers of receptors relative to low numbers of (endogenous) Jak2

might disturb the control of endocytosis that is based on a

stoichiometric relation between Jak2 and GHR.

Human IM9 lymphoblasts have detectable levels of endogenous

GHR and have been used in many cytokine receptor studies. An

important property of this cell line is the fact that GHR is only

endocytosed in presence of GH. If IM9 cells contain sufficient

amounts of Jak2 to accumulate endogenous GHRs at the cell

surface, we expect that GH stimulation triggers GHR endocytosis

by Jak2 phosphorylation on Y119 and detachment from the GHR.

Testing the endogenous Jak2-GHR interaction by co-immuno-

precipitation failed, probably due to low efficiency of the

antibodies. Therefore, we based our experiments on the findings

of Behrmann et al., who showed that Jak1 and 22 mainly occur

membrane-bound, dependent on their ability to associate with

cytokine receptors [32]. As Jak2 can only become phosphorylated

if associated with a cytokine receptor [1,33], we assume that

phosphorylated Jak2, if present in the cytosol, has been released

from GHRs. First, we established the relative distribution of total

endogenous Jak2: 80% was membrane-bound (Fig. 3A, left lanes).

No GHR was detectable in the cytosolic fraction (not shown).

Treatment with GH did not change the overall Jak2 distribution

(this is expected as Jak2 binds to many different substrates) but, the

fraction of phosphorylated Jak2 remained almost 50% higher in

the cytosol compared to that in the membrane fraction as

measured over a period of 60 min (Fig. 3A, right lanes). These

results indicate that phosphorylated Jak2 dissociates from the

GHR upon GH stimulation. As it is unknown in what priority and

proportion the different tyrosine residues in Jak2 are phosphor-

ylated, it is difficult to assess why not all phosphorylated Jak2 is in

the cytosol.

To ascertain that GH-induced GHR endocytosis (degradation)

in IM9 cells depends on the ubiquitin system as previously shown

for GHR endocytosis in various tissue culture cells, we used the

proteasomal inhibitor MG132 [25]. Pre-treatment of IM9 cells

with MG132 indeed completely inhibited GH-induced GHR

degradation (Fig. 3B, lanes 7–9). To investigate whether GH-

induced endocytosis depends on Jak2 activity, we inhibited

endogenous Jak2 kinase activity with the kinase inhibitor

staurosporin and treated the cells with GH. Previously, it has

been shown that 1 mM staurosporin abolished GHR phosphory-

lation in CHO cells [34]. Fig. 3C shows the same result for Jak2

phosphorylation. In control cells GH induced complete degrada-

tion of the GHR within 60 min, while staurosporin treatment

stabilised the mature GHR (Fig. 3B). The immunoprecipitations

shown in Fig. 3B were performed after boiling in 2% SDS and

reducing agents to exclude that the observed loss of GHRs resulted

from a shift to the detergent-insoluble fraction. Whether or not the

Figure 2. SCF(bTrCP) and Clathrin act downstream of Jak2. A. GHR-expressing Hek293 cells were either silenced for GFP (negative control),
bTrCP or clathrin, and then treated for 15 min with GH at 37uC as indicated. GHR immunoprecipitations were analysed for ubiquitination. In the lower
part of the figure the efficiency of silencing is visualised using anti-bTrCP or anti-Clathrin. B. Hek293 cells were transiently transfected with HA-tagged
wild-type ubiquitin, ubiquitin K48R or ubiquitin K63R. Total cell lysates (TCL) and GHR immunoprecipitates were analysed on western blot using the
indicated antibodies. EV, empty vector. C. Cells were transfected as in Fig. 1A and then treated for 15 min with GH at 37uC as indicated. GHR was
immunoprecipitated from SDS-boiled lysates, and analysed for ubiquitination. 130, mature GHR, 110, precursor GHR. At the bottom of the figure the
ratios of ubiquitinated versus 130kD-GHR are given. All data in this figure are representative of three independent experiments.
doi:10.1371/journal.pone.0014676.g002
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endocytosis occurred via transition through a detergent-insoluble

stage as suggested by Goldsmith et al. [35], in any case the final

result is an almost complete GH-induced degradation of GHR

after 60 min. The results support the hypothesis that Jak2 kinase

activity is required for GHR endocytosis. Although previous

studies indicate an enhanced interaction between GHR and Jak2

upon GH stimulation [36], the conditions differ in timing and

expression levels, indicating that the GHR-Jak2 interaction is

dynamic during GH stimulation. This is also supported by the

current view that signalling complexes preassemble at the plasma

membrane [32,37].

