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Abstract
Our laboratory has investigated two hypotheses regarding the effects of fructose consumption: 1)
The endocrine effects of fructose consumption favor a positive energy balance, and 2) Fructose
consumption promotes the development of an atherogenic lipid profile. In previous short- and
long-term studies, we demonstrated that consumption of fructose-sweetened beverages with 3
meals results in lower 24-hour plasma concentrations of glucose, insulin, and leptin in humans
compared with consumption of glucose-sweetened beverages. We have also tested whether
prolonged consumption of high-fructose diets could lead to increased caloric intake or decreased
energy expenditure, thereby contributing to weight gain and obesity. Results from a study
conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately
powered long-term studies are needed to address these hypotheses. In both short- and long-term
studies we demonstrated that consumption of fructose-sweetened beverages substantially increases
postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the
long-term studies, apolipoproteinB concentrations were also increased in subjects consuming
fructose, but not those consuming glucose. Data from a short-term study comparing consumption
of beverages sweetened with fructose, glucose, high fructose corn syrup (HFCS) and sucrose,
suggest that HFCS and sucrose increase postprandial triacylglycerol to an extent comparable to
that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages
along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore
the importance of investigating the metabolic consequences fructose consumption in carefully
controlled experiments.
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INTRODUCTION
Some investigators have proposed that increased fructose consumption may be related with
the current epidemics of obesity and metabolic syndrome (1–4). The purpose of this paper is
to review some of our recent work investigating two hypotheses: 1) Fructose consumption
promotes a state of positive energy balance, and 2) Fructose consumption favors the
development of an atherogenic lipoprotein profile.

FRUCTOSE CONSUMPTION AND ENERGY BALANCE
Consumption of dietary fructose has increased in conjunction with rising intake of fructose-
containing sugars, largely in the form of sugar-sweetened beverages. Malik et al conducted a
systematic review of the relationship between sugar-sweetened beverage consumption and
risk of weight gain and concluded that the evidence indicates that increased consumption of
sugar-sweetened beverages is associated with weight gain (5). We have hypothesized that
fructose consumption could promote weight gain because it does not stimulate insulin
secretion or leptin production by adipose tissue (2,3). Since leptin production is regulated by
insulin-mediated glucose metabolism (6–8) and ingestion of fructose does not result in meal-
related increases of plasma glucose or insulin concentrations, we hypothesized that meals
accompanied with fructose-sweetened beverages would result in reduced circulating leptin
concentrations when compared with glucose-sweetened beverages. We compared leptin
concentrations over two separate 24-h periods in 12 normal-weight young women who
consumed fructose- or glucose-sweetened beverages with meals. Consumption of fructose-
sweetened beverages at 30% of energy requirements with 3 meals resulted in lower 24-h
circulating glucose, insulin, and leptin concentrations, and resulted in less postprandial
suppression of ghrelin after each meal compared with consumption of glucose-sweetened
beverages (9). In a second short-term study comparing fructose- and glucose-sweetened
beverages (30% of energy requirements), meal-induced insulin secretion was attenuated and
24-hour circulating leptin profiles were reduced in both overweight/obese men and
overweight/obese women (10). Fructose-sweetened beverage consumption also reduced the
percent (proportional) change of leptin concentrations between the morning nadir and the
late night peak (9,10). Results from a clinical study investigating the weight/body fat loss
during an ad libitum low-fat, high carbohydrate diet suggest an association between the
amplitude of the diurnal leptin pattern and long-term energy balance (11).

In long-term comparisons of fructose- and glucose-sweetened beverages (25% of energy
requirements consumed with meals), fructose consumption resulted in significant reductions
in the 24-h areas under the curve (AUC) for glucose, insulin, and leptin (12), whereas
consumption of glucose did not. These results indicate that reductions of insulin secretion
and attenuated 24-hour leptin profiles observed in the short-term studies are not transient,
but are maintained during long-term fructose consumption.

Insulin and leptin function as key endocrine signals to the central nervous system in the
long-term regulation of energy balance (13,14). Therefore, prolonged consumption of diets
high in energy from fructose could lead to increased caloric intake or decreased caloric
expenditure, contributing to weight gain and obesity as a result of reduced insulin and leptin
signaling in the brain (3). However, obtaining definitive evidence in support of this
hypothesis in human subjects would be extremely difficult. It would require that subjects be
provided and restricted to ad libitum consumption of a high fructose or high glucose diet that
has been designed to achieve a comparable and controlled macronutrient distribution in all
subjects, regardless of quantities consumed. It would also require that the intervention last at
least 12 months, since a difference in body weight change as small as 0.5 kg/year between
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groups would be a clinically relevant finding. The costs, as well at the compliance and
retention issues, involved in conducting such a study would likely prove to be prohibitive.

