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Abstract

Chronic myeloid leukemia (CML) results from expression of the BCR/ABL oncogene in a 

primitive hematopoietic cell. However BCR/ABL-activated signaling mechanisms are dependent 

on the cellular context in which it is expressed, and mechanisms underlying primitive human 

hematopoietic cell transformation by BCR-ABL are not well understood. Our previous studies 

have shown that BCR/ABL-Y177 plays an essential role in Ras activation and human 

hematopoietic progenitor transformation in CML. The adapter protein growth factor receptor 

binding protein-2 (Grb2) can bind phosphorylated BCR/ABL-Y177, induce Grb2-SoS complex 

formation, and activate Ras signaling. We investigated the role of Grb2 in CML progenitor 

transformation by co-transducing human CD34+ cells with lentivirus vectors expressing shRNA to 

Grb2 and retrovirus vectors expressing BCR/ABL. We show that Grb2 knockdown significantly 

inhibits proliferation and survival of BCR-ABL-expressing CD34+ cells, but not control CD34+ 

cells. Grb2 knockdown reduced MAPK activity in BCR-Abl-expressing hematopoietic cells. We 

conclude that inhibition of Grb2 expression demonstrates an important role in BCR-ABL 

mediated MAPK activation and transformation of primary human hematopoietic cells. These 

results support further investigation of downstream effectors of Grb2-mediated signals and 

targeting of Grb2 interactions in the treatment of CML.

Keywords

Chronic myelogenous leukemia; leukemia stem cells; Signal transduction; Gene transfer

Introduction

Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by 

a balanced translocation between chromosomes 9 and 22, also known as the Philadelphia 
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chromosome 1,2. The resulting BCR-ABL fusion oncogene encodes a cytoplasmic protein 

tyrosine kinase with elevated and dysregulated enzymatic activity that plays an essential role 

in the pathogenesis of CML 3,4. Expression of the BCR-ABL gene results in abnormal 

expansion of myeloid progenitors and more differentiated myeloid cells related to increased 

hematopoietic progenitor proliferation, reduced apoptosis and disturbed cell adhesion and 

migration in the malignant clone5. Imatinib mesylate (IM), a small molecule inhibitor of the 

BCR-ABL kinase, is very effective in the treatment of CML 6,7. However imatinib treatment 

does not eliminate leukemia stem cells (LSC) in CML patients 8–10. Residual LSC persist in 

patients who achieve cytogenetic and molecular response and continued drug treatment is 

required to maintain remission 11. Development of an improved understanding of critical 

molecular mechanisms underlying human hematopoietic progenitor transformation in CML 

is essential to development of alternative approaches to target leukemogenic cells in CML.

Although downstream signaling underlying BCR-ABL transformation have been intensively 

studied in cell lines and in murine models, the mechanisms responsible for transformation of 

primitive human hematopoietic cells in CML are less well understood. Since mechanisms of 

BCR-ABL mediated transformation can differ depending to the cellular context in which the 

oncogene is expressed it is important to determine the pathogenic role of specific signaling 

mechanisms in the context of the primitive human hematopoietic cells in which the disease 

arises in patients. We have developed a model of BCR-ABL transformation of human 

hematopoietic progenitor cells based on retrovirus-mediated BCR-ABL expression in human 

cord blood CD34+ cells 12. This model recapitulates several phenotypic characteristics of 

malignant progenitors from CML patients including increased proliferation, reduced 

apoptosis, and altered adhesion and migration, and facilitates investigation of molecular 

mechanisms of hematopoietic transformation in CML. We have used this model to show 

that abnormal tyrosine kinase activity plays an essential role in increased proliferation of 

BCR-ABL transformed human progenitors, but that both kinase-dependent and independent 

mechanisms contribute to altered adhesion and migration. We have also shown that tyrosine 

177 (BCR/ABL-Y177) in BCR/ABL plays an essential role in Ras and Akt activation and 

human progenitor transformation in CML 13. BCR/ABL-Y177 represents a phosphorylation 

site that can bind the adapter protein growth factor receptor binding protein-2 (Grb2), induce 

Grb2-SoS complex formation, and activate Ras signaling 14. Grb2 binding to Y177 may also 

lead to association with the scaffold adapter protein Grb2-associated binder (Gab2), Gab2 

phosphorylation and association with PI-3K and Shp2, PI-3K and Ras activation, and 

induction of CML-like disease in mice15. Interactions with Grb2 are also involved in the 

pathogenesis of Tel-ABL (ETV6-ABL) induced leukemia 16. However the requirement for 

Grb2 expression for BCR-ABL-mediated transformation has not been directly studied.