Resonance energy transfer techniques have recently emerged

that allow the study of the dynamics of interactions of proteins in

living cells [38], such as BRET. BRET has been extensively used

to study a wide range of protein interactions, such as GPCRs

[39,40] and insulin receptor [41]. We have made use of this

technology to study the effect of GH on the interaction between

GHR and Jak2. We created and validated the interaction partners,

Jak2, N-terminally fused to YFP (YFP-Jak2), and GHR, C-

terminally fused to Renilla luciferase (GHR-Rluc). As a negative

control, Jak2 Y119E, which does not bind GHR, was N-terminally

fused to YFP (YFP-Jak2 Y119E). Hek293-TR cell lines constitu-

tively expressing GHR-Rluc, as well as Jak2-YFP (wt or Y119E),

under a doxycycline inducible promoter as described in the

Methods section were used. In the absence of doxycycline, no

acceptor protein (YFP-Jak2) is expressed, and, therefore, it is a

condition of donor only (GHR-Rluc). Doxycycline induction

resulted in the expression of YFP-Jak2 that (as expected) induced

accumulation of GHR (compare lanes 2–4 with lane 1).

Expression of the binding mutant, YFP-Jak2 Y119E, did not

stabilise GHR-Rluc, (lanes 5 and 6). As seen in Fig. 4B BRET

measurement detected a clear interaction between GHR-Rluc and

YFP-Jak2, consistent with the association of Jak2 with the

cytoplasmic tails of GHR in absence of GH. As predicted, no

BRET signal could be detected in the cell line where YFP-Jak2

Y119E was expressed. Addition of GH, elicited a fast (time

interval: 0–4 min) reduction of the BRET signal (of 4666%) when

compared to basal state. After 10 min the BRET ratio stabilised at

the level of 65% (6563%) of the basal signal. The short

stimulation with GH was sufficient to cause a decreased migration

of the mature GHR in the gel (Fig. 4A, lanes 3 and 4). Although it

is important to realise that BRET cannot distinguish between a

change in conformation that results in an increased distance

between donor and acceptor, and dissociation events, our results

are in agreement with a scenario where, at early time points after

GH stimulation, Jak2 dissociates from the receptor due to its

phosphorylation, but soon after it re-associates in a dynamic

fashion, probably due to phosphorylation/dephosphorylation

cycles. Since the Jak2 expression affects the levels of GHR,

neither saturation nor competition assays could be performed. In

addition, use of a kinase-inactive Jak2, that is unable to leave the

GHR, would generate biased results due to unpredictable

conformational changes in the BRET assay; therefore, no

quantitative data regarding the interaction were obtained.

Decreased Jak2 activity in coated pits
If Jak2 detaches after GH stimulation, we expect Jak2 activity to

be absent in the GHR complexes that are about to be recruited

into the coated pits. To test this we inhibited endocytosis at the

coated pits by either methyl-b-cyclodextrin (MbCD) or by

silencing clathrin. MbCD depletes cholesterol from the plasma

membrane and inhibits clathrin-coated pit budding. This causes

inhibition of internalisation of the transferrin receptor by 85%

[42]. Fig. 5A shows inhibition of Cy3-GH uptake after treatment

with MbCD as compared to non-treated cells. Next, we stimulated

with GH and measured both GHR- and STAT5 phosphorylation.

As seen in Fig. 5B, GHR phosphorylation was strongly inhibited in

MbCD-treated cells as compared to non-treated cells that

expressed comparable amounts of GHRs (lower panel, lanes 2

and 4). In addition, phosphorylation of STAT5, a major

downstream signal transduction molecule, was decreased (upper

Figure 3. GH induces Jak2 phosphorylation and release from
the GHR. A. IM9 cells were treated with GH for 1 h at 37uC as indicated,
followed by cell fractionation. Membrane (M) and cytosol (C) fractions
were immunoprecipitated for Jak2 and analysed with the indicated
antibodies. The ratio of phosphorylated Jak2 (pJak2) and total Jak2 was
calculated for each fraction. Total cell lysates were analysed for Hsp90, a
cytosolic marker. B. IM9 cells were pretreated with vehicle (dimethyl-
sulfoxide), staurosporin or MG132 for 1 h and stimulated with GH at
37uC as indicated. Total cell lysates (TCL) and GHR immunoprecipita-
tions were analysed on western blot with the indicated antibodies. C.
IM9 cells were pretreated with staurosporin (Stau) for 1 h followed by
incubation with GH at 37uC as indicated. Jak2 immunoprecipitations
were analysed with the indicated antibodies. Data in A, B, and C are
representative of three independent experiments.
doi:10.1371/journal.pone.0014676.g003
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panel, lanes 2 and 4). MbCD treatment did not affect the

efficiency of GH-GHR interaction indicating a strong reduction of

Jak2 activity at this stage of endocytosis. If clathrin was silenced, a

40% reduction of GHR phosphorylation was measured (Fig. 5C,

lower panel). The reduction in GHR phosphorylation was not as

prominent as for MbCD, probably due to the efficiency of gene

silencing. These data support our hypothesis that GHRs that are

about to be recruited by the endocytosis machinery can no longer

be phosphorylated, suggesting the absence of Jak2 in the GHR

complex. Although we measure a clear reduction of GHR

phosphorylation under conditions of inhibited endocytosis with

GH bound, an alternative explanation could be a failure of the

GH-bound GHR to undergo the necessary conformational change

to realign JAK2 monomers in the absence of cholesterol in the

plasma membrane as well in the absence of a functioning clathrin

mediated endocytosis pathway.

