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Abstract
HPV-DNA integration into cellular chromatin is usually a necessary event in the pathogenesis of
HPV-related cancer; however, the mechanism of integration has not been clearly defined. Breaks
must be created in both the host DNA and in the circular viral episome for integration to occur,
and studies have shown that viral integration is indeed increased by the induction of DNA double
strand breaks. Inflammation generates reactive oxygen species, which in turn have the potential to
create such DNA strand breaks. It is plausible that these breaks enable a greater frequency of
HPV-DNA integration, and in this way contribute to carcinogenesis. Consistent with this idea, co-
infections with certain sexually transmitted diseases cause cervical inflammation, and have also
been identified as cofactors in the progression to cervical cancer. This article examines the idea
that inflammation facilitates HPV-DNA integration into cellular chromatin through the generation
of reactive oxygen species, thereby contributing to carcinogenesis.
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Human papillomaviruses
Human papillomaviruses (HPVs) are a group of circular, dsDNA viruses that infect
epithelial cells [1], and are divided into more than 100 different genotypes based on
sequence differences within their L1 gene [2]. Of the 100 genotypes of HPV, at least 30 are
sexually transmitted and infect the genital areas of both men and women. A subset of these
genotypes causes anogenital warts, which can be either benign or cancerous. Consequently,
HPV types are designated ‘low risk’ or ‘high risk’ (HR), based on whether they are known
to cause benign or cancerous lesions [3]. Virtually all cases of cervical and anogenital cancer
are caused by approximately 15 HR genotypes of HPV [4–7]. Of the HR genotypes, HPV16,
HPV18, HPV31 and HPV33 are associated with 90% of all cases of cervical cancer, and
HPV DNA is present in more than 90% of premalignant and malignant squamous lesions of
the uterine cervix [8,9]. HPV type 16 is the most prevalent type and is associated with more
than 50% of all cases of cervical cancers [10,11].

Papillomavirus genomes consist of double-stranded circular DNA of approximately 8 kb in
size, containing approximately eight open reading frames (ORFs), which are transcribed as
polycistronic messages from a single DNA strand. The genome can be divided into three
regions: an early region, a late region and a long control region. The early region encodes

© 2011 Future Medicine Ltd
†Author for correspondence: pdhughes@llu.edu.

NIH Public Access
Author Manuscript
Future Virol. Author manuscript; available in PMC 2011 November 1.

Published in final edited form as:
Future Virol. 2011 January 1; 6(1): 45–57. doi:10.2217/fvl.10.73.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



six common ORFs: E1, E2, E4, E5, E6 and E7. The late region, positioned downstream of
the early region, encodes the ORFs for the L1 and L2 capsid proteins. The long control
region holds the origin of replication and several transcription factor binding sites but lacks
any protein-coding function.

During the normal lifecycle, the viral genome exists in an episomal form in the basal cells of
the epithelium at approximately 50–100 copies per cell [12,13]. Episomal expression of the
viral oncogenes E6 and E7 is tightly regulated, with high-level expression observed only in
suprabasal postmitotic cells [14]. At this stage, the viral oncogenes induce unscheduled re-
entry into the S-phase of the cell cycle and activate the host replication machinery needed
for viral genome amplification [15]. Viral oncogene expression in these ‘productive
infections’ does not cause cancer, as these cells are destined to be lost from the cervical
squamous epithelium. For neoplastic progression to occur, viral oncogene expression must
remain high throughout the epithelium [16], and in the vast majority of cases, this high-level
expression occurs due to integration of truncated viral genomes that have lost the ability to
downregulate expression of these oncogenes. This event is not a normal part of the viral
lifecycle, as it is accompanied by the loss of one or more viral genes needed for synthesis of
an infectious virion.