The role of individual genes in human hematopoietic progenitor cells can be accurately 

analyzed using RNA interference (RNAi) by transducing cells with shRNA expressing HIV- 

based lentivirus vectors. We studied the function of Grb2 in BCR-ABL transformed and 

normal human progenitors using shRNA-mediated knockdown of Grb2 expression. This 

approach required robust methods to reliably coexpress the BCR-ABL gene and shRNA 

constructs in human CD34+ cells using separate vectors with different reporter genes. 

Although cytomegalovirus (CMV), spleen focus-forming virus (SF), human 
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phosphoglycerate kinase 1 (PGK)17, 18 have been used for transgene expression in CD34+ 

cells using enhanced Green Fluorescent Protein (eGFP) as a reporter, their efficiency in 

expressing red fluorescent protein (RFP) in human CD34+ cells has not been studied. We 

found that the strong SF promoter was required to adequately express RFP in CD34+ cells 

and identify cells co-expressing RFP and eGFP by flow cytometry. We used dual 

transduction with (1) a retroviral vector expressing eGFP and BCR-ABL, and (2) a 

lentivirus vector expressing RFP from a SF promoter and a shRNA construct from a U6 

promoter, to investigate the role of Grb2 in BCR-ABL-transformed progenitor cells.

Patients, material and methods

Samples

CB samples were provided by StemCyte (Arcadia, CA). All donors signed an informed 

consent form. Sample acquisition was approved by the Institutional Review Board at the 

COHNMC and met all requirements of the Declaration of Helsinki. Cord blood 

mononuclear cells were isolated by Ficoll-Hypaque (Sigma Diagnostics, St Louis, MO) 

density gradient centrifugation. CD34+ cells were selected from cord blood cells using 

immunomagnetic column separation (Miltenyi Biotech Inc., Auburn, CA).

Synthesis of shRNA expression vectors

The lentivirus pHIV7, pHIV7/C-GFP and pHIV7/SF-GFP were previously described 17. To 

generate pHIV7-SF-RFP, a fragment containing RFP was amplified from pCMV-DsRed-

Express by PCR, KpnI and BamHI sites added at the 5′ and 3′ ends, and ligated to a BamHI-

KpnI fragment containing the SFFV LTR 19. The SFFV LTR-RFP fragment was inserted 

into a unique BamHI site in pHIV7 to generate pHIV7-SF-RFP. To generate pHIV7-CMV-

RFP, a CMV IE-RFP fragment obtained by PCR of pCMV-DsRed-Express was inserted into 

pHIV7. Vectors expressing GFP and RFP from the PGK promoter (pHIV7-PGK-GFP and 

pHIV7-PGK-RFP) were generated by amplifying the PGK promoter the PGK-KS plasmid (a 

kind gift from Dr. Donald Kohn, UCLA), generating PGK-GFP and PGK-RFP cassettes, 

and insertion into pHIV7 (Supplementary Figure S1). We designed shRNAs targeting 

human Grb2 (NM_203506.2). The targeted Grb2 sequences corresponded to positions 363–

