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Abstract
The relationship between primary motor cortex and movement kinematics has been shown in
nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the
neural activities accompanying or immediately preceding the movement encode the direction,
speed and other information. Here we investigated the relationship between the kinematics of
imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human
subjects. Study participants were asked to perform and imagine clenching of the left hand and
right hand at various speeds. The EEG activity in the alpha (8 Hz – 12 Hz) and beta (18 Hz – 28
Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching.
Similar parametric modulation was also found during the execution of hand movements. A single
equation relating the EEG activity to the speed and the hand (left vs. right) was developed. This
equation, which contained a linear independent combination of the two parameters, described the
time-varying neural activity during the tasks. Based on the model, a regression approach was
developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated
the continuous decoding of dynamic hand and speed information of the imagined clenching. In
particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our
findings suggest an application to providing continuous and complex control of non-invasive
brain-computer interface for movement-impaired paralytics.
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Introduction
How kinematic parameters are encoded in the motor cortex is an important question for
understanding the physiology of motor control as well as for the development of neuromotor
prostheses. The seminal discoveries on this topic were made in the late 1980s on the cosine-
tuning properties of neurons recorded in the primary motor cortex (Georgopoulos et al
1982). Later on, tremendous strides were made to reveal that the position, velocity
(including direction and speed) and other kinematics of the hand movement were
represented in the single-unit spiking, multi-unit activity and local field potentials from
electrodes implanted in the nonhuman primates (Kettner et al 1988, Fu et al 1995, Schwartz
1994, Moran and Schwartz 1999, Paninski et al 2004). These findings led to the
development of neural prostheses which were able to decode the kinematics from neural
recordings and thus restore the motor function via bypassing the neuromuscular pathways,
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i.e. the so-called brain-machine or brain-computer interface (BMI/BCI, Schwartz et al 2006,
Wolpaw et al 2002). Researchers have demonstrated the ability to decode hand kinematics
in order to drive a computer cursor or a robotic arm (Wessberg et al 2000, Serruya et al
2002, Taylor et al 2002, Santhanam et al 2006, Velliste et al 2008). Recently, such invasive
recording technology was tested on patients with tetraplegia and results reported that spiking
activities of single neurons in the human primary motor cortex were tuned to intended/
imagined movements (Hochberg et al 2006, Truccolo et al 2008).

In the meantime, tremendous efforts were made to use noninvasive recording technology,
e.g. Electroencephalogram (EEG) or Magnetoencephalography (MEG) to decode
movement- or imagery-related information. It has been found that the planning and
execution of movement leads to predictable changes in the alpha (8 Hz – 12 Hz) and beta
(13 Hz – 28 Hz) frequency bands, commonly known as event related synchronization/
desynchronization (ERS/ERD, Pfurtscheller and Lopes da Silva 1999, Wang et al 2004).
Such characteristic changes in EEG rhythms can be used to classify brain states relating to
the planning/imagery of different types of limb movement. Studies have demonstrated that
human subjects were able to use motor imagery as a mental strategy to achieve multi-
dimensional control of a computer cursor based on the EEG recordings (Wolpaw and
McFarland 1994, Wolpaw and McFarland 2004, Yuan et al 2008, Royer and He 2009). So
far, most studies of motor imagery have been focusing on classifying the type of imageries
based on the spatial-temporal patterns derived from EEG or MEG recordings. However, no
further kinematic information has been extracted from these recordings.

In the present study, we aimed to test whether the kinematic parameters, i.e. the speed of
hand clenching or imagined clenching, can be represented in the scalp EEG recordings.
Subjects performed and imagined clenching of their left or right hands at various speeds
while their EEG signals were recorded. The spatial-temporal dynamics of EEG in the alpha
and beta frequency bands were compared at different speeds. We further developed a single
equation of a linear model to relate the band-limited EEG power to the parameters of the
clenching speed and hand (left vs. right). Finally, we tested the possibility of decoding the
two parameters from multi-channel recordings and demonstrated the feasibility of
continuously and independently decoding the speed and hand information associated with
motor imageries.