Immune response to HPV infections
An immunocompetent host has several lines of defense against viral infection. Host
immunity consists of a partnership between the innate (phagocytes, soluble proteins) and
adaptive (antibody, cytotoxic effector cells) immune responses. The innate immune response
detects pathogens and acts as the first line of defense. It has no specific memory for
pathogens, but can activate the adaptive immune system, which can then mount a specific
response to a particular pathogen [17]. In the case of HPV infection, the host immune
response is generally limited. The primary reason for this is that the virus infects basal
epithelial cells, which are shielded from circulating immune cells during the initial stages of
infection. Additionally, the HPV lifecycle is nonlytic, so that the typical immune response
observed upon cell death as a result of inflammation does not occur. HPV DNA is only
sufficiently amplified to a level where the virus and its proteins can be detected by the host
immune surveillance cells in suprabasal keratinocytes, so that a functionally active immune
response can only be generated during the later stages of HPV infection.

In addition, the virus employs several specific mechanisms that downregulate host innate
and cell-mediated immunity and thus facilitate host immune evasion and persistent
infection. For example, E6 and E7 interfere with the expression of Toll-like receptors that
recognize pathogen-associated molecular patterns, thereby disrupting this aspect of the
immune response. Toll-like receptor-9 transcription in particular is inhibited in cells
expressing HPV16 E6 and E7 [18]. In addition, HR-HPV viruses downregulate IFN-α-
inducible gene expression [19].

Despite these challenges, most HPV infections are eventually successfully cleared, due
primarily to a strong localized cell-mediated immune response by the host [20]. For
example, it has been observed that regressing warts are infiltrated by T lymphocytes and
macrophages [21]. In immuno suppressed individuals, a higher prevalence of HPV-induced
lesions and HPV-related tumors is observed, thereby emphasizing the importance of the
immune system in counteracting HPV infection [22]. However, in a subset of infected
individuals, the infection is not cleared, and the virus is allowed to persist. It is this subset of
infected individuals who are at risk for developing HPV-associated cancer.

Williams et al. Page 2

Future Virol. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



HPV-related cancers
Human papillomaviruses are primarily known as the causative agent of nearly all cases of
cervical cancer. Infection with HPV is the most common sexually transmitted disease (STD)
in the USA, and data indicate that it is particularly prevalent in women aged 20–24 years
[23]. Cervical cancer is the second most common cancer in women around the globe. In
total, 83% of all cases of cervical cancer occur in developing countries, where it accounts for
approximately 15% of all cancers in women [24]. Most cases of cervical cancer are
squamous cell carcinomas; adenocarcinomas are far less common.

High-risk HPV infection has also been implicated in the development of a number of other
cancers, including head and neck squamous cell carcinoma. In head and neck squamous cell
carcinoma, the overall prevalence of HPV is 25.9%, with the highest prevalence (35.6%)
seen in oropharyngeal tumors [25]. HPV infection has been implicated in 50% of vulvar
squamous cell carcinomas and 60% of vaginal squamous cell carcinomas [26]. In addition,
HPV-DNA was detected in more than 40% of penile cancers [24]. In a study examining the
incidence of anal cancer in men in Denmark and Sweden, HPV-DNA was found in 83% of
men with anal cancer [27]; a US study found the corresponding number in US men to be
90% [28]. These data provide evidence that HPV is responsible for a considerable health
burden worldwide, as these viruses are involved in the etiology of a significant percentage of
anogenital and oropharyngeal cancers. Therefore, there remains a need to explore the
mechanisms of HPV-associated cancer progression, and in particular, the incompletely
understood process of HR-HPV integration.

HPV integration
Although 95% of patients with precancerous lesions of the cervix harbor HPV, only a small
fraction of these eventually progress to invasive carcinoma [29]. Three premalignant stages,
cervical intraepithelial neoplasia (CIN)1, CIN2, and CIN3, precede development of invasive
carcinoma. CIN1 lesions typically regress spontaneously, with only a few lesions
progressing to CIN2/CIN3 and eventually to invasive carcinoma [30]. It is therefore clear
that although HR-HPV infection is a necessary event in cervical carcinogenesis, it is not
sufficient for the pathogenesis of cervical cancer. Progression of cervical cancer in HPV-
infected women is tightly linked to integration status, and the frequency with which HR-
HPV is found integrated in cervical cancers is consistently high. For example, it has been
reported that 100% of HPV18-, 80% of HPV16- and 81% of HPV31-positive cancers show
viral integration [31,32]. It is important to note that while integration of the HR-HPV
genome is observed in the vast majority of cases of cervical cancer, a small percentage of
cervical cancers do develop while the HPV-DNA remains in episomal form [33]. In these
instances an elevation in the episome copy number is observed, which is accompanied by an
increase in viral oncogene expression. This step accomplishes, albeit less efficiently, the
same effect as HPV integration; namely, the high-level expression of viral oncogenes
leading to cell transformation [34].