381 (sense 5′ AAGCCATCGCCAAATATGA 3′, antisense 5′ 

TCATATTTGGCGATGGCTT 3′), 782–804 (sense 5′ CCAUGUCAUGGAUAACUCATT 

3′, antisense 5′ UGAGUUAUCCAUGACAUGGTT 3′), 892–910 (sense 5′ 

GUCAAGAAGCAAUUAUUUATT 3′, antisense 5′ UAAAUAAUUGCUUCUUGACTT 

3′). Short hairpin expression cassettes were constructed by PCR amplification of pTZ U6+1, 

using a forward primer complementary to the sequence upstream of the U6 promoter and 

reverse primer covering the antisense loop, sense of the siRNAs and 3′-end of the U6 

promoter (Supplementary Figure S1B). A BamHI site was included at the 5′-end of the 

forward primer and an EcoRI site at 5′-end of the reverse primer. The PCR products were 

digested with BamHI and EcoRI and ligated into pHIV7-SF-RFP to generate pHIV7-SF-

RFP-siGrb2-2, −4 and −5. A lentiviral vector with a shRNA targeting HIV-1 tat and rev 

designated as pHIV7-U6-TR-SF-RFP was used as a control for off-target shRNA effects.
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Vectors and virus production

The MIG R1 and MIG 210 retroviral vectors (kind gifts from Dr Warren Pear, University of 

Pennsylvania) have been described previously 20. Replication incompetent retroviruses were 

obtained by transient transfection of 293 cells with MIG R1, MIG 210 retroviral plasmids 

and the pCL-ampho plasmid 20. To produce infectious HIV vectors, 293T cells were co-

transfected with pCMV gp-2, 4 pCMV-rev, pCMV-VSV-G and vector plasmid. Culture 

supernatants were collected 24 hours and 36 hours after transfection, pooled, filtered, 

concentrated by ultracentrifugation, and stored at −80°C until use. Vector titers were 

determined by transduction of HT1080 cells and analysis of RFP expression using flow 

cytometry. Stocks were tested for replication-competent lentivirus.

Transduction of CD34+ cells

CD34+ cells were cultured on Retronectin (Pan Vera, Madison, WI) coated plates in serum-

free medium (SFM) (Stem Cell Technologies, Vancouver, BC, Canada) containing growth 

factors (GFs) [Interleukin-3 (IL-3) (25 ng/ml); interleukin-6 (IL-6) (10 ng/ml); Flt-3 ligand 

(100 ng/ml); Stem Cell Factor (SCF) (50 ng/ml) and Thrombopoietin (100 ng/ml)] at 37°C 

in 5% CO2. After 48 hours cells were co-transduced with retroviral vectors expressing BCR-

ABL and GFP (MIG 210) or control vectors expressing the GFP alone (MIG R1) at 

multiplicity of infection (MOI) of 10, together with lentivirus vectors expressing Grb2 

shRNA or the non specific shRNA at MOI of 5. Infection was repeated after 24 hours. After 

additional culture for 48 hours, CD34+ cells were labelled with anti-CD34-APC antibodies 

(Becton Dickinson, San Jose, CA) and CD34+GFP+RFP+ cells selected using flow 

cytometry (Dako-Cytomation Inc., Fort Collins, CO).

Western blot and Immunoprecipitation

Cells were lysed in 50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.5% NP40, and 

0.5% sodium deoxycholate, with protease and phosphatase inhibitors. Proteins were 

resolved on SDS-PAGE gels and transferred to nitrocellulose membranes. Membranes were 

blocked with 10% non fat dry milk with 0.1% Tween and labelled with primary antibody 

anti-Abl (Abl-3, CalBiochem, OP 20); anti-Actin (AC-15; Sigma-Aldrich Co., A 5441); 

anti-phosphotyrosine (4G10, Millipore, 05-777); anti-phosphorylated p42/44 MAPK 

(sc-7383), (Santa Cruz Biotechnology, Santa Cruz, CA); anti-phosphorylated Stat5 (pY694, 

611964) (BD Biosciences); and anti-phosphorylated Akt (Ser473, 9271) (Cell Signaling 

Technology); followed by mouse or rabbit horseradish peroxidase-conjugated secondary 

antibody (1:6000; Jackson ImmunoResearch Laboratories). Proteins bands were visualized 

using the Superfemto kit (Pierce Biotechnology, Rockford, IL). Relative quantitation of 

protein levels was performed using densitometric analysis. For immunoprecipitation, protein 

extracts were cleared with Protein A beads (Pierce Chemical Company) at 4°C for 1 hour. 