GH-induced and constitutive endocytosis use the same
endocytosis mechanism

To compare GH-induced and GH-independent ‘‘constitutive’’

GHR endocytosis we used a c2A, human fibroblast cell line that

stably expresses GHR and is Jak2-deficient (c2A_GHR). This cell

line was used to make a variant cell line that produces low

numbers of Jak2 (c2A_GHR_Jak2). Upon stimulation of both cell

lines with GH, quantification of mature GHR levels showed that

after 90 min about 50% of the GHRs were degraded in

c2A_GHR_Jak2 cells, while in c2A_GHR cells GHR steady state

levels remained unchanged (Fig. 6A). These data indicate that GH

is able to increase GHR endocytosis and lower the GHR steady

state level only in the presence of Jak2. Without GH stimulation,

the GHR steady state level in both cell lines is defined by

constitutive GHR endocytosis, which results in much lower GHR

levels in c2A_GHR cells. We hypothesised that GH-induced as

well as constitutive GHR endocytosis use the same endocytosis

mechanism. If that is the case, GH-induced GHR endocytosis

should (i) use the UbE motif and the SCF(bTrCP) ligase, (ii)

depend on clathrin and (iii) not depend on the phosphorylation

status of the GHR. The experiments of Fig. 3B already showed

that both GH-induced and constitutive GHR endocytosis depend

on the ubiquitin system. For the second criterion we asked whether

GH-induced GHR endocytosis occurs via clathrin-coated pits. We

depleted c2A_GHR_Jak2 cells for clathrin, treated the cells with

GH and compared the change in mature GHR levels between

control and clathrin-depleted cells. Clathrin depletion strongly

inhibited GH-induced GHR endocytosis, demonstrating that GH-

induced GHR endocytosis is clathrin-dependent (Fig. 6B). Subse-

quently, we asked whether GH-induced GHR endocytosis

depends on the same E3 ligase as constitutive GHR endocytosis.

Depletion of bTrCP resulted in inhibition of GHR endocytosis for

both constitutive and GH-induced GHR endocytosis (Fig. 6B).

Quantification showed that GH-stimulated GHR endocytosis is

reduced from 50% to about 20% under conditions of either

clathrin or bTrCP depletion, indicating that both proteins are

required for GH-induced GHR endocytosis.

Previous data indicated that bTrCP uses the non-canonical

UbE motif for GHR endocytosis, although the canonical DSG

motif is present in the GHR cytosolic tail. The question whether

the DSG motif is involved in GH-induced endocytosis is relevant,

because in case of Prl-induced PrlR degradation, the DSGxxS

motif acts as endocytosis motif [43]. To clarify this point for the

GHR we used either UbE or DSGxxS GHR mutant cell lines,

derived from the c2A cells expressing low numbers of Jak2. Upon

GH treatment we observed that mutation of the UbE motif

resulted in inhibition of GH-induced GHR endocytosis (Fig. 6C),

indicating that the UbE motif is essential for GH-induced GHR

endocytosis. Mutating the DSGxxS motif did not inhibit GH-

induced GHR endocytosis (Fig. 6C). We conclude that both GH-

induced GHR endocytosis and constitutive GHR endocytosis

depend on bTrCP binding via the UbE-motif rather than via the

DSGxxS motif. This implies that GH-triggered tyrosine phos-

phorylation of the GHR is irrelevant in our model. To explicitly

address this issue we used our c2A cell line expressing both low

amounts of Jak2 and a mutant GHR in which all cytosolic tyrosine

Figure 4. GH induces Jak2 release from GHR. Hek293-TR stable
cell lines expressing GHR-Rluc and YFP-Jak2 (wt or Y119E) were seeded
24 h before the measurements; doxycycline was added in order to
stimulate the expression of YFP-Jak2 constructs. BRET measurements
were started immediately after GH addition (interval t = 0–4 min), or
10 min later (interval t = 10–14 min). A. Cells were lysed, and the
proteins expression levels of the BRET pair in the cell lysates, were
assessed by western blot, using the indicated antibodies. Data are
representative for three independent experiments. Panel B shows the
BRET ratios expressed in mBU, representative of 8 independent
measurements 6 S.E.M. (* significantly different from GHR-Rluc+YFP-
Jak2 wt, minus GH condition, p,0.01; W significantly different from
GHR-Rluc+YFP-Jak2 Y119E condition, p,0.01; Y significantly different
from GHR-Rluc+YFP-Jak2 wt, plus GH [0–4 min] condition, p,0.01).
doi:10.1371/journal.pone.0014676.g004
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residues were replaced by phenylalanine (GHRYless). Fig. 6C and

6D confirmed that mutation of all tyrosines did not affect GH-

induced GHR endocytosis.

