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Identification of gene function is important not only for
basic research but also for applied science, especially with
regard to improvements in crop production. For rapid and
efficient elucidation of useful traits, we developed a system
named FOX hunting (Full-length cDNA Over-eXpressor
gene hunting) using full-length cDNAs (fl-cDNAs). A heter-
ologous expression approach provides a solution for the
high-throughput characterization of gene functions in agri-
cultural plant species. Since fl-cDNAs contain all the infor-
mation of functional mRNAs and proteins, we introduced
rice fl-cDNAs into Arabidopsis plants for systematic gain-
of-function mutation. We generated >30,000 independent
Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX
Arabidopsis mutant lines). These rice FOX Arabidopsis lines
were screened systematically for various criteria such as
morphology, photosynthesis, UV resistance, element compos-
ition, plant hormone profile, metabolite profile/fingerprinting,
bacterial resistance, and heat and salt tolerance. The infor-
mation obtained from these screenings was compiled into a

database named ‘RiceFOX’. This database contains around
18,000 records of rice FOX Arabidopsis lines and allows users
to search against all the observed results, ranging from mor-
phological to invisible traits. The number of searchable
items is approximately 100; moreover, the rice FOX
Arabidopsis lines can be searched by rice and Arabidopsis
gene/protein identifiers, sequence similarity to the intro-
duced rice fl-cDNA and traits. The RiceFOX database is
available at http://ricefox.psc.riken.jp/.
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Introduction

The generation of loss-of-function and gain-of-function mutant
resources is one of the effective approaches for the identification
of plant gene functions (Kuromori et al. 2009). For loss-of-function
mutant analysis, many loss-of-function mutants have been gen-
erated by T-DNA and Ds-transposon insertions in Arabidopsis
thaliana (Springer et al. 1995, Martienssen 1998, Ito et al. 2002,
Alonso et al. 2003, Kuromori et al. 2004). Similarly, in rice,
knockout mutants have been prepared by Tos17 retrotrans-
poson and Ds-transposon insertions (Hirochika et al. 2004,
Kolesnik et al. 2004, van Enckevort et al. 2005). These mutant
resources are widely used for the analysis of gene functions
disrupted by the insertion elements. With regard to gain-
of-function approaches, several procedures have also been
applied to investigate gene function in plants. For example,
the activation tagging method is based on the random insertion
of cauliflower mosaic virus 35S (CaMV 35S) transcriptional en-
hancers into the plant genome. This method was first applied
to Arabidopsis, and allowed us to isolate mutants with severe
morphological traits (Weigel et al. 2000, Li et al. 2001,
Nakazawa et al. 2003, Yoshizumi et al. 2006). Likewise, the
method was applied to rice (Hsing et al. 2007). However, the
CaMV 35S enhancer can affect gene expression up to several
kilobases from the insertion site (Hsing et al. 2007), sometimes
resulting in difficulties in the identification of genes responsible
for the observed mutant traits.

Therefore, in order to improve the identification of
genes responsible for the observed mutant traits, we have de-
veloped transgenic Arabidopsis lines overexpressing full-length
cDNAs (fl-cDNAs). These transgenic lines, named FOX
(full-length cDNA Over-eXpressor gene) Arabidopsis lines,
express 1–2 Arabidopsis fl-cDNAs under the control of the
CaMV 35S promoter (Ichikawa et al. 2006). The FOX hunting
system is unique in that only fl-cDNAs are required for the
functional analysis of genes, and has an advantage for plants
that have large genomes or a long life cycle. Advances in meth-
ods for transforming Arabidopsis without the need for tissue
culture have shortened the time required for gene function
analysis (Clough and Bent 1998). We obtained various morpho-
logical and physiological mutants from >30,000 rice FOX
Arabidopsis mutant lines using rice fl-length cDNAs (Kondou
et al. 2009).

A large number of mutants have been generated and ana-
lyzed using loss- or gain-of-function approaches. Informational
resources from these studies have been organized into data-
bases and published on the Internet. These databases contain a
large volume of information on mutants (Li et al. 2003, Samson
et al. 2004, Sakurai et al. 2005, Zhang et al. 2006, Dalmais et al.
2008, Larmande et al. 2008). However, most of the records in
these databases include few paired descriptions of genomic
information (e.g. tag insertion position on the genome and
introduced gene) and traits corresponding to each mutant
(Kuromori et al. 2006). Here, we describe our novel database,
RiceFOX, which aims to identify effectively the function of each

gene. Moreover, this database has useful search functions,
including the ability to refer to the introduced rice fl-cDNA
in addition to the broad range of morphological and invisible
traits. RiceFOX access is available via the web interface at http://
ricefox.psc.riken.jp/.