Primary antibody (2μg) was added to 1.5 mg total protein and incubated overnight at 4°C, 

followed by incubation with True Blot beads (eBioscience) for 2 hours. Beads were isolated 

by centrifugation, washed with PBS plus 1% NP-40, boiled with 2x sample loading buffer 

and resolved by SDS-PAGE followed by Western blotting with anti-Abl and anti-Grb2 

antibodies.
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Progenitor Culture

CD34+GFP+RFP+ cells were incubated in SFM with low concentrations of GF similar to 

those found in stroma-conditioned medium (granulocyte-macrophage colony-stimulation 

factor [GM-CSF], 200 pg/mL; granulocyte colony-stimulating factor [G-CSF], 1 ng/mL; 

SCF, 200 pg/mL; leukemia inhibitory factor [LIF], 50 pg/mL; macrophage inflammatory 

protein α [MIP-1 α], 200 pg/mL; and IL-6 1 ng/ml) 21–23 at 37°C with 5% CO2. The 

number of viable cells was enumerated after 7 and 14 days of culture. Expression of myeloid 

and erythroid differentiation antigens was evaluated by labeling with antibodies to CD33, 

CD11b and Glycophorin A (Gly A) and flow cytometry (LSRII; Becton Dickinson). MTS 

assay were performed by culturing cells in triplicate in 96-well plates (104 cells/well) and 

quantifying viable cells using an MTS assay kit (Promega, Madison, WI). Cells were also 

cultured in IMDM with 30% FBS and high GF conditions [erythropoietin (3u/ml); SCF 

(5ng/ml); granulocyte- macrophage colony stimulating factor (GM-CSF) (20ng/ml); 

granulocyte colony stimulating factor (G-CSF) (20ng/ml) and IL-3 (5ng/ml)]. For 

assessment of apoptosis cells were labeled with Annexin V-Cy-5 and DAPI (BD 

PharMingen, San Diego, CA), and analyzed by flow cytometry 20.

Statistics

Results of data obtained from multiple experiments were reported as the mean ± one SEM. 

Significance levels were determined by Student’s paired t-test analysis or where indicated 

by one-way or two-way ANOVA.

Results

BCR-ABL-Y177F mediates BCR-ABL and Grb2 association in human hematopoietic 
progenitor cells

We have previously shown that the Y177 motif in the BCR portion of the protein plays a 

critical role in human hematopoietic progenitor transformation by BCR-ABL and in BCR-

ABL induced activation of Ras, Akt and STAT5 signaling. In cell lines phosphorylated 

Y177 has been shown to directly bind the SH2 domain of Grb2 24–26. Immunoprecipitation 

of BCR-ABL using anti-ABL antibodies followed by Western blotting with anti-Grb2 

antibodies confirmed Grb2 association with BCR-ABL in BCR-ABL-expressing 

hematopoietic cells. Grb2 association with BCR-ABL was markedly diminished in BCR-

ABL-Y177F expressing cells (Supplementary Figure S2). Similar results were obtained on 

immunoprecipitation with anti-Grb2 antibodies and Western blotting with anti-ABL 

antibodies. These results indicate that Y177 mediates BCR-ABL and Grb2 association in 

human hematopoietic cells and support further investigation of the role of Grb2 in BCR-

ABL-mediated transformation of primary human CD34+ cells.