Integration of the HR-HPV genome, therefore, is usually considered a necessary event in the
progression to cervical and other anogenital cancers, with an increase in the presence of
integrated viral DNA correlating with disease progression [35–41]. Evidence indicates that
the HPV genome is present in episomal form in early low-grade lesions (such as CIN1 and
CIN2), while integration of the viral genome is observed in advanced stages of precancer
and invasive carcinoma, suggesting that integration of HR-HPV genomes into the host
genome occurs relatively late in the pathogenesis of cancer [32,42]. Furthermore,
inflammation-mediated DNA damage frequently precedes the genomic abnormalities caused
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by HPV oncoproteins [43], thereby suggesting that HPV integration is involved in neoplastic
progression.

Integration typically results in the increased expression and stability of transcripts encoding
the viral oncogenes E6 and E7, which are known to inactivate and/or accelerate the
degradation of numerous cellular proteins, including retinoblastoma protein (E7) and p53
(E6) [44–46]. The E2 ORF has been identified as the preferential site of integration because
it is more commonly disrupted or deleted than any other site [47]. The E2 protein negatively
regulates E6 and E7 expression; therefore, loss of this ORF during integration results in
increased expression of the transforming E6 and E7 oncoproteins [48]. Thus, integration of
the HPV genome results in the enhanced, deregulated expression of the viral oncogenes, E6
and E7, which are responsible for cellular transformation. In addition, it is thought that viral
DNA integration disrupts critical cellular genes [49,50]. Both of these factors would
contribute to neoplastic progression.

Relatively little is known of the process whereby HPV genomes become integrated into that
of the host. However, several studies have suggested that DNA damage and agents that can
induce DNA damage may play a role in HPV integration. A 2007 study in W12 cells, which
stably maintain HPV16 episomes, demonstrated that when double strand breaks (DSBs) are
generated due to Ku70 depletion, new HPV16 viral integration events occurred. Ku70 is a
crucial mediator of DSB nonhomologous end joining [51]. In addition, a study by Someya et
al. showed that the activity of DNA-dependent protein kinase, an important molecule
involved in DNA-DSB repair, was significantly lower in patients with cervical cancer than
in normal volunteers [52]. These data indicate that DSBs may be associated with HPV16
episome loss and integration in cervical cancer [53]. In the case of another DNA virus,
hepatitis B, that causes hepatocellular cancer and in which viral DNA integration coincides
with severe dysplasia, studies have shown that integration frequency increases with DNA
damage [54]. Therefore, it is reasonable to expect that the integration of viral DNA into that
of the host would be enhanced by damage to both the viral episome and the host DNA, as
this would create a site for integration.

Inflammation-mediated DNA damage therefore provides a potential mechanism by which
HPV integration could occur in the progression of cervical cancer. Indeed, inflammation has
been implicated in the progression of a variety of cancers, and it has been suggested that the
excessive amounts of reactive oxygen and nitrogen species (ROS and RNS) produced during
chronic inflammation play a role in carcinogenesis by promoting DNA damage [55]. In the
case of HPV-associated cancers, inflammation would also facilitate the integration of the
viral genome by inducing breaks in both the viral and host genomes. In this article, we
explore the evidence for this hypothesis.