Database contents

Rice FOX Arabidopsis mutant phenotypes were categorized
into 19 primary aspects that consist of eight morphological
and 11 invisible aspects (Table 1). The RiceFOX database
houses wide-ranging information on 17,985 rice FOX
Arabidopsis lines. Most of the mutant line entries provide in-
formation on the introduced rice fl-cDNA and pictures related
to each morphological trait. The overview of the records in
RiceFOX is summarized by screening categories in Table 1.
The briefs of those screening categories are described
below. Contents on the RiceFOX database are licensed
under a Creative Commons Attribution 2.1 License, which
permits non-commercial use, distribution and reproduction
in any medium, provided that the original work is cited
properly.

Morphological traits

Visible traits in the T1 generation can be observed in parallel
with producing lines, because traits of the rice FOX Arabidopsis
lines are basically dominant (Ichikawa et al. 2006). With regard
to these morphological traits, we focused on the whole plant,
root, rosette and cauline leaf, stem, flower, silique and seed, and
described their features such as speed of growth, shape, color,
number, and so on via our own description. For example, the
items for rosette leaf were ‘large’, ‘small’, long’, ‘short’, ‘wide’,
‘narrow’, ‘epinastic’, ‘hyponastic’ and ‘spiral’ for shape; ‘dark’,
‘pale’ and ‘variegated’ for color; and ‘many’ and ‘few’ for
number. The traits of lines showing abnormal morphology in
the T1 generation were checked in the T2 generation and
described in the database. Additionally, for the seed trait, sev-
eral numerical data such as diameter and seed color code were
included in the records of many rice FOX Arabidopsis lines in
the T2 generation.

Plant hormone profiles

Plant hormones play important roles as signaling molecules in
the regulation of almost all phases of plant development, from
seed germination to senescence. For instance, cytokinins are
involved in the regulation of leaf senescence, apical dominance,
shoot development and root–shoot balance; auxins in apical
dominance, phyllotaxis and root development; ABA in seed
dormancy and stress response; and gibberellins in seed germin-
ation and leaf development (Davies 2004). The contents of
these plant hormones were analyzed by liquid chromatog-
raphy–tandem mass spectrometry (Kojima et al. 2009) and
included in the RiceFOX database.
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Element accumulation

Elements are essential not just for plant growth, but also for
human nutrition and health. We tried to isolate rice genes that
cause higher accumulation of elements in plants to support
crop breeding for bioremediation (Guerinot and Salt 2001)
and to improve human health in developing countries
(Daar et al. 2002). On this basis, a system was developed to
measure ratios of any number of elements in plants. We sim-
ultaneously measured the ratios of potassium, calcium, iron,
zinc, manganese, magnesium, sulfur and silicon in rice FOX
Arabidopsis lines in the T1 generation.

Pigment accumulation

It is known that pigments function as protectors against high
light (Steyn et al. 2002) and UV irradiation in plants (Jin et al.
2000). Additionally, they contribute to the taste and color of
fruits, vegetables, grains and flowers. Thus, biotechnologies for
the control of these compounds offer potential benefits. In this
study, we measured the optical density of a solution extracted
from the rosette leaves of rice FOX Arabidopsis lines at wave-
lengths of 305 and 530 nm in order to detect accumulation of
UV-absorbing compounds (Mazza et al. 2000) and anthocya-
nins (Hodges et al. 1999), respectively.

Table 1 Overview of the entries in the RiceFOX database summarized by screening categories

Screening categories No. of lines

Screened Objective

Morphological trait Adult plant Growth 256 33,623

Plant height 655

Flowering 122

Root Number 75

Others 6

Rosette leaf Shape 1,603

Color 651

Number 537

Others 883

Cauline leaf Shape 406

Color 102

Number 113

Others 239

Stem Shape 679

Color 66

Number 83

Others 766

Flower Shape 68

Others 87

Silique Shape 280

Others 127

Seed Shape 3,014

Color 480

Number 330

Invisible trait Plant hormones 73 175

Elements 283 9,869

Pigments 35 4,302

Photosynthesis Chl fluorescence 129 9,947

High light stress 66 4,570

UV signaling 51 7,352

Metabolite GC-TOF/MS profile 13 350

FT-NIR fingerprint 23 3,003

Salicylic acid sensitivity 53 21,200

Resistance to bacterial pathogen 70 20,000

High-salinity tolerance 46 21,048

Thermotolerance 3 20,184

UV stress tolerance 43 7,199
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Photosynthesis

Photosynthesis is one of the most important determinants of
plant productivity. Chl fluorescence has been widely used to
identify photosynthesis mutants because it reflects the state of
photosynthetic electron transport (Baker 2008). We used Chl
fluorescence imaging to isolate photosynthesis-related mutants
from rice FOX Arabidopsis lines. The time course of changes
in Chl fluorescence intensity and photosynthetic parameters
of rice FOX Arabidopsis lines were compared with those of
the wild type.