In summary, we found that GH-induced GHR endocytosis and

constitutive GHR endocytosis share the same characteristics. Both

pathways are ubiquitin system-, clathrin- and bTrCP-dependent

and use the UbE motif for GHR endocytosis. These data strongly

suggest that the two pathways are similar.

Relative high Jak2 levels compared to bTrCP correlate
with high GH sensitivity of cells

The data presented in this study imply that both bTrCP2 and

Jak2 bind to membrane-proximal linear motifs of the GHR at the

cell surface. Therefore, relative expression levels of these two

proteins might be important determinants for the endocytosis of

GHR and possibly other cytokine receptors. If cells have relatively

high Jak2 levels compared to bTrCP2, Jak2-dependent cytokine

receptors will be stabilised at the plasma membrane. Conversely,

relatively low Jak2 levels will result mainly in constitutive

endocytosis. We tested three different cell lines for mRNA and

protein levels of Jak2 and bTrCP2: IM9 cells that completely

depend on GH for GHR endocytosis, and Hek293 and HepG2

cells that exhibit mainly constitutive endocytosis of exogenous

GHRs. Using qRT-PCR we found that the Jak2 mRNA level

relative to the bTrCP2 level is considerably higher in IM9 cells

compared to Hek293 and HepG2 cells (Fig. 7). Although mRNA

levels do not necessarily reflect protein levels, the data support our

hypothesis that endogenous Jak2 protein levels contribute to the

GH responsiveness of cells, not only because of their kinase

potential but also their homeostatic effect.

Discussion

Previous studies on cytokine receptors showed that Jak family

members are able to stabilise GHR, Epo, G-CSF, and Tpo

receptors in addition to the type I interferon a/b receptor

(IFNAR1) and the oncostatin M receptor [4,5,9,19,24,44]. For

Epo receptor it has been shown that Jak2 binding in the ER

induces proper folding and efficient trafficking to the cell surface

[4]. Studies on Tpo receptor describe that Jak2 stabilises the

mature Tpo receptor on the cell surface without affecting

maturation kinetics [19]. For GHR, it has been shown that Jak2

enables efficient processing of precursor receptor to mature

receptor [45]. Whereas Jak2 does seem to affect neither Tpo nor

Epo receptor endocytosis, Jak2 clearly inhibits GHR endocytosis.

The different effects of Jaks on cytokine receptors suggest that

cytokine receptors contain unique features in their cytoplasmic

tails to be differentially affected. Whether a common theme will

emerge, i.e. that the kinases stabilise their cognate receptors until

receptor activation, remains to be investigated. In summary, the

data of our study indicate the following scenario: Jak2 binding

prevents endocytosis until GH binding triggers Jak2 phosphory-

lation and its detachment from the GHR, presumably via the

phosphorylation of Y119 in Jak2. GHRs, synthesised in excess to

uncommitted Jak2, are continuously and bTrCP-mediated

endocytosed. Thus, the GHR depends on GH for endocytosis

only if Jak2 is bound. This is in agreement with the study of Deng

et al., who showed that at low concentration of Jak2 GHR

degradation depends on GHR activation [24].

Figure 5. Decreased Jak2 activity in coated pit. A. GHR-expressing
Hek293 cells were pretreated with MbCD for 1 h, incubated with Cy3-
GH for 30 min at 37uC and the fluorescence was visualised with a
confocal microscope. Bar, 5 mm. B. Cells were pretreated as in Fig. 4A,
followed by incubation for 15 min with GH at 37uC as indicated. Total
cell lysates (TCL, upper panel) and GHR immunoprecipitations (lower
panel) were analysed on western blot with the indicated antibodies.
130, mature GHR; 110, precursor GHR. C. Cells were silenced either for
clathrin or for GFP (as a negative control), followed by incubation for
15 min with GH at 37uC as indicated. Total cell lysates (TCL, upper
panel) and GHR immunoprecipitations (IP, lower panel) were analysed

on western blot with the indicated antibodies. 130, mature GHR; 110,
precursor GHR. Data are representative for two independent experi-
ments (B).
doi:10.1371/journal.pone.0014676.g005
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For the IFNARI subunit as well as for PrlR ligand-induced

phosphorylation of a DSGxxS motif C-terminal of box-2 triggers

endocytosis and degradation [43,46]. Although such a conserved

motif is also present in GHR, we showed that it is not involved in

GH-induced endocytosis. The present study demonstrates that the

UbE motif is essential for both GH-induced and constitutive GHR

endocytosis. In addition, we find that the tyrosine residues of the

GHR are not involved in GHR endocytosis. This part is in

contrast to data by Deng et al. [24], who showed that

phosphorylation of cytosolic tyrosine residues is important for

GH-induced GHR endocytosis. Since the expression level of Jak2

is essential to be able to measure GHR endocytosis, a different

Jak2 expression level in our model system compared to the model

system of Deng et al. could explain the different findings.