Dual BCR-ABL and shRNA gene expression in human CD34+ cells

Investigation of the effect of Grb2 knockdown in BCR-ABL-mediated transformation 

requires coexpression of the BCR-ABL gene and Grb2 shRNA constructs in human CD34+ 

cells. Coexpression of multiple transgene necessitates use of different reporters to identify 

cells transduced with different vectors. In preliminary studies we observed that GFP and 
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RFP expression from the CMV promoter in human CD34+ cells was low, resulting in poor 

delineation of dual transduced cells and making this approach impractical. We 

systematically compared the expression of GFP and RFP reporters in human CD34+ cells 

from CMV, SFFV (SF) and PGK promoters (Supplementary Figure S1). CD34+ cells were 

prestimulated with GF for 48 hours followed by exposure to infectious pHIV7 virus particles 

expressing GFP and RFP from different promoters (CMV-GFP, CMV-RFP, SF-GFP; SF-

RFP, PGK-GFP, PGK-RFP) at MOI of 5 for two consecutive days. Cells were analyzed by 

flow cytometry 48 hours after the second virus exposure (Figure 1). The percentage of GFP+ 

cells were not significantly different when GFP was expressed from the different promoters, 

but the median fluorescent intensity (MFI) of GFP expressed from the SF promoter was 4-

fold higher compared to the CMV promoter, and 6.5-fold higher compared to the PGK 

promoter. In contrast the percentage of RFP+ cells significantly higher when expressed from 

the SF promoter compared to CMV and PGK promoters (14.5 ± 1.5%, 1.7 ± 0.2%, 1.3 ± 

0.2% respectively) and MFI of RFP expressed from the SF promoter was 5-fold higher 

compared to the CMV and PGK promoters (MFI 1241 ± 263, 242 ± 43, 215 ± 6.0 

respectively). The low percentage of RFP+ cells expressed from CMV or PGK promoters 

resulted in a minimal percentage of cells expressing both GFP and RFP (0.6 ± 0.2%, 0.1 ± 

0.01%, CMV and PGK respectively), compared to the SF promoter (3.0 ± 1.0%). These 

results indicate that the expression of RFP requires a stronger promoter such as SF.

Grb2 knockdown is associated with reduced proliferation and survival of BCR-ABL 
transformed cells

We used retrovirus vectors to express BCR-ABL and GFP (MIG 210) or GFP alone (MIG 

R1) in human CD34+ cells together with lentivirus vectors to express Grb2 shRNAs or 

control shRNAs. Efficient dual transduction with GFP-expressing retrovirus and RFP-

expressing lentivirus could be achieved. CD34+ cells coexpressing GFP and RFP were 

selected by flow cytometry sorting (Figure 2A). Western blotting analysis showed that anti-

Grb2 shRNA-transduced cells demonstrated significantly reduced Grb2 protein levels 

compared to control shRNA transduced cells (Figure 2B, C). These results confirmed the 

efficacy of the anti-Grb2 shRNAs to inhibit Grb2 expression and the utility of this approach 

to investigate the role of Grb2 in normal as well as BCR-ABL expressing CD34+ cells.

Selected CD34+GFP+RFP+ cells were cultured with low GF and viable cell numbers were 

enumerated on day 7 and day 14. Grb2 shRNA-expressing BCR-ABL transformed CD34+ 

progenitor cells generated significantly fewer cells after 7 and 14 days of culture compared 

to the control shRNA transduced cells (Figure 3A). Expression of Grb2 shRNA did not 

significantly reduce expansion of control CD34+ cells expressing GFP alone (Figure 3B). 

We also confirmed significantly reduced growth of Grb2 knockdown BCR-ABL expressing 

cells using the MTS assay (Figure 3C). In contrast, Grb2 shRNA-expressing BCR-ABL-

transformed CD34+ cells did not show reduced growth compared to control shRNA-

expressing cells in the presence of high concentrations of GF (Figure 3D). These results 

suggest that GF signaling can overcome the effects of Grb2 knockdown on BCR-ABL 

transformed CD34+ cells, and suggest an essential role for Grb2 in BCR-ABL-dependent 

but not in GF-dependent proliferation.
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Grb2-2 and Grb2-5 shRNA expressing BCR-ABL transformed cells cultured in low GF 

demonstrated a significant increase in apoptosis, analyzed by Annexin V and DAPI labeling, 

compared to control shRNA expressing cells (Figure 4A). This data suggests that Grb2 

contributes to reduced apoptosis in BCR-ABL-transformed hematopoietic cells. In contrast 

Grb2 knockdown did not increase apoptosis in normal CD34+ cells.