Cofactors for HPV oncogenesis
Several cofactors, in addition to HPV infection, have been associated with the progression to
cancer. Smoking, long-term use of oral contraceptives and parity have all been suggested to
serve as cofactors for the development of cervical cancer [56,57]. Among these cofactors,
the case for smoking as a cofactor is perhaps the strongest, as evidence shows that it
precedes the development of cervical precancer and cancer, and increases the risk of
developing cervical cancer in HPV-positive women [58,59]. Smoking is known to induce
inflammation [60]. Smoking leads to DNA-adduct formation and thus DNA damage, a
possible mechanism for cancer development. High parity may also be mechanistically
linked, as it causes cervical trauma and cellular oxidative and nitrosative stress, all of which
can lead to DNA damage and contribute to cancer progression [61]. Women with seven or
more full-term pregnancies are at higher risk of developing cervical cancer than are those
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with only one or two, indicating that as the number of full-term pregnancies increases so
does the risk of developing cervical cancer [56,62]. Women also increase their risk of
cervical cancer through the long-term use of oral contraceptives [63–65].

Another cofactor involved in the development of cervical cancer is co-infection with other
STDs, either viral or bacterial in nature. Such infections can cause inflammation, and in
HPV-infected women, cervical inflammation is associated with cervical neoplasia [66,67]. It
is important to note that this inflammation is not typically due to HPV itself, in part because
the immune system is largely ineffective against HPV. HPV infects keratinocytes, which are
distant from immune centers and have a naturally short lifespan. In addition, the virus does
not need to destroy the cell, and so inflammation is not typically triggered [20]. Despite this,
high levels of inflammatory mediators are observed in cervical cancer. For example,
cyclooxgenase (COX)-2, an enzyme responsible for prostaglandin formation, is
overexpressed in cervical cancer [68,69]. COX are a family of enzymes that catalyze the
formation of prostaglandins from arachidonic acid [70]. The COX-2 isoform is induced in
response to inflammatory factors and is expressed in early-stage premalignant lesions,
including cervical tissues [70]. One study found that 100% of the cervical cancer samples
tested showed COX-2 expression, compared with only 7.7% in normal samples [71]. Also,
NF-κB, a master transcription factor that is essential for promoting inflammation-associated
carcino-genesis [72,73], is overexpressed in cervical lesions co-expressing Chlamydia
trachomatis and HPV.

Since HPV infection of the cervix by itself is not highly inflammatory, viral (e.g., herpes
simplex virus [HSV]) and bacterial (e.g., C. trachomatis) infections serve as the main
sources of cervical inflammation. C. trachomatis is a well-known cause of the inflammatory
condition, cervitis, and cervical cancer cells infected with C. trachomatis secrete higher
levels of proinflammatory cytokines than uninfected cervical cancer cells [74]. Several
recent studies have determined that co-infection with either C. trachomatis or HSV is
associated with a greater risk of developing cervical cancer [75], and have also pointed to an
association between the development of cervical cancer and other STDs such as Neisseria
gonorrhoeae [76]. In addition, co-infection of HPV16 with herpesviruses such as
cytomegalovirus and EBV, as well as with HSV2, increased the frequency of HPV16
integration [77], and C. trachomatis infection was shown to favor the entry and persistence
of multiple HR-HPV types in cervical epithelium [78]. A paper by Schwebke and
Zajackowski reported that it was the inflammation caused by such infections, rather than the
particular infection itself, that was associated with squamous intraepithelial lesions within
the cervix [79]. Infection-induced inflammation has also been shown to increase the risk of
other HPV-induced cancers, such as penile cancer, where infection with genital lichen
sclerosis increases the risk of neoplasia in HPV-infected men [80,81]. The inflammation
produced as a result of such co-infections can induce the generation of ROS, which can in
turn contribute to the initiation and progression of cancers through damage to DNA. Thus,
factors that affect the generation of ROS, such as smoking and inflammation, may cause
DNA damage and affect HPV integration. As such, they may share a common mechanism in
inducing severe neoplasia.