FRUCTOSE AND LONG-TERM ENERGY BALANCE IN RHESUS MONKEYS
We conducted a 12-month study in 16 adult male rhesus monkeys (Macaca mulatta) to
determine if prolonged consumption of a diet high in energy from fructose would lead to
greater weight gain via increased caloric intake and/or decreased energy expenditure
compared with a diet high in glucose. Monkeys (n=8/group) were fed an ad libitum standard
chow diet supplemented with either glucose- or fructose-sweetened beverages (100 g sugar/
day). The two groups of monkeys consumed an average 43.8 ± 4.1% and 41.5 ± 2.7% of
total energy as glucose and fructose respectively during the 12-month intervention period.
Monkeys fed fructose beverages gained significant amounts of weight at 3 and 6 months
compared to their baseline weights, while the animals consuming glucose did not. However,
weight gain was not significantly different between the two groups by the end of the study at
12 months (Figure 1A).

Food and beverage intake was measured daily, and differences in energy intake did not
account for the weight gain in monkeys fed fructose-sweetened beverages during the first 6
months of the study. Differences in energy expenditure between the two groups of animals
may explain the early differences in body weight gain (Figure 1B). Energy expenditure was
measured by indirect calorimetry at baseline and at 3, 6, and 12 months. We monitored the
monkeys for three 24-hour periods at each time point, calculated postprandial energy
expenditure (from 1700h to 0100h), and averaged the results from the 2 closest
measurements.

The energy expenditure profiles at baseline were comparable for both groups (Glucose:
0.205 ± 0.004; Fructose: 0.202 ± 0.007 kJ/min/kg BW.75). At 3 and 6 months, energy
expenditure during the postprandial period in the fructose-fed monkeys was significantly
decreased when compared with baseline, whereas energy expenditure in monkeys
consuming glucose was unchanged (Figure 1B). However, at 12 months, the energy
expenditure of the monkeys consuming glucose was significantly reduced compared with
the earlier time points, and more comparable to the profiles of the monkeys consuming
fructose. Thus, the timing of changes in body weight of both the animals consuming fructose
and those consuming glucose appear to be more closely related to changes of energy
expenditure than to changes of energy intake. These equivocal results from a year-long
study in nonhuman primates indicate that additional carefully controlled studies will be
required to determine whether fructose consumption preferentially promotes positive energy
balance compared with consumption of glucose.

FRUCTOSE AND LIPID METABOLISM
Other important differences in the metabolic consequences of fructose and glucose
consumption warrant investigation. Both of our short-term studies (in normal weight women
and overweight men and women) demonstrated that consumption of fructose-sweetened
beverages with meals increased 24-h circulating plasma triacylglycerol (TG) concentrations
compared with consumption of glucose-sweetened beverages (9,10). Results from a long-
term study indicate that consuming fructose-sweetened beverages at 25% of energy
requirements for 10 weeks increased 24-h TG exposure by 140% in overweight women (12).
In contrast, in subjects consuming the same amount of glucose-sweetened beverages for 10
weeks, the 24-h TG AUC tended to decrease (Figure 2) (15). These findings are consistent
with our current long-term study in a larger number of overweight/obese men and women
(16).
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Previous studies indicate that hepatic de novo lipogenesis (DNL) increases during fructose
ingestion (17,18). Fructose consumption may promote hepatic lipogenesis via several
mechanisms: the liver is the main site of fructose metabolism (19); fructose enters glycolysis
via fructose-1-phosphate, bypassing the main rate-controlling step of glucose metabolism
through glycolysis catalyzed by phosphofructokinase, thus, providing unregulated amounts
of the lipogenic substrates acetyl-CoA and glycerol-3-phosphate (19); fructose upregulates
sterol receptor element binding protein-1c (SREBP-1c) independently of insulin, thus,
activating genes involved in DNL, eg, fatty acid synthase and acetyl coA carboxylase
(20,21).