Immunophenotypic analyses indicated that BCR-ABL expressing cells generated higher 

number of both myeloid (CD11b and CD33 expressing) and erythroid (Glycophorin A 

expressing) cells compared to control cells (data not shown) 20. Knockdown of Grb2 

resulted in significantly reduced expansion of both erythroid and myeloid cells from BCR-

ABL-transformed CD34+ progenitor cells (Figure 4B). These results indicate a crucial role 

for Grb2 in both abnormal myeloid and erythroid cell expansion in CML.

Grb2 knockdown results in reduced MAPK activity in BCR-ABL-transformed human 
hematopoietic cells

Grb2 through one of its SH3 domains (mainly the C-terminal domain) may mediate BCR-

ABL association with the guanine nucleotide exchange factor SOS, which can activate Ras 

by stimulating exchange of GDP for GTP 27. Abnormal Ras activation may play a central 

role in mitogenic signaling in BCR-ABL expressing cells 28, leading to activation of 

downstream signaling through Raf/MEK/MAPK. Western blotting with phospho-MAPK 

antibodies [anti-Phospho-p44/42M AP Kinase (Thr202/Tyr204)] showed that Grb2 shRNA 

expression resulted in reduced p-MAPK levels in BCR-ABL-expressing cells (Figure 5) 

(n=3). These results suggest an important role for Grb2 in enhanced Raf/MEK/MAPK 

activity in BCR-ABL-transformed hematopoietic cells. Grb2 may also mediate activation of 

the phosphoinositide-3-kinase (PI3K) through interactions with Gab2 and the regulatory 85-

kDa sub-unit of PI3K 15. PI3K signaling may contribute to enhanced proliferation and 

survival of BCR-ABL-expressing cells. However we did not observe a consistent reduction 

in phosphorylation of AKT (Ser473), a key downstream effector of PI3K signaling, in Grb2-

knockdown BCR-ABL-expressing cells. STAT5 activity is increased in BCR-ABL-

transformed cells. However no change in STAT5 phosphorylation was seen on Grb2 

knockdown. These results indicate that mechanisms other than Grb2 may contribute to Akt 

and STAT5 activation in BCR-ABL expressing cells. Western blotting for tyrosine 

phosphorylated proteins indicated that Grb2 knockdown was associated with reduced 

tyrosine phosphorylation of BCR-ABL.

Discussion

In this study we show that Grb2 knockdown using lentivirus mediated shRNA expression 

results in reduced proliferation and survival of BCR-ABL-transformed primary human 

CD34+ progenitor cells. Grb2 inhibition did not significantly inhibit proliferation and 

survival of control CD34+ cells that did not express BCR-ABL. Grb2 knockdown inhibits 

MAPK activation in BCR-ABL-transformed hematopoietic cells. These results are 

important because this study identify Grb2 as an important mediator of BCR-ABL mediated 

human hematopoietic progenitor transformation in CML.
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BCR-Tyrosine 177 plays a key role in signal transduction initiated by BCR-ABL leading to 

myeloid leukemogenesis in mice likely through binding to the SH2 domain of the Grb2 

adaptor protein 14. We have shown that mutation of Y177 significantly reversed BCR-ABL 

mediated transformation of human hematopoietic cells 12. The Y177 motif represents a Grb2 

SH2 domain binding motif. Here we confirmed that mutation of BCR-Y177 abrogates 

interaction with Grb2 in BCR-ABL expressing CD34+ cells. The role of Grb2 on BCR-ABL 

induced transformation in primary hematopoietic cells has been indirectly evaluated through 

mutation of Y177 or Grb2-SH3 domain peptides that inhibit association with SoS, but has 

not been directly studied by inhibition of gene expression 31. Grb2 expression is critical for 

normal development, and mouse embryos with homozygous deletions of grb2 die early in 

embryonic development, impeding investigation of the role of Grb2 later in development 29. 

The use of shRNA-mediated Grb2 knockdown in this study allowed us to address the role of 

Grb2 in normal and leukemic CD34+ progenitors.