Materials and Methods
Subjects

Ten healthy subjects (six males and four females) were recruited to participate in the study
(age range, 20–26 years; mean ± SD, 22±2.0 years). All subjects were right-handed
according to the Edinburgh Handedness Inventory (Oldfield 1971) and were previously
naïve to BCI usage. The study protocol was approved by the Institutional Review Board of
the University of Minnesota. Informed consent was obtained from all subjects prior to the
study.

Experimental Design and Data Acquisition
Subjects were instructed to clench or imagine clenching the left hand or right hand at seven
different speeds (0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, 3 Hz, and 3.5 Hz), paced by a
metronome. Task blocks (30 seconds each) were interleaved with rest blocks (10 seconds
each). Within a task block were nine events during which subjects performed the instructed
task for 2 s interleaved with inter-trial intervals of varying durations from 1 s to 2 s. The
number of clenches in each task interval was identical within a run and ranged from one to
seven across various runs. Visual cues were presented to indicate the conditions of events.
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Each run consisted of two repeats of movement/imagery of left/right hand resulting in eight
total task blocks per run. Each speed was repeated twice in the data acquisition. The
sequence of block conditions and sequence of speeds were randomized and balanced across
runs and subjects.

Subjects were trained on the task for less than one hour before the data were collected. They
were instructed to perform a kinematic imagery of the hand movement – imagining
themselves clenching the hand, rather than mentally watching them or another person
executing the task. During the training, subjects practiced the movement and imagery for
each speed type. Meanwhile, their EMG activity was monitored online and also visually
inspected by the researchers. Substantial training was conducted until the researchers
verified that subjects performed the movement appropriately and also until subjects reported
vivid imagery of the task. Prior to the data collection of the task on a different day, all
subjects also practiced using an imagery-based 1D BCI (Yuan et al 2008) for ten runs (5
min each). The data from the BCI sessions were not included in the present analysis and
used only for instructional purpose.

The EEG signals were acquired with a SynAmps2 amplifier (Neuroscan Compumedics) at a
sampling frequency of 1000 Hz. The electrode layout was shown in Fig. 1(A).
Electromyogram (EMG) was also recorded at both left and right hands to monitor muscle
movements. Bipolar EMG electrodes were placed at the ventral side of each forearm
approximately two inches from the wrist. EMG activity was monitored during the recording
by researchers and also reviewed later in the data analysis. Bursts of EMG signals were
clearly identified to be associated with each movement while no EMG bursts were present
during imagery tasks.

EEG and EMG Analysis
EEG recordings were band-pass filtered from 1 Hz to 30 Hz using a zero-phase FIR filter
and segmented into epochs from −1 s to 2.75 s with respect to the onset of visual cues for
tasks. Each epoch was then baseline corrected and detrended. Epochs with eye movements
were visually identified and excluded from further analysis. The artifact-free signals were
down-sampled to 200 Hz. The EMG recordings were high-pass filtered at 20 Hz, rectified,
and segmented along with the EEG signals. The actual clenches for movement trials were
identified from the EMG bursts. The clenching speed was defined as the number of clenches
per unit time. For trials of imagery conditions, the EMG during the task periods (0.3 s ~ 2 s)
were compared to the EMG baseline activity (−1 s ~ −0.1 s).

The time-frequency (TF) representations of single-trial EEG signals were calculated using
Complex Morlet's wavelet. The EEG signal, x(t), was first convoluted by wavelets,

, with A = (σtπ1/2)−1/2, σt = 1/(2πσf), and σf = f/7. The
trade-off ratio (f/σf) was chosen as 7 to create a wavelet family (Tallon-Baudry et al 1997;
Qin et al 2004). For each time t and frequency f, the power of the EEG signal, P(t,f), was the
squared norm of the convolution: P(t, f)=|ω(t, f)*x(t)|2. The normalized time-varying power
of EEG was computed for visualization. For each subject it was characterized in t statistic
from the population of multiple trials by contrasting the power at each time-frequency pair
during the task to the power at the same frequency before the task (from −150 ms to −50
ms) using an unpaired Student's t test. The group average changes was calculated using a
random-effect model across all subjects (one-sample Student's t-test) and thresholded with
p<0.001. The characteristic alpha and beta frequency bands and the time window of changes
were identified from the group TF statistic plots.
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The spectral change induced by movement and motor imagery was quantified by comparing
the average power of task intervals with that of the pooled baseline intervals based on the
wavelet calculations. The relative change was defined as the difference between task and
baseline power and divided by the baseline power. The topologies and magnitudes of the
relative changes during movements and imageries were compared across different clenching
speeds. The time-varying power in the alpha and beta frequency band was also extracted
from the TF matrices and used for the encoding and decoding analysis described below.