Growing evidence links postprandial lipemia with proatherogenic conditions (22–25). The
relationship between TG-rich lipoprotein and atherogenesis is most likely mediated by the
effects of postprandial hypertriacylglycerolemia, which promotes lipoprotein remodeling to
a more atherogenic lipid profile consisting of increased concentrations of TG rich
lipoprotein remnants and small dense LDL-C (25–27). This mechanism is consistent with
our long-term results showing increased concentrations of fasting and postprandial
apolipoprotein B100 (ApoB), (12,16) with fructose consumption. ApoB concentrations were
increased in the absence of comparable increases in LDL-C, which suggests that fructose
consumption increased the number of total LDL-C particles (28) while decreasing particle
size (29). As LDL-C particles become smaller, conformational changes occur in ApoB that
increase its affinity for arterial wall proteoglycans (30). Thus, ApoB is a clinically important
apolipoprotein that assembles atherogenic lipoproteins and promotes the development of
atherosclerosis (30). Therefore, long-term consumption of diets containing 25% of energy
from fructose produces a lipoprotein profile that has been associated with the development
of atherosclerosis.

In these studies, we have compared the metabolic effects of beverages sweetened with
fructose and glucose alone, however, pure fructose and pure glucose are not commonly
employed as sweeteners. Until a few decades ago, most foods and beverages in the U.S.
were sweetened with the disaccharide sucrose, which is composed of 50% glucose and 50%
fructose. In 1970, the enzymatic process to convert corn sugar (composed of glucose) into
high fructose corn syrup (HFCS) was developed. Since then, HFCS, primarily 55% fructose
and 45% glucose (HFCS-55), has replaced sucrose as the predominant sweetener in soft
drinks and represents approximately 40% of the sweeteners added to foods consumed in the
U.S. (31).

It is reasonable to hypothesize that the endocrine/metabolic effects of HFCS and sucrose
would be similar to each other and that both would produce responses intermediate between
those of pure fructose and glucose, and we have investigated this hypothesis (32). In a short-
term study comparing the effects of consuming beverages sweetened with HFCS, sucrose,
fructose, and glucose (25% of energy) with meals in male subjects, consumption of either
HFCS- or sucrose-sweetened beverages produced postprandial glucose, insulin and leptin
profiles that were intermediate to responses induced by pure fructose and pure glucose.
However, unexpectedly postprandial triacylglycerol responses to consumption of sucrose
and HFCS were comparable to 100% fructose in both peak concentrations and integrated 24-
h areas under the curve (Figure 3) (32). Long-term studies are needed to confirm these
results and we are currently initiating a dose-response study to compare the effects of
consuming diets containing three different levels of HFCS or fructose.

FRUCTOSE AND ADDED SUGAR CONSUMPTION
If prolonged consumption of 25% of energy from HFCS or sucrose increases postprandial
TG, Apo-B, and small dense-LDL to a comparable degree as fructose alone, this finding is
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likely to have important public health implications. The Institute of Medicine of the National
Academies in the 2002 Dietary References Intakes (DRI) concluded that there was
insufficient evidence to set an upper intake level for added sugars since there were not
specific adverse health outcomes associated with excessive intake (33). Therefore, they
suggested a maximal intake level of 25% of energy intake from added sugars.

The estimated mean intake of added sugars by Americans is 15.8%, however this value is
based on consumption data from the 1994–1996 Continuing Survey of Food Intakes by
Individuals (CSFII) (34). Recent data demonstrate that these intake rates may significantly
underestimate actual sugar and sugar-sweetened beverage consumption by children and
young adults. It was reported that the mean energy intake from sugar-sweetened beverages
by 265 college students was 543 kcal/d (35), representing more than 20% of energy in a
2,500 kcal/d diet and over 25% of a 2,000 kcal/d diet. The mean intakes of sugar-sweetened
beverages in 172 boys and 211 girls (age 13 years) were 809 ml/d and 674 ml/d, respectively
(36). Assuming a 2,500 kcal/d and 2,000 kcal/d energy intake for the boys and girls,
respectively, these adolescents consumed approximately 15% of energy as sugar-sweetened
beverages. Mundt et al followed 208 boys and girls (aged 8–19) for an average of 5 years
and found that sugar-sweetened beverage consumption increased with age, while physical
activity declined (37). By the final year of the study, both males and females were
consuming over 16% of energy as sugar-sweetened beverages. Similar results were reported
for 2,371 girls followed from ages 9–15 (38). Sugar-sweetened beverage consumption
increased with age and averaged 14%–16% of total energy intake during the final study
year. A recent analysis of energy consumed as beverages in the U.S. population (using
1999–2002 National Health and Nutrition Examination Survey data) (39) reported that the
percent of energy consumed from soft drinks, fruit drinks, and juices averaged 18.5% for
males and 13.5% for females (20–39 years of age). These data suggests that the proportion
of energy intake consumed from sugar-sweetened beverages by adolescents, college
students, and adults up to 39 years of age approaches or exceeds 15.8% (the current estimate
for the mean intake of total added sugar), without accounting for any other dietary sources
of sugars. The large standard deviations in several of these reports (35–37) suggest that at
least 16% of the studied populations were consuming greater than two times the mean
intake, and therefore well over 25% of daily energy requirements from sugar-sweetened
beverages. Based on these more recent intake data (35–39) and the current DRI guideline for
maximal added sugar intake (33), as well as our short-term results suggesting 25% of energy
HFCS or sucrose increases postprandial triacylglycerol concentrations comparably to
fructose alone (32), long-term dose-response studies investigating the metabolic effects of
consuming HFCS and/or sucrose consumption up to the level of 25% of energy are needed.