Grb2 knockdown in BCR-ABL expressing CD34+ cells required dual transduction of 

CD34+ cells with separate vectors expressing the BCR-ABL gene and a Grb2 shRNA 

construct while coexpressing GFP and RFP respectively. Whereas various internal 

promoters express GFP reporter gene well in cell lines and primary progenitor cells 17, 18, 

their efficiency for expression of RFP has not been studied. We found that use of CMV or 

PGK promoters resulted in a very low percentage of cells double positive for GFP and RFP. 

In contrast the SFFV LTR promoter resulted in significantly higher levels of RFP expression 

in CD34+ cells compared to CMV or PGK promoters. Therefore expression of RFP and 

GFP in hematopoietic stem cells using the strong promoter SFFV LTR allowed us to 

successfully coexpress Grb2 shRNA with the BCR-ABL gene in CD34+ cells.

We observed that shRNA mediated inhibition of Grb2 expression significantly inhibited 

BCR-ABL-stimulated proliferation and survival of human CD34+ hematopoietic cells. 

These findings suggest that BCR-ABL expressing CD34+ cells are dependent on Grb2 

signaling at least in part for the fully transformed phenotype. Interestingly similar levels of 

Grb2 knockdown had a significantly less prominent effect on the growth of control CD34+ 

cells, although prolonged Grb2 inhibition may result in modest inhibition of proliferation of 

normal hematopoietic cells. These results are important since Grb2 signaling is reported to 

play an important role in normal GF receptor signaling and suggest redundancies leading to 

lack of dependence on Grb2 in GF signaling in normal CD34+ cells.

The canonical model of Grb2 function is based on the constitutive association of one of the 

Grb2 SH3 domains with proline-rich sequences in SoS, a guanine nucleotide exchange 

factor that promotes GDP-GTP exchange on Ras, leading to activation of Ras and the 

MAPK cascade. Consistent with this we observed that Grb2 knockdown in BCR-ABL 

transformed human hematopoietic cells was associated with inhibition of MAPK 

phosphorylation. Grb2 can also bind members of the mammalian Gab family, which can 

enhance signaling through GF and cytokine receptors29. However we did not observe 

significant inhibition of Akt or STAT5 phosphorylation, suggesting that signaling through 

Gab2 may be less affected by Grb2 knockdown in this cell type.
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There has been considerable interest in developing strategies to target Grb2 using novel 

protein interaction blocker drugs that abrogate Grb2 binding to downstream effectors such 

as SoS, blocking the activation of Ras and MAPK. High affinity Grb2 SH3 (N) domain 

blocker peptides (HAGBP) have been developed by modification of the naturally occurring 

proline-rich motif in the SoS protein 32. Our results support the potential utility of targeting 

Grb2 as an alternative or an adjuvant treatment for CML in addition to tyrosine kinase 

blockade. Of note, CML primitive progenitors/stem cells in particular have been found to be 

resistant to elimination by tyrosine kinase inhibitor treatment. However, the functional role 

of Grb2 in the primitive CML CD34+CD38- subpopulation could not be determined in the 

present study because of technical limitations related to conditions required for efficient 

transduction of hematopoietic cells. In addition although cord blood CD34+ cells were used 

in these studies because of their ease of transduction, it is possible that Grb2 signaling in 

adult CD34+ cells could differ from that observed in cord blood cells. Further technical 

improvements in gene expression in primitive adult human hematopoietic stem and 

progenitor cells will be required to address these issues in future studies.