Inflammation in cancer
Chronic inflammation has long been established as a factor in the pathogenesis of cancer
[82–86]. Chronic inflammation has been implicated in the development of several epithelial
cancers such as those of the stomach, colon and bladder. Hepatocellular cancer, the most
common type of liver cancer, is a frequent result of years of chronic liver inflammation
induced by hepatitis B or C viral infection [87,88]. Inflammation also plays a role in the
development of Hodgkin's lymphoma. In this case, the observed inflammation is due to
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infection with EBV, a lymphotrophic herpes virus that induces the release of inflammatory
cytokines and chemokines involved in carcino-genesis [89]. In fact, it is thought that more
than 15% of all deaths from cancer can be attributed to an underlying infection or
inflammation [90]. The longer the inflammation persists, the higher the risk of cancer.

Inflammation is the body's primary immune response to infection with pathogens, and is
characterized by neutrophilic and mononuclear immune cell infiltration, tissue destruction
and fibrosis. Typically, an inflammatory response will continue until the pathogens are
eliminated, so that continuous infection frequently leads to chronic inflammation. Virchow
in 1863 first hypothesized that malignant neoplasms can occur at sites of chronic
inflammation. He reasoned that tissue injury, inflammation and increased cell proliferation
were caused by various irritants [85,91]. We now know that chronic inflammation does
indeed play a multifaceted role in carcinogenesis, and clinical studies point towards it as a
driving force in the development of cancer. It can be viewed as a cancer ‘promoter’ since it
induces cell proliferation, recruits inflammatory cells, increases ROS leading to oxidative
DNA damage, and reduces DNA repair [85]. Inflammation also promotes apoptosis
resistance, proliferation, invasion, metastasis and the secretion of proangiogenic and
immunosuppressive factors, all of which contribute to carcinogenesis [92].

Inflammation & ROS
The chronic inflammatory response can lead to cell damage and cellular hyperplasia due to
overproduction of ROS and RNS. The main sources of ROS in cells are the mitochondria,
cytochrome P450 and the peroxisome [93]. Under normal physiological conditions, there is
a constant endogenous production of ROS and RNS, both of which play important roles as
signaling molecules involved in metabolism, cell cycle and transduction pathways [94,95].
In order to maintain the beneficial effects of ROS, the cell must balance the production of
ROS with its removal. During chronic inflammation, this balance is altered. Studies have
shown that mitochondrial ROS production increases with viral infection [96], and NO and
its derivatives (RNS) are produced in copious quantities in inflamed tissue [97]. In addition,
the mechanisms for removing ROS and RNS are downregulated. These increased levels of
ROS and RNS can then cause direct and indirect damage to the cell [98].

Chronic inf lammation causes the overproduction of ROS and RNS by increasing prosta
glandin levels, which in turn induce the expression of proinflammatory cytokines such as
IL-1, IL-6, TNF-α and IFN-γ [99,100]. These proinflammatory cytokines are then
responsible for increasing the production of these free radicals through protein kinase-
mediated signaling pathways; these effects are seen in both phagocytic and nonphagocytic
cells. The ROS and RNS produced in this way can then interact with multiple types of
macromolecules [101], including the DNA in mitotic cells, to induce permanent genetic
mutations such as point mutations, gene deletions and gene rearrangements. Cells normally
respond to increases in ROS and RNS by activating their antioxidant systems, which reduce
the levels of ROS and RNS and begin to repair the damage by activating genes responsible
for DNA repair. However, in chronic inflammation, this DNA damage accumulates and is
not repaired. Compounding the problem, inflammation also reduces the levels of antioxidant
enzyme defense in cells [102]. Several studies have shown a decrease in the three main
antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase in cervical
cancer [103–105]. This reduction in the antioxidant defense further exacerbates ROS-
induced DNA damage. Thus, chronic inflammation induces oxidative stress, a characteristic
of inflammatory diseases, with its associated deleterious effects in cells.