Encoding Model
For each channel over the scalp, different levels of EEG activity in the alpha and beta
frequency bands were observed during left and right hand tasks and across different
clenching speeds. A linear model was used to find the relationship between the EEG power
and the variables of the speed and hand (left vs. right) for each channel using the following
equation:

(1)

where y is the EEG observation in a frequency band at the ith channel, v is the speed
variable, λ is either 1 or −1 (indicating left hand or right hand respectively), b0 is the grand
mean of EEG activity found across both hands and all speeds, and b1 and b2 are the
weighting coefficients for the speed and hand respectively. Multiple linear regression was
used to find the constants b0, b1 and b2. Each trial was an independent observation in the
regression. Epochs of both left and right hands across all seven speeds were used for
estimating the model coefficients. The EEG power during intervals of 200 ms – 500 ms, 500
ms – 1000 ms, 1000 ms – 1500 ms and 1500 ms – 2000 ms was averaged respectively to
show the dynamic variation of model fitting. Separate regression model coefficients were
estimated for imagery and movement.

Decoding Model
In the above encoding model, hand and clenching speed were used as variables to explain
the EEG activity observed at each channel. In the subsequent analysis, we aimed at decoding
the hand and speed from EEG observations in multiple frequency bands at multiple
channels. In order to continuously decode the variables of hand (d[t]) and speed (u[t]), a
linear decoding model was used:

(2)

(3)

where  and  are EEG power measured at the nth electrode at time sample t in the
alpha and beta frequency band respectively, N and M are the total number of channels used
for alpha and beta band respectively, and the k and l variables are constant coefficients
derived from multiple linear regression based on the training data. Laplacian spatial filtering
was applied to the artifact-free EEG signals in order to reduce the volume conduction effect
and thus enhance the decoding performance (Wang et al 2004). Laplacian-filtered EEG
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signals were subject to the wavelet calculation. The instantaneous EEG power extracted
from the time-frequency representations were used as inputs to the decoding model, which
can also be estimated using a short time windowed Fourier transform. Channels that were
significantly fitted into the linear encoding model (p<0.01) were selected for decoding. Note
that the hand and speed information was estimated from the same EEG observations using
different sets of weighting coefficients. The final output of the decoding was:

(4)

The output signals were smoothed using a low-pass filler with the stop band at 1 Hz.

Each trial was designated with a speed value as subjects maintained the same clenching
speed during each task period. However, in order to reconstruct a continuous time course of
speed variable that can be directly transformed into instantaneous BCI control, we used a
bell-shaped speed profile (shown in Fig. 5A) as a reference time course for training. The
simulated speed profile spans for the duration of the task period and its height was scaled by
the speed value. Ten-fold cross validation was applied to assess the performance of the
decoding. All trials of EEG during imagination of left and right hand clenches were
randomly divided into ten groups. Nine of them were pooled to train the decoding model
which was applied to the rest group for testing. This procedure was repeated ten times and
each group was tested as a test group. The temporal properties of the decoding results were
assessed by calculating the correlation coefficient (CC) between the reference time courses
and the outputs  of the test data sets across all folds. In addition, the classification of
hand (left vs. right) was also evaluated in terms of accuracy. The hand output d[t] was
integrated from 0.5 s to 1.9 s and compared with the sign of the expected hand value (1 or
−1). The percentage of the correct hand value was calculated across all folds.

Results
EEG Changes in Alpha and Beta Bands at Different Speeds

The subjects' performance in the movement task is shown in Fig. 1(B). The executed
clenching speeds corresponded well to the designated speeds. For all subjects, no significant
EMG activities were detected during the motor imagery (all p>0.05, paired Student's t test).