In conclusion our studies confirm an important role for Grb2 mediated activation of MAPK 

in BCR-ABL mediated transformation of human hematopoietic cells, and demonstrate 

selectivity of effects of Grb2 inhibition for BCR-ABL-transformed as compared to normal 

hematopoietic cells. These results support further investigation of downstream effectors of 

Grb2-mediated signals and targeting of Grb2 interactions in the treatment of CML.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transfer and expression of GFP and RFP gene in human CD34+ cells
CD34+ cells were transduced with the indicated vectors at an MOI of 5 and analyzed by 

flow cytometry for GFP+, RFP+ and GFP+/RFP+ expression. A) Histograms of GFP 

fluorescent intensity and RFP fluorescent intensity. The upper number represents the median 

fluorescent intensity while the lower number represents the percentage of positive cells. B) 

Representative flow cytometry plot of GFP+ versus RFP+ cells.
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Figure 2. Efficient knock down of Grb2 in BCR-ABL-transformed human CD34+ cells
(A) Representative data for GFP and RFP expression in CD34+ cells transduced with BCR-

ABL and control GFP vectors. (B) Representative results of Western blotting for Grb2 

protein expression. Sorted GFP+RFP+ cells -transduced with MIG210 and shRNA vectors 

were cultured for seven days followed by preparation of protein extracts. Western blotting 

was performed using anti-Grb2 antibodies and anti-Actin antibodies. (C) Grb2 to actin ratios 

were obtained by densitometric analysis. Results shown are normalized to Grb2 expression 

in control shRNA expressing cells. The percentage inhibition of Grb2 expression by the 

different shRNA with MIG210+Grb2-2 shRNA was 76.11±1.31; MIG210+Grb2-4 shRNA, 

42.43±3.1; and MIG210+Grb2-5 shRNA, 64.98±2.29 compared to MIG210+ctr shRNA. 

Significance levels for differences in Grb2 expression between siCtr and siGrb2-2 * P < 

0.001, n = 7; siCtr and siGrb2-4, siGrb2-5 ** P < 0.03, n = 2.
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Figure 3. Effect of Grb2 shRNAs on normal and BCR-ABL-transformed CD34+ progenitor cell 
growth
(A) BCR-ABL-transformed or (B) control CB CD34+ cells expressing the indicated 

shRNAs were cultured with low concentrations of GF and the number of viable cells 

counted on day 7 and 14. Viable cells per 100,000 input CD34+GFP+RFP+ cells are shown. 

Significance levels: * p < 0.03, n=8; ** p < 0.002, n=2, compared to controls. (C) BCR-

ABL-transformed or control CD34+ cells expressing the indicated shRNAs were cultured 

with low GF concentrations for five days and cell proliferation determined using an MTS 

assay. Results are from three independent experiments each done in triplicate. Significance 

levels: *, P < 0.03, MIG210+ctr shRNA versus MIG210+Grb2-2 shRNA. (D) BCR-ABL-

transformed cells expressing the indicated shRNAs were cultured in high GF conditions for 

seven days, n = 3.

Modi et al. Page 14

Leukemia. Author manuscript; available in PMC 2011 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Effect of Grb2 knock down on CD34+ cell apoptosis and differentiation
Transduced CD34+ cells were cultured with low GF for indicated periods and analyzed by 

flow cytometry for apoptosis and erythroid and myeloid markers. (A) Cells were labeled 

with Annexin-V Cy-5 and DAPI and apoptosis assessed by flow cytometry. Significance 

values: * P < 0.015, MIG 210+ctr shRNA versus Grb2-2 shRNA; ** P < 0.006, MIG 

210+ctr shRNA versus Grb2-5 shRNA. (B) Cells were analyzed for glycophorin A (GlyA), 

CD 11b, CD 14 and CD 33 expression on day 7 and 14. The figure shows absolute number 

(log10) of cells per 100,000 input cells. Significance values for differences between MIG 

210 + ctr shRNA and various Grb2 shRNAs are indicated * P < 0.05.
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Figure 5. Effect of Grb2 knock down on BCR-ABL signaling in human hematopoietic cells
BCR-ABL expressing CD34+ cells were grown in low GF concentrations for seven days 

followed by preparation of protein extracts for Western blotting. (A) Representative Western 

blots for phosphorylated AKT (n=4), MAPK (n=4) and pTyr (n=2) in control shRNA, 

Grb2-2 shRNA (n=4), and Grb2-4, 5 (n=2) expressing cells. (B) Cumulative results from 

densitometric analysis of indicate that p value (< 0.05) is significant for pMAPK and pTyr.
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