In our proposed model, the release of phosphorylated Jak2 from

the GHR is induced by GH stimulation, after which bTrCP can

bind the GHR and select the receptor for endocytosis. This implies

that the role of Jak2 is upstream of bTrCP binding and subsequent

GHR endocytosis. However, the Jak2 release and subsequent

GHR endocytosis cannot be measured in cells overexpressing

GHR, because the level of exogenous GHR greatly exceeds the

number of endogenous Jak2. As a consequence, the vast majority

of GHRs is not in complex with Jak2 and will endocytose

Figure 6. GH-induced and constitutive GHR endocytosis share the same characteristics. A. c2A_GHR_Jak2 cells (left panel) and c2A_GHR
cells (right panel) were stimulated with 500 ng/ml GH for 90 min at 37uC as indicated. Total cell lysates (TCL) (lower panels) and GHR
immunoprecipitates (upper panels) were analysed on western blot with the indicated antibodies. B. c2A_GHR_Jak2 cells were transfected with
control siRNA (lanes 1 and 2), clathrin heavy chain siRNA (CHC) (lanes 3 and 4) or TrCP siRNA (lane 5 and 6). Cells were stimulated with 500 ng/ml GH
for 90 min at 37uC as indicated, after which total cell lysates (TCL) (3 lower panels) and GHR immunoprecipitates (upper panel) were analysed on
western blot with the indicated antibodies. C. c2A_Jak2 cells, stably transfected with wild-type GHR (WT), GHR mutated in its DSGxxS motif (DSG),
GHR mutated in its UbE motif (UbE) and GHR with all cytosolic tyrosine mutated into phenylalanine residues (Y-less) were stimulated with 500 ng/ml
GH at 37uC as indicated, after which total cell lysates (TCL) (2 lower panels) and GHR immunoprecipitates (upper panel) were analysed on western
blot with the indicated antibodies. Cell lines used in C are stably transfected with the indicated GHR constructs, resulting in clonal variation of Jak2
levels. Data in A and B are representatives of three independent experiments. Data in C are representatives of two independent experiments. D.
Quantification of the GH-induced GHR degradation (Y-less from experiment in C, and the data from the experiment in B), expressed as percentage of
mature GHR.
doi:10.1371/journal.pone.0014676.g006

Figure 7. mRNA levels of Jak2 and bTrCP2 in IM9, Hek293 and
HepG2 cells. mRNA levels were measured using qRT-PCR. Ratios of
Jak2/bTrCP2 are displayed of IM9, Hek293 and HepG2 cells as mean
values of six independent experiments 6 SD.
doi:10.1371/journal.pone.0014676.g007
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constitutively (independent of Jak2). In our previous studies of

Alves dos Santos et al.. cellular model systems were used in which

GHR was overexpressed [47,48]. Therefore, the authors conclud-

ed that Jak2-binding does not induce GHR endocytosis, but it

cannot be excluded that Jak2 has an inhibitory effect on GHR

endocytosis. The same arguments apply for the observation that

endocytosis of GHRs that lack a functional box-1 is unaffected.

Moreover, Alves dos Santos et al. have shown Jak2 binding in the

endosomes, suggesting that Jak2 remains associated with the GHR

during the process of endocytosis. However, it is well possible that

this (small) amount of Jak2 has rebound after GHR endocytosis.

Our conclusion that Jak2 binding inhibits GHR ubiquitination

and probably acts upstream of SCF(bTrCP) and clathrin is based

on the K48 ubiquitination status of the GHR. If Jak2 detaches, the

activity of SCF(bTrCP) seems to increase due to GH-induced Jak2

phosphorylation. When Jak2(1-525) is over-expressed, no GH-

induced increased ubiquitination of the receptor occurs. This

could be justified by the fact that Jak2(1-525) lacks kinase activity

and, therefore, does not phosphorylate itself and consequently

does not detach. Overexpression of the Y119E mutant doesn’t

affect the GH-induced GHR increased ubiquitination since it does

not bind. Together, these date clearly support our model.

In addition to phosphorylation of Jak2, cells must have other

mechanisms available to respond to exogenous factors that also

induce Jak2 detachment in order to decrease GH sensitivity. These

scenarios are required when stresses impose survival mechanisms.