Light is critical for the growth and development of plants.
However, too much light is known to result in photo-oxidative
damage (Asada 1999). Although the response of the photosyn-
thetic apparatus to high irradiation must have an underlying
regulatory mechanism, little is known about this mechanism.
To isolate high light-tolerant rice FOX Arabidopsis lines, Chl
fluorescence was measured after high light treatment. One
of the photosynthetic parameters, maximal quantum yield
(Fv/Fm), was used as an indicator of photo-oxidative damage.

UV signaling

In plants, UV light damages DNA and the photosynthetic
machinery and generates reactive oxygen species that
damage macromolecules. However, low UV-B fluence rates
can stimulate the transduction of signals that regulate the
plant’s protective response. Some of these UV-B responses
are activated not by DNA damage but specifically by radiation
in the UV-B range (280–320 nm), and regulate the expression
of a wide range of genes (Jenkins 2009). Therefore, it is import-
ant that we understand how signal transduction leads to the
regulation of the expression of genes that mediate protection
against UV-B light. We tried to isolate rice genes that cause
hypersensitivity to low UV-B irradiation by looking for the
inhibition of hypocotyl elongation by UV-B doses below the
level that triggers damage responses in plants (Suesslin and
Frohnmeyer 2003).

Metabolite phenotyping using two different
metabolomics approaches

Metabolomics allows comprehensive phenotyping, filling a
niche between systems biology and functional genomics. It
thus contributes greatly to integrated functional genomics.
We applied two different metabolomics approaches—metab-
olite profiling and metabolite fingerprinting—to screen
changes in the metabolite composition of FOX Arabidopsis
mutants. Metabolite profiling is one of the strategies used to
study the metabolome. This approach can be used for in-depth
investigation of metabolite responses. Gas chromatography–
time-of-flight mass spectrometry (GC-TOF/MS) is one of the
most widely used techniques and a key technology in metab-
olite profiling. We performed GC-TOF/MS analysis using aerial
parts of rice FOX Arabidopsis mutants (Albinsky et al. 2010).

Metabolite fingerprinting is used in metabolomics because
it enables rapid, high-throughput analysis and provides

information from the spectra of total metabolite compositions.
Fourier transform near-infrared (FT-NIR) spectroscopy has
great potential for metabolite fingerprinting because it is
simple to operate, and various types of samples (liquid, solid
and powder) can be analyzed non-destructively. In addition, the
spectral traits can be systematically extracted by multivariate
statistical analysis. Therefore, we used FT-NIR for metabolic
screening of rice FOX Arabidopsis mutant seeds (Suzuki et al.
2010).

Salicylic acid sensitivity

The signaling pathway mediated by salicylic acid (SA) plays a
crucial role in the defense responses of plants (Durrant and
Dong 2004). Rice also has the SA signaling pathway, but only
a small number of regulatory components in this pathway have
been identified (Takatsuji et al. 2010). To identify new compo-
nents of the pathway or regulatory components that modulate
the pathway in rice, we screened for SA hypersensitivity in rice
FOX Arabidopsis lines. Ten T2 seeds of each FOX line were sown
on Murashige and Skoog (MS) medium plates with 50mM SA
and grown for 12–14 d at 22�C under 16 h light and 8 h dark
photoperiods. Lines that showed dwarf and white or pale green
phenotypes similar to the npr1 mutant (Zhang et al. 2003) were
selected as ‘SA-hypersensitive’.

Resistance to bacterial pathogen

The interaction between Arabidopsis and the bacterial patho-
gen Pseudomonas syringae has been used as a model for inves-
tigating the various mechanisms and processes involved in host
resistance and bacterial virulence (Kim et al. 2008). The main
objective of this research is to look for rice genes that confer
resistance to bacterial pathogens, genes that will confer resist-
ance to host plants in a wide variety of genera to various patho-
genic organisms. The rice FOX Arabidopsis lines were screened
for resistance to compatible P. syringae pv. tomato DC3000
(Pst DC3000) for this purpose. Three-week-old T2 plants were
inoculated with 0.5–2� 108 cfu ml�1 of Pst DC3000 and disease
symptoms were evaluated 6 d after inoculation. Wild-type
plants were apparently killed by the screening condition.
In contrast, the plants from some rice FOX Arabidopsis
lines survived 6 d after inoculation, similar to the resistant
control plants, cpr5-2 (Boch et al. 1998). These lines were
estimated to be resistant. The number of lines that survived
after three rounds of screening is listed in Table 1. Detailed
methods and results were recently described (Dubouzet et al.
2011).