Free radicals react with all components of the cell to form stable adducts. At present, there
are more than 100 known oxidized DNA products. ROS-induced DNA damage includes ss
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and/or dsDNA breaks, DNA base modifications, DNA intrastrand adducts and DNA–protein
cross-links [106]. DNA damage can cause either arrest or induction of transcription,
induction of signal transduction pathways, replication errors and genomic instability, all
processes associated with the development of cancer [107,108]. NO and superoxide (O2

-)
react to form peroxynitrite (ONOO-), a highly reactive species that induces nitrosative and
oxidative DNA damage. Peroxynitrite mediates the formation of 8-oxo-7,8-dihydro-2′-
deoxyguanosine [109] and 8-nitroguanine [110,111], two of the most common base
modifications [112], and thus potential biomarkers of inflammation-related carcinogenesis
[108,113]. 8-hydrodeoxyguanosine content was observed to be higher in cervical dysplastic
HPV-positive cells as compared with HPV-positive normal cells [114]. 8-nitroguanine is a
mutagenic substance that preferentially causes G–T transversions [110,115,116]. These G–T
transversions have been observed in vivo both in the ras gene and in the p53 tumor
suppressor gene [117], indicating that DNA damage mediated by RNS and ROS may
contribute to carcinogenesis via both the activation of protooncogenes and the inactivation
of tumor suppressor genes. Oxidative damage to mitochondria can also contribute to
carcinogenesis. For example, numerous mutations and altered expression of mitochondrial
genes have been identified in various human cancers [118,119], and fragments of mtDNA
have been found inserted into genomic DNA, suggesting an additional mechanism for
oncogene activation [83]. Because mtDNA codes for enzymes important in respiration,
damage to this DNA can cause mitochondrial respiratory chain dysfunction, thus increasing
the production of hydroxyl radicals, which in turn cause additional oxidative damage to
DNA [120,121].

Proteins are susceptible to oxidation by free radicals, more so than any other cell
component. For example, the oxidation of SH groups on cysteine reduces the activity of
various enzymes as well as the synthesis of glutathione, a major intracellular free radical
scavenger that functions as part of the antioxidant defense system [122]. Lipid oxidation
produces aldehydes and lipid peroxides. At low, nontoxic concentrations these molecules act
as signaling transducers of ROS-mediated reactions, allowing them to modulate several cell
functions, including gene expression and cell proliferation [123]. At high concentrations,
however, they react with proteins, DNA and phospholipids to generate a variety of intra- and
inter-molecular toxic covalent adducts that lead to the propagation and amplification of
oxidative stress [124]. The most abundant ROS lipid-derived product found under
conditions of oxidative stress is 4-hydroxynonenal (HNE), which promotes oxidative
alterations of DNA and induces apoptosis [125–127]. HNE is directly involved in cell cycle
regulation, and also causes mutations in p53 gene expression [128]. In addition, HNE forms
etheno adducts with DNA and upregulates COX-2 expression. COX-2, an enzyme
responsible for prostaglandin formation, is known to be upregulated in HPV-related cancers,
such as those found in the head and neck [129]. This increased COX-2 expression in turn
induces enhanced ROS production [130]. Therefore, the ROS and RNS released in copious
amounts as a consequence of inflammation can initiate a set of amplification reactions that
lead to even higher levels of these mediators, thus causing severe damage to cellular DNA.

Model for inflammation-induced HPV integration in cells
Based in the evidence presented, we propose a scheme for the involvement of inflammation
in HPV carcinogenesis in Figure 1. Approximately 80% of women will be exposed to HPV
within their lifetime. In the majority of these cases, the infection will spontaneously clear
[33,131]. On occasion, CIN1 lesions will develop, but most of these lesions will also
spontaneously clear [132]. However, in some cases, HPV-infected women will develop
cervical inflammation caused by co-infection with either a viral or bacterial agent [133].
Alternatively, inflammation could be caused by other cofactors such as smoking. This
inflammation will facilitate the progression of CIN1 lesions to CIN2 due to the cell
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proliferative and antiapoptotic effects of inflammation combined with the low-level
expression of the E6 and E7 viral oncogenes from episomal HPV. At the CIN2 stage, the
inflammation-induced generation of ROS and RNS induces DSBs in both the viral and host
DNA. This allows HPV integration to occur. HPV integration then leads to deregulated
expression of the viral oncogenes E6 and E7, (CIN3