The time-frequency representations of task-induced changes from the group analysis are
presented in Fig. 1(C). Characteristic decrease (ERD) accompanying the imagery and
movement can be found in the alpha band (8 Hz – 12 Hz) and beta band (18 Hz – 28 Hz)
from 0.2 s to 2 s.

Fig. 2(A) and Fig. 3(A) show topologies of average EEG changes in the alpha frequency
band across subjects using the time and frequency windows obtained from group analysis.
The relative changes were observed to be focused at the electrodes in the central region over
the motor areas, as illustrated in Fig. 1(A). As speed was increased, a larger decrease of
EEG activity was observed. A contralaterally dominant decrease was shown at all speeds for
both imagination and movement conditions. Ipsilateral ERD was more prominent in the
movement conditions. Some increase was also found at the posterior area but not at all
speeds.

Fig. 2 (B–E) and Fig. 3(B–E) show the EEG changes in the alpha and beta frequency bands
from the C3 and C4 channels, where the strongest decrease was found. The averaged
decrease across subjects is plotted at all speeds. For both imagery and movements, there was
a negative linear relationship between speeds and EEG changes (all p<0.05). Such negative
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linearity existed at C3 and C4 channels when it was either contralateral or ipsilateral to the
side of the movement. When the contralateral and ipsilateral activity was summarized at
each electrode, it resulted in a component that represented the non-hand-related activity
which was also linearly correlated with the speed (data not plotted, all p<0.05). Then the
EEG activity was subtracted from the non-hand-related component and the remaining
component demonstrated no correlation with speeds (all p>0.05), whereas there was a
constant offset for each electrode.

Contralateral electrodes displayed a larger decrease than the electrodes at the ipsilateral area
(p<1e-16 and p<1e-7 for alpha and beta activity respectively, paired t test). Particularly, the
hemispheric difference in the alpha band is larger than that in the beta band (p<1e-6, paired t
test). However, in regard to the speeds, no linear correlation was found for the difference
between C3 and C4 channels during imagination or movement conditions (all p>0.05).

Encoding of Hand and Speed in EEG Alpha and Beta Activities
A linear model was developed to explain the EEG activity observed at each channel. The
model included hand and speed as two variable factors. For each channel, the EEG changes
across different speeds approximated a linear line (shown in Fig 2 and Fig. 3). Furthermore,
the trends of speeds corresponding to the left and right hand were closely parallel to each
other for the same channel, suggesting that the effects of hand and speed were independent
to one another. Therefore, the hand and speed were included in the model as two additive
variable factors.

Dynamic EEG activities from intervals of 200 ms – 500 ms, 500 ms – 1000 ms, 1000 ms –
1500 ms, and 1500 ms – 2000 ms were fitted into the linear model in Eq. (1). R2 were
estimated for each channel and the topologies from representative subjects are plotted in Fig.
4 (thresholded by p<0.001). EEG activity centered at C3 and C4 electrodes were best fit into
the model. The observed pattern was similar between imagery (Fig. 4A) and movement (Fig.
4B) conditions. Compared among the four intervals, the R2 values peaked in the middle of
the task period while its topology maintained the spatial pattern across different time
intervals.

The maximum R2 values of each subject and its corresponding channel are listed in Table 1
and Table 2 for imagery and movement respectively. A paired t test was applied to the R2

from alpha and beta activities to determine whether they were drawn from populations of
different mean values. Results showed that EEG activities in the alpha and beta band were
fitted into the linear model equally well (p>0.05 for both imagery and movement).
Nevertheless, their corresponding channels can be different as shown in Tables 1 and 2.

Decoding of Hand and Speed from EEG Alpha and Beta Activities
Multiple variables (hand and speed) were instantaneously estimated using equations (2) and
(3) at each sample time t. The final outputs were combined in Eq. (4), which can be directly
applied to prosthetic executors with one-dimensional (1D) direction control, sign (d[t]), and
an independent continuous control of the speed, u[t].