High-salinity tolerance

High salinity is one of the major extrinsic factors affecting plant
growth and crop productivity. To sustain agricultural product-
ivity and improve agricultural practices, an increase in salinity
tolerance of plants is needed by either traditional breeding
or genetic manipulation. We used the rice FOX Arabidopsis
mutants to collect rice genes with the potential to increase
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salinity tolerance by molecular breeding. About 15 T2 seeds of
each line were sown on 1/2 MS medium containing 1% sucrose,
0.8% agar and 150 mM NaCl, and were incubated at 22�C under
continuous light for 1 week. Based on visual assessment, lines
with a higher germination rate and greener cotyledons were
selected (Yokotani et al. 2009).

Thermotolerance

High temperature poses a substantial constraint on the prod-
uctivity and geographic range of crops, even with the highly
sophisticated management systems of today’s agriculture.
There is a risk that increasing global temperatures will change
the optimum sites and conditions for crop production and
harm agriculture. We used the rice FOX Arabidopsis mutants
to collect rice candidate genes related to a thermotolerant trait.
About 15 T2 seedlings of each line were grown on agar medium
at 22�C. A Petri dish containing 4-day-old seedlings was sealed
with vinyl tape and dipped into water warmed to 42�C for
90 min. Subsequently, the Petri dish was incubated at 22�C
for 10 d. Tolerance was estimated based on whether seedlings
green (Yokotani et al. 2008).

UV stress tolerance and root elongation

Plants are continuously exposed to environmental stresses such
as UV-B light. UV-B radiation causes growth retardation of
plants by inhibiting cell proliferation. This leads to decreased
productivity. Genetic manipulation could improve the UV-B
tolerance of plants. Roots are essential for resource capture,
plant stability and anchorage, so the enhancement of root
growth should increase yield. To identify rice genes that
confer resistance to UV-B or promote root growth in rice
FOX Arabidopsis lines, we screened several long-root mutants
from the rice FOX Arabidopsis lines using a root-bending assay
(Sakamoto et al. 2003, Takahashi et al. 2005) with modifica-
tions. Seedlings were exposed to 7–8 kJ m�2 UV-B and then
incubated under continuous white light for another 3 d. After
incubation, lines that had roots longer than those of the wild
type were selected as candidate mutant lines. Screenings were
performed three times to confirm the identification of mutant
lines.

Introduced rice fl-cDNAs

We generated a rice fl-cDNA expression library by using ap-
proximately 13,000 rice fl-cDNAs under the control of the
CaMV 35S promoter. The rice fl-cDNAs we used are a part of
the rice fl-cDNA collection of the National Institute of
Agrobiological Sciences (NIAS) (Kikuchi et al. 2003). So far,
we have sequenced 6,522 rice fl-cDNAs amplified from 14,401
rice FOX Arabidopsis lines. For the purpose of aiding the under-
standing of traits in Arabidopsis gene function, Arabidopsis
coding sequence (CDS) information was attached to the rice
cDNA sequence records, as many rice CDS are homologous to
those in Arabidopsis.

Information organizing and database
implementation

We have performed comprehensive screening of the rice FOX
Arabidopsis mutant lines as described above, and a large
number of the comprehensive screening records have been
collected. In addition, the introduced rice fl-cDNAs in each
rice FOX Arabidopsis line have been sequenced and identified.
It is important to integrate the results of the various screening
categories in order to analyze gene function effectively. Fig. 1
shows an overview of the RiceFOX implementation. We classi-
fied the screening categories by data type. Next, in order to
import the results into a relational database, we organized
and formatted the screened results of the rice FOX
Arabidopsis mutant lines. With regard to specific results cate-
gories such as seed morphological screening and hormone pro-
file, we then performed statistical analyses. Rice fl-cDNA
information such as sequence, similarity-based annotation
and ontology were also imported into the database. Finally,
these information entries were integrated to form the search-
able RiceFOX database.