In these cases, stress-driven signal transduction pathways might

activate Jak2 to abrogate the GHR-Jak2 interaction and induce

rapid endocytosis via SCF(bTrCP). Alternatively, a protein that

interferes with the Jak2-GHR interaction could be up regulated. No

such factor has been identified for the Jak2-GHR interaction yet.

Our findings implicate that, in addition to the expression level of

GHR, the cellular concentration of free Jak2 is a major factor that

regulates the number of GHRs at the cell surface. A simple

explanation would be that the N-terminal half of Jak2, bound to

box-1, is sufficient to shield other functional motifs like the UbE

sequence, or prevent SCF(bTrCP) complex assembly. Evidence for

this scenario comes from a study from Pelletier et al., in which they

show that both box-1 and the UbE-motif are involved in Jak2

binding and activation [33]. The question whether both the UbE

and the box-1 positions can be occupied at the same time, by

bTrCP and Jak2 respectively, remains unanswered. The stoichi-

ometry of a kinase-competent complex requires the presence of two

Jak2 molecules, while an endocytosis-competent complex probably

requires two complete SCF(bTrCP) complexes with two neddylated

cullins. bTrCP acts as a dimer and possibly needs two UbE motifs

for productive binding. On the other hand, it might well be that one

Jak2 molecule on a GHR dimer is sufficient to block endocytosis

[17,49]. Our current experiments indicate that both Jak2 and

bTrCP can be present at the same time, since overexpression of

Jak2 did not affect bTrCP binding to the GHR, in pull-down

experiments with biotinylated GH (not shown). However, as

suggested by the BRET experiments, the system appears highly

dynamic. As endocytosis of monomeric GHR does not require the

ubiquitin system [17], only in vitro binding studies with dimeric

GHRs will elucidate the interplay between Jak2 and SCF(bTrCP).

As many genes have sexually dimorphic expression dependent

on either male pulsatile or female continuous patterns of GH

secretion [50], our model predicts that cellular Jak2 levels might

contribute to this; cells with high Jak2 levels and low GHR

expression, like IM9, respond mainly to GH spikes, because they

lose their GHRs temporarily, while liver cells with low Jak2 levels

and high GHR expression are continuously responsive for both

types of GH secretory patterns.

Materials and Methods

Materials, antibodies and DNA constructs
MbCD and staurosporin were purchased from Sigma. MG132

was obtained from Calbiochem. GHR antisera were described

before [14]. Monoclonal 4G10 anti-pY was obtained from Upstate

(Millipore). Monoclonal antibodies against Jak2 (AHO1352),

ubiquitin (clone FK2) and clathrin (C1860) were bought from

Biosource, Biomol and Sigma, respectively. Anti-STAT5 (C17) was

obtained from Santa Cruz Biotechnologies Inc. and anti-actin

(Clone C4) was obtained from MP Biomedicals Inc. Monoclonal

anti-Flag (M2) was from Sigma. Polyclonal anti-Jak2 was described

previously [34] and anti-bTrCP1 was described before [16]. Full-

length rabbit GHR cDNA in pcDNA3 has been described before

[14], just as GHR(S366A, S370A) (DSG mutant) [16]. The Flag-

tagged wild-type mouse Jak2 constructs were a generous gift from

Prof. Carter-Su (University of Michigan, Ann Arbor). Flag-Jak2(1-

525) was constructed by the introduction of a stop-codon using the

Quickchange mutagenesis kit from Stratagene. Jak2(Y119E), the

GHR in which all tyrosines were mutated to phenylalanines and the

GHR in which 326EFIxxD residues were mutated to alanine (UbE

mutant), were also produced using the same kit. Protein A-beads

were from Repligen. We cloned Jak2 into vector pSG213 for stable

expression in c2A cells. pSG213 was a kind gift of Prof. Melchior

(Zentrum für Molekulare Biologie der Universität Heidelberg).

BRET contructs
Renilla Luciferase (Rluc) expression vector was a gift from Michel

Bouvier (Université de Montrèal). The primers were purchased

from Sigma-Genosys. We amplified the Rluc coding region with the

forward primer GATCGCGGCCGCATGACTTCGAAAGTT-

TATG and the reverse primer GATCTCTAGATTATTGTT-

CATTTTTGAGAACTCG. The Rluc-pcDNA3 construct was

generated by ligating the Rluc fragment into pcDNA3 (Invitrogen)

using Not1 and Xba1 restriction sites. GHR cDNA was amplified

from GHR-pcDNA3 expression vector [14] with the forward

primer, GATCGGTACCGCCACCATGGATCTCTGGCAG

and the reverse primer GATCCCAGTGTGCTGGTGGCAA-

GATTTTGTTCAG. The obtained PCR product was cloned in

frame with the Rluc coding sequence in the previously generated

Rluc-pcDNA3 vector, using Kpn1 and BstX1 restriction sites.