The decoded traces from a representative subject (#4) are shown in Fig. 5. The surge and
falling of the speed profile was demonstrated in the single trial traces in Fig. 5(B) and agreed
well with the training reference time courses shown in Fig. 5(A). The single trial decoded
results from the test data sets were averaged separately according to their true values of hand
and speed and plotted in Fig. 5(C). In the averaged results the hand value was well
maintained during most of the task interval. The absolute peak value gradually increased
with the speed values.
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The CC between the decoded outputs (hand*speed) and the reference time courses are listed
in Table 3 (for all CC, p=0). The CC was also calculated at each time sample and plotted in
Fig. 6(A). The peak of the CC was found in the middle of the task interval (at about 1 s).
The accuracy of the hand prediction is also presented in Table 3. The average of the CC and
accuracy across subjects was 0.32±0.21 and 74±15% respectively. The accuracy of hand
prediction was further calculated separately at each speed (Fig. 6B). The highest speed (3.5
Hz) was found to be associated with the highest accuracy and the lowest accuracy at the
middle speed (2 Hz).

Discussion
In the present study, we investigated the EEG activity associated with imagined and
executed hand clenching at various speeds. Our results for the first time demonstrated the
parametric modulation of clenching speed for both imagery and movement in the alpha and
beta band activity of EEG recordings. Furthermore, a single linear equation was developed
to model the relationship between EEG activity and the factors of hand and speed. Based on
the linear model, we demonstrated the feasibility of continuously decoding the hand and
speed parameters of motor imagery from multiple channel EEG activity using linear
regression.

Encoding of the Hand and Speed
Previous studies have revealed how the primary motor cortex controls hand movement
during reaching or drawing tasks. Kinematic parameters of hand position and velocity
(including direction and speed) were found to be represented in the neural recordings
obtained from invasively implanted electrodes (Fu et al 1995, Georgopoulos et al 1982,
Kettner et al 1988, Moran and Schwartz 1999, Schwartz 1994, Heldman et al 2006) in the
nonhuman primates. Recently, the directional tuning of single neuron discharges was also
demonstrated in a tetraplegic patient who imagined reaching a hand (Hochberg et al 2006,
Truccolo et al 2008). Meanwhile, noninvasive EEG signals recorded from the surface of
scalp were able to recover the body part of imagined movements in human subjects but
without any kinematic information (Wang et al 2004, Pfurtscheller et al 2006). Our study
investigated whether the kinematic parameters, i.e. the clenching speed, can be represented
in the human EEG recordings during actual movement and motor imagery. In the present
study, the clenching speed was defined as the number of clenches per unit time. It is worthy
to note that the clenching speed is a different kinematic description than the displacement
speed, i.e. the distance traveled per unit time, such as the hand reaching speed. Our results
have demonstrated that the parameters of the clenching speed as well as the hand are
simultaneously embedded in the multi-channel EEG modulations associated with imagery
and movement.

In regard to the speed encoding, our results have showed that the clenching speed was
linearly correlated to the EEG activity in the alpha or beta frequency band, suggesting that
the effect of speed was a gain factor. The summation of EEG activity during left-hand and
right-hand conditions was also linearly correlated with the speed. Thus we obtained a non-
hand-related speed factor for the EEG activity. Meanwhile, the linear trends corresponding
to the two hands were parallel to each other. When we subtracted the EEG activity from the
non hand-related speed factor, the remaining EEG activities of left and right hand were not
correlated with the speed and were different at a certain offset, the non-speed-related hand
factor. Therefore, the hand and speed were two independent factors of the EEG activities for
the imagined and executed clenching. In this regard, we developed a single equation (Eq. 1)
relating the EEG to the two factors in which the hand acted as an offset while the speed was
a gain factor.
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Our findings on the speed encoding were consistent with previous studies of the relation
between velocity and cortical recordings during hand reaching. Moran and Schwartz found
that the reaching speed in a center-out task was a continuous gain factor on the firing rate of
single-cell activities (1999). Their results showed that the reaching speed was tightly
correlated with part of the neural discharge that was not related to any specific direction.
Additionally, an interactive component of the speed and direction was also found
represented in the neuronal discharge rate, in which the speed effect was multiplicative on
the directional tuning. Although the type of hand movement was different in our study, our
results suggest that speed can be a common gain factor to the cortical recordings at both
microscale and macroscle levels across various hand tasks, even including motor imageries.