CONCLUSIONS
Results from both short-term and long-term studies demonstrate that fructose consumption
results in decreased circulating levels of insulin and leptin when compared with glucose.
Since insulin and leptin function as key signals to the CNS in the long-term regulation of
energy balance, prolonged consumption of diets high in energy from fructose could lead to
increased caloric intake or decreased caloric expenditure, thereby contributing to weight
gain and obesity. Results from a 1-year study in nonhuman primates were equivocal, and
testing this hypothesis in human subjects is likely to be difficult and costly.

In both short- and long-term studies we have demonstrated that fructose consumption
substantially increases postprandial TG concentrations (9,10,12,16). In long-term studies,
plasma apoB concentrations and small-dense LDL are increased in subjects who consumed
fructose-sweetened, but not glucose-sweetened, beverages for 10 weeks (12,16). Results
from a short-term study suggest that consuming HFCS- and sucrose-sweetened beverages
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increases postprandial triacylglycerol concentrations to the same degree as fructose alone
(32). Further long-term studies are needed to investigate the effects of fructose, sucrose, and
HFCS not only on lipid metabolism, but on glucose tolerance, insulin sensitivity, visceral
adiposity and hepatic triacylglycerol content. These studies should include populations that
differ in age, gender, and metabolic status, as well as dose-response studies to determine the
amounts of dietary fructose, HFCS and sucrose that result in potentially adverse effects on
lipid and carbohydrate metabolism.
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Figure 1.
Changes of body weight from baseline in male rhesus monkeys consuming 380 kcal/d of
fructose- or glucose-sweetened beverage for one year (n=8/group). Baseline body weights
were not significantly different. Data are mean ± SEM (analysis described in Figure 2).
Response to each sugar over time was analyzed by repeated measures ANOVA
(ap<0.01; bp<0.05 using SAS 9.1 (Cary, NC)), with contrasts comparing weights at 3, 6, and
12 months to baseline weights (*p<0.05, **p<0.01). Comparison of fructose and glucose
response analyzed by 2-factor repeated measures ANOVA: Sugar×Time interaction = NS.
Data are mean ± SEM.
B. Percent change of energy expenditure (measured by indirect calorimetry) from baseline in
rhesus monkeys after 3, 6 and 12 months of consuming 380 kcal/d of fructose- or glucose-
sweetened beverages. Baseline energy expenditure was not significantly different between
groups. Response to each sugar over time analyzed by repeated measures one-factor
ANOVA (ap<0.05; bp<0.01 with Greenhouse-Geisser Epsilon correction using SAS 9.13
(Cary, NC)), with contrasts comparing energy expenditure at 3, 6, and 12 months to baseline
energy expenditure (*p<0.05, **p<0.01). Comparison of fructose and glucose response
analyzed by two-factor repeated measure ANOVA: Sugar×Time interaction = NS. n=6/
group. Data are mean ± SEM.
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Figure 2.
14-h area under the curve (AUC) for plasma TG at baseline and at 2 and 10 weeks of dietary
intervention in women consuming 25% of energy as glucose-sweetened beverages (n=3) or
fructose-sweetened beverages (n=5). Comparison of fructose and glucose response analyzed
by two-factor repeated measures ANOVA using GraphPad Prism (version 4.03; San Diego,
CA) with Bonferroni posttests. Sugar×Time interaction: P = 0.017; *P < 0.05 vs 10 wk
glucose. Data are mean ± SEM.
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Figure 3.
Change of plasma TG concentrations from mean baseline levels (0800–0900 h) during four
separate 24-h periods (0800–0800 h) in 7 men consuming HFCS-, sucrose-, fructose- and
glucose-sweetened beverages at 25% of calculated energy requirements with each meal.
Baseline TG concentrations were not different on the four study days. The effects of the 4
sugars on 24-h TG AUC were significantly different (p=0.007: repeated measures one-factor
ANOVA) and the 24-h AUC during HFCS was significantly higher than during glucose
consumption (p<0.01, Tukey’s post-test). Data are mean ± SEM.
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