Database access and interface

Search interface of RiceFOX

To browse housed rice FOX Arabidopsis mutant entries,
RiceFOX provides a web-based search interface enabling key-
word, traits, several identifiers (IDs) related to introduced
cDNA function, and sequence similarity searches. RiceFOX
has 19 primary and 103 secondary categories for selectable
traits. Searches with keyword strings are possible with the
National Center for Biotechnology Information (NCBI) BLAST
(Altschul et al. 1997) definitions, as well as with IDs from data-
bases such as original rice fl-cDNA (Yazaki et al. 2004), GenBank
(Benson et al. 2010), MSU rice genome annotation release 5.0
which is previously known as the TIGR rice genome annotation
(Ouyang et al. 2007), RAP-DB annotation release 2 (Tanaka
et al. 2008), TAIR8 Arabidopsis locus (Swarbreck et al. 2008),
InterPro release 16.2 (Hunter et al. 2009) and gene ontology
(GO) (Ashburner et al. 2000) assigned in the InterProScan
results. NCBI BLAST has also been implemented on RiceFOX.
These search interfaces provide users with effective access to
rice FOX mutant entries by using various types of queries.

Screening result and introduced fl-cDNA
annotation

Detailed information pages of each rice FOX Arabidopsis line
consist of a summary, the screening result and annotation of
the introduced rice fl-cDNA. First, the summary contains a
text-based outline with hyperlinks to corresponding informa-
tion on the upper part of the page (Fig. 2A). This summary
portion allows researchers to determine the annotation status
of the searched entries and the annotation most likely to be of
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interest, and facilitates users seeking relationship between traits
and genes. Subsequently, the screening result provides pictures
corresponding to each trait as well as trait information
(Fig. 2B). The annotation of the introduced rice fl-cDNA is
shown on the lower part of the page, and, whenever possible,
links to the original data for each similar hit against RAP-DB,
MSU rice genome, protein domain and GO annotation are
provided to enable browsing of additional related information

(Fig. 2C). For domain-based functional annotation, the fl-cDNA
sequence data were submitted to a domain search using
InterProScan. Users can browse each of the results of the pro-
tein domain search, along with the predicted GO classification.

Trait hierarchical cluster analysis

The trait hierarchical cluster analysis (HCA) tool is a web-based
application and facilitates identification of the relationships of

Fig. 1 Overview of workflow to organize the results of FOX mutant screening and database implementation. RiceFOX provides several ways to
search the results from screening by IDs, keywords or sequence similarity.
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mutant traits. In order to enable HCA by mutant trait, all screening
results that the RiceFOX database contains were converted from
trait vocabularies to numerical values (Supplementary Table S1).
The numerically converted trait information can be applied to the
HCA by optional distance and clustering methods, screening items
and related genes. Therefore, this clustering tool aids the under-
standing of relationships among the traits of interest. The proced-
ure is divided into two main steps. In the first step, in order to
retrieve the observation records of the rice FOX Arabidopsis
mutants, users select the generation (T1/T2), search condition
(and/or) and screening items that are of interest. Next, in order
to cluster the retrieved mutant line records in the first step, users
choose the clustering method (average, single, complete, ward,
mcquitty, median and centroid) and distance method (manhat-
tan, euclidean, maximum, binary and minkowski), and then
select the screening items that are to be calculated by HCA
execution. Finally, users are able to obtain the trait HCA result
and supplementary files for confirmation.

Conclusion

There are some databases similar to the RiceFOX database in
that they contain a lot of information on mutant lines.
However, RiceFOX has useful search functions, and it is possible

to refer to the introduced rice fl-cDNA in addition to the mor-
phological features of a broad range of traits and invisible traits.
This is the first time such a large and comprehensive amount of
data pertaining to the traits of plant mutants and their related
candidate genes has been collected for reference from a single
system. The database should accelerate progress in plant gen-
omics and gene functional annotation, as well as facilitate rapid
characterization of useful crop traits. For further enrichment of
the information concerning gene function, we will update this
database and develop new tools for the advancement of plant
genomics.

The rice FOX Arabidopsis line screening is ongoing and
RiceFOX will be updated as new data become available.

Supplementary data

Supplementary data are available at PCP online.
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Fig. 2 Example of the detailed information for a rice FOX Arabidopsis line (K00205). (A) Summary table for a rice FOX Arabidopsis line
containing the observation results and introduced rice fl-cDNA. (B) Detailed information of the observation results. (C) Annotation of the
introduced rice fl-cDNA with links to the original data for each similar hit against RAP-DB and MSU rice genome annotation, and protein
domains by InterPro.
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