Expression from this vector, GHR-Rluc-pcDNA3, results in C-

terminally Rluc tagged GHR. The YFP sequence was amplified

from EYFP-N1 vector (Clontech), using the forward primer

GATCCTTAAGGCCACCATGGTGAGCAAG, and the reverse

primer, GATCGGTACCCTTGTACAGCTCGTCCATGCC

and the PCR product was cloned into the doxycycline inducible

promotor pcDNA4/TO (Invitrogen) using Afl2 and Kpn1

restriction sites. Jak2 (wt) and Jak2 (Y119E) were amplified from

pcDNA3-flag-Jak2(wt) and pcDNA3-Flag-Jak2 (Y119E) expression

vectors, respectively, using the forward primer GATCGGATC-

CATGGGAAATGGCCTGCC and reverse primer GATCGCG-

GCCGCCTATACTGTCCCGGATTTGATCC. The obtained

PCR products were cloned in frame with the YFP coding sequence

in the previously generated YFP-pcDNA4 vector, using the

restriction sites BamH1 and Not1. Expression from these vectors,

YFP-Jak2(wt or Y119E)-pcDNA4, results in N-terminally YFP

tagged Jak2.

Cell culture, transfections, and microscopy
Human embryonic kidney 293 (Hek293) cells, stably expressing

wtGHR were maintained in DMEM high glucose (4.5 g/l),

supplemented with 10% FCS, 100 U/ml penicillin, 100 mg/ml

streptomycin and 600 mg/ml G418 as described previously [16].
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IM9 cells were maintained in RPMI 1640, 10% FCS, penicillin,

streptomycin, containing 4.5 g/l glucose and 1 mM sodium

pyruvate. c2A cells were maintained in DMEM low glucose

(1.0 g/l), supplemented with 10% FCS, 100 U/ml penicillin,

100 mg/ml streptomycin. Stable cell lines with Jak2 in pSG213

were maintained in medium, supplemented with puromycin

(1 mg/ml), and stable cell lines with wtGHR with hygromycin

50 mg/ml). When indicated, the cells were pretreated with 10 mM

MbCD, 20 mM MG132 or staurosporin in serum free medium for

60 min at 37uC. Human GH was added at a concentration of

180 ng/ml. DNA transfections were performed using FuGene 6

(Roche, Applied Sciences) according to the manufacturer’s

instructions. Clathrin was silenced using the ON-TARGETplus

SMART-pool of Dharmacon (Thermo Fisher Scientific., Lafay-

ette, CO). bTrCP (1 and 2) was silenced with the ‘‘combi probe’’

and GFP siRNA was used as described before [16]. In all siRNA

transfections Lipofectamine 2000 (Invitrogen) was used according

to the manufacturer’s instructions. Microscopy studies were

performed as previously described [16].

Generation of stable cell lines for the BRET studies
Hek293 cells, stably expressing the Tetracycline Repressor

(Hek293-TR), were a gift from Dr. Madelon Maurice (Dept Cell

Biology, UMC Utrecht). The cells were transfected with GHR-

Rluc-pcDNA3 construct using Fugene 6 (Roche, Applied

Sciences), according to the manufacturer’s instructions. The

selection of clones expressing GHR-Rluc was done using

Geneticin (Invitrogen). Subsequently, double stable cell lines

expressing GHR-Rluc and YFP-Jak2 (wt or Y119E) were

generated, by transfecting YFP-Jak2 (wt or Y119E)-pcDNA4 in

the previously generated cell line expressing GHR-Rluc. The

selection of clones expressing GHR-Rluc and YFP-Jak2 (wt or

Y119E) was done using zeocin (Invitrogen). The generated BRET

cell lines were maintained in DMEM high glucose (4.5 g/l)

(Invitrogen), supplemented with 10% FCS (Invitrogen), 100 U/ml

penicillin (Invitrogen), 100 mg/ml streptomycin (Invitrogen),

600 mg/ml Geneticin (Invitrogen) and 100 mg/ml Zeocin (Invitro-

gen). The expression of YFP-Jak2 was induced by addition of

1 mg/ml doxycycline (Clontech) 24 h before the experiment.

Lysis and immunoprecipitations
For GHR-Jak2 co-immunoprecipitations, the cells were lysed in

20 mM Tris pH 8.0, 150 mM NaCl, 0.5% NP40, 1 mM PMSF,

10 mg/ml aprotinin, 10 mg/ml leupeptin. For phosphorylation and

ubiquitination experiments, the cells were lysed in 1% Triton X-

100 with inhibitors (1 mM EDTA, 1 mM PMSF, 10 mg/ml

aprotinin, 10 mg/ml leupeptin, 10 mM NEM, 1 mM Na3VO4

and 50 mM NaF). To prevent incomplete solubilisation or

association of ubiquitinated proteins for some experiments cells

were lysed in hot SDS sample buffer containing 1% SDS. Cell

lysates were centrifuged to pellet the nuclei and the supernatants

were used for GHR isolation in 1% Triton X-100, 0.5% SDS,

0.25% sodium deoxycholate, 0.5% BSA, and inhibitors via

immune precipitation with anti-GHR and protein A beads.

Immunoprecipitates were subjected to reducing SDS-PAGE and

transferred to Immobilon-FL polyvinylidenedifluoride membrane

(Millipore). Blots were immunostained with the indicated primary

antibodies followed by Alexa Fluor 680, Alexa-800 IRDye

conjugated anti-mouse or anti-rabbit antibodies. Detection was

performed with an Odyssey system (LI-COR Biosciences).

125I-GH binding and internalisation and cell fractionation
125I-GH binding and internalisation was performed as previ-

ously described [15]. Internalisation was expressed as a ratio

between iodinated GH inside and total. For cell fractionation, 107

(IM9) cells were incubated for 10 min with GH and washed with

cold PBS. Cell fractionation was performed as previously

described [32], except that we omitted the 12.500g centrifugation

step. After fractionation, the membrane and cytoplasmic fractions

were immunoprecipitated with polyclonal anti-Jak2, followed by

isolation using protein A beads. The samples were subjected to gel

electrophoresis and western blotting as described above.

BRET measurements
24 h prior to the measurements, cells were washed with

phosphate-buffered saline (PBS), and detached with trypsin-

EDTA. 46104 cells were reseeded in DMEM phenol-red free

medium (Gibco), containing 10% FCS, 100 U/ml penicillin,

100 mg/ml streptomycin per well of a 96-well plate (white cell

culture plate Nunc), in the presence or absence of doxycycline.

26105 cells treated in the same way were seeded per well in 24

wells plates and lysed 24 h after to evaluate the expression levels of

the BRET pairs. Before the BRET measurements the culture

medium was replaced by BRET assay buffer: PBS, 0,1% glucose,

25 mM Hepes. The substrate ViviRen (Promega) was then added

to each well in a final concentration of 60 mM. 30 sec before the

measurement started, 200 ng/ml hGH was added for the

indicated times points. Repeated readings at 475 nm and

535 nm (15 cycles, 0,5 sec interval time, 15 sec per reading), for

donor and acceptor emission, respectively, were taken at 37uC
with a Fluorstar Optima Fluorescence Plate Reader (BMG

LABTECH). BRET signal was expressed in milliBRET Units as

defined previously [39]. The BRET unit is the signal ratio 535/

475 nm obtained when the donor and acceptor are expressed (in

presence of doxycycline), subtracted from the ratio obtained under

the same experimental conditions, when only the donor partner

(fused to Rluc) is expressed (in absence of doxycycline). Two

ANOVA analyses of variance were performed with the statistical

program SPSS where the factors were compared in the presence/

absence of GH and at the time periods after GH addition.

RNA isolation and real time quantitative–PCR (qRT-PCR)
Total RNA from IM9, Hek293 and HepG2 cells was isolated

using RNeasy mini kit (Qiagen) according to the manufacturer’s

protocol. Synthesis of cDNA was carried out from 1 mg total RNA

in 20 ml reaction volumes using the iScriptTM cDNA synthesis kit

according to the manufacturer’s protocol (BioRad). Primers were

designed using primer select software of DNA star (Madison, WI)

according to the parameters outlined in the BioRad i-cycler manual.

The specificity of each primer was confirmed by sequencing its

product. Rps19 and b-actin genes were used as the non-regulated

reference genes for normalisation of target gene expression.

Sequences of the used primers are for Jak2 TGAAGACCGG-

GATCCTACACACAGTT (forward) and GTCATACCGGCA-

CATCTCCACAC (reverse), for bTrCP2 CATGTTGCAGCGG-

GACTTTATTACC (forward) and GATCACTCGCTGCCAT-

TCTTTACAT (reverse), for Rps19 CCTTCCTCAAAAAGT-

CTGGG (forward) and GTTCTCATCGTAGGGAGCAAG (re-

verse), for b-actin. TCCCTGGAGAAGAGCTACG (forward) and

GTAGTTTCGTGGATGCCACA (reverse). Annealing tempera-

tures for Jak2, bTrCP2, Rsp19 and b-actin were 63.0, 62.0, 61.0

and 60.0uC, respectively. QRT-PCR was performed using BioRad

MyIQ detection system (BioRad) with SYBR green fluorophore.

Data analysis was carried out using the pair wise fixed reallocation

and randomisation test incorporated in the software program

REST-MCS [51] at 5% level of significance. Experiments were

performed in duplicate and values from six experiments were used

for data analysis.
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