The speed effect of hand clenching is also related to vast functional imaging studies which
investigated the relationship between hemodynamic responses and the speed of movement
using functional Magnetic Resonance Image (fMRI). These imaging results have shown
positive correlation between the change of hemodynamic signal and the task demand
associated with various movement rates (Rao et al 1996). Our results regarding the EEG
activity are consistent with these findings, considering that EEG activities in the alpha and/
or beta frequency bands were reported to be inversely coupled to the hemodynamic signals
(Goldman et al 2002, Moosmann et al 2003, Mukamel et al 2005). However, the speed
effect on the hemodynamic signal was usually observed over the interval of more than ten
seconds, whereas our results showed a sustained speed effect on the EEG within two
seconds.

Spatial Organization of Encoding
Among all sensors over the scalp, contralateral and ipsilateral electrodes over the
sensorimotor cortex gave the best fitting results to the encoding model of hand and speed.
Previous studies have mainly been focused on the contralateral side of the brain largely due
to a practical reason that the recording electrodes were implanted only at the contralateral
hemisphere. A particularly interesting result of our study was that such encoding of speed
information was well maintained in both contralateral and ipsilateral hemispheres for either
left-hand or right-hand movements, suggesting the bilateral involvement in the control of
speed for imagined and executed movement.

While the speed and hand information was simultaneously represented in the two
hemispheres, it also demonstrated lateral dominance. Although both hemispheres showed
similar linear trend against the speed, the contralateral side was found to have a stronger
decrease than the ipsilateral side. Interestingly, the difference between the two hemispheres
was not correlated with the speed. In EEG-based BCI studies, the hemispheric difference is
commonly used as a signal channel to achieve one-dimensional control by classifying
between imageries of left hand and right hand (Wolpaw and McFarland 1994, Wolpaw and
McFarland 2004, Yuan et al 2008). However, our results indicate that the speed information
can be eliminated in such a way of subtracting. Thus using the traditional way of 1D control
the hand and speed information may not be simultaneously available.

Both the maps of EEG modulations (particularly for actual movement) and of regression
coefficients demonstrated two segregated areas at the contralateral and ipsilateral sides.
Such regionally focused reaction of both hemispheres was not likely to be due to the volume
conduction from one side. Furthermore, cortical activities at the corresponding contralateral
and ipsilateral areas of the sensorimotor cortex have been demonstrated to be the sources
underlying such EEG modulations at the two hemispheres by source analysis studies (Qin
and He 2004; Kamousi et al 2005, 2007; Yuan et al 2008) and also combined study using
EEG and fMRI (Yuan et al 2009). Although the EEG modulations are dominated by the
sources at the corresponding hemisphere, Laplacian filtering can accentuate localized

Yuan et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activity and reduce diffusion in multichannel EEG (He 1999; Wang et al 2004). Therefore
we applied Laplacian filtering in the decoding analysis to enhance the decoding
performance.

Application for Brain-Computer Interface
Motor imagery is widely used in noninvasive BCI studies as a mental strategy to provide
one-dimensional or multi-dimensional degree of control. Previous studies have been focused
on classifying the types of imagery associated with different body parts (using a linear or
nonlinear approach), and converting it to the control of a prosthetic executor, e.g. computer
cursor (Pfurtscheller et al 2006, Wolpaw and McFarland 2004). However, few studies
attempted to recover the kinematic parameters from noninvasive EEG or MEG recordings
until recently. Some groups have decoded the direction of actual reaching movement in
center-out hand tasks (Bradberry et al 2009, Waldert et al 2008). Our results for the first
time have demonstrated that the speed information of imagined hand movement can be
continuously decoded together with the hand information from the EEG signals. Although
one sensor simultaneously encoded both the hand and speed information, the two parameters
were independently derived from multiple channels using a linear regression method. The
reconstructed traces of hand and speed from single-trial data can be directly applied to the
instantaneous control of the 1D direction and continuous speed of a prosthetic device. The
speed decoding is able to add one more degree of control to the direction, which can allow
for a much finer control of point-to-point movement or can be used as an independent
degree of control. The implementation of such kind of an online BCI system will be the
future direction of our study. The participating subjects of the current study had very little
BCI training experience (less than two hours) before the data were collected, but the
intended hand and speed of clenching imagery were reliably reconstructed. More training in
a close-loop setup is expected to reduce the variance of performance and improve the
control of effectors (Wolpaw et al 2004).

Furthermore, we were able to recover the temporal profile of the bell-shaped speed for
imagined hand movement, which approximated the speed of a natural hand reaching
movement. Behavioral studies have demonstrated that the speed profile manifested as a bell
shape in a wide range of hand tasks (Soechting and Lacquaniti 1981). The bell shape is ideal
for a smooth control and was demonstrated to be efficient in restoring a natural feeding
movement in non-human primates (Velliste et al 2008). Although in our study each trial of
imagery clenching was designated with a single speed value, we introduced the bell-shaped
speed profile as the training signal in order to reconstruct a continuous time course of speed
variable that can be directly transformed into instantaneous BCI control. The resulting
decoded traces successfully approximated the bell-shape profile and correlated well with the
training profiles while maintaining the accuracy of hand prediction, which suggests the
feasibility of linking our decoding results to the application of prosthesis effectors, e.g. a
robotic arm, for restoring two-hand functioning in the movement-impaired paralytics.

Time-varying power of EEG signals were derived from wavelet analysis and used for
regression analysis in the current study. Considering that the imagery-induced modulation
usually happens in narrow frequency bands and the spectral modulation also demonstrates
temporal dynamics (Pfurtscheller et al 2006), we used the wavelet analysis to extract the
time-varying power, which was thought to provide a better compromise between time and
frequency resolution than using short-term Fourier transforms (Tallon-Baudry et al 1997).
Fourier-based time-frequency analysis should also be suitable for decoding purposes and
may be more appropriate in a practical implementation of a real-time BCI system.
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Figure 1.
(A) The electrode layout for the EEG recording. The electrodes in the central region were
highlighted with a red rectangle. (B) plots the subjects' performance (average and standard
derivation) of actual clenching of the right and left hands at each speed. (C) shows the group
Time-Frequency representation of EEG changes from electrode C3 and C4 during imagery
and movement of the right hand. Power changes relative to baselines are depicted as t
statistic thresholded by p<0.001 (uncorrected for multiple-comparison). Black rectangles in
each plot indicate the alpha- and beta-frequency bands of interest.
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Figure 2.
Relative EEG change in the alpha frequency band. (A) shows the topologies corresponding
to all speeds and the average. (B–E) shows the changes at C3 and C4 electrode during
imagery and movement.
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Figure 3.
Relative EEG change in the beta frequency band. (A) shows the topologies corresponding to
all speeds and the average. (B–E) shows the changes at C3 and C4 electrode during imagery
and movement.
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Figure 4.
Time-varying topologies of R2 in the linear model (Eq. 1) relating the hand and speed to the
EEG activities in the alpha and beta frequency band from recordings during imagery (A) and
movement (B). All maps were threshold at p<0.001 (uncorrected for multiple comparison).

Yuan et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Decoding of the hand and speed from a typical subject. Blue and red curves indicate the
imagination of the left and right hand, respectively. (A) shows the computer-generated
reference time course used for training. (B) shows single-trial traces of decoded outputs for
all speeds. (C) plots the averaged outputs of the test dataset according to their speed and
hand. The curves in lighter red and blues color indicate the standard errors (STE).
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Figure 6.
(A) The time-varying correlation coefficient between the expected output and the decoded
results. (B) The percentage of correct predictions of the hand at all speeds. STE: standard
error.
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Table 3

Decoding results of all the subjects. CC of Speed Prediction: correlation coefficient between the desired output
and decoded results. Accuracy of Hand Prediction: the percentage of correct decoding of the hand (left vs.
right) through integration from 0.5s – 1.9 s. See Methods for details.

No. CC of Speed Prediction Accuracy of Hand Prediction (%)

1 0.55 92

2 0.11 57

3 0.57 93

4 0.58 91

5 0.31 77

6 0.06 55

7 0.17 60

8 0.46 80

9 0.30 73

10 0.07 57

Average 0.32±0.21 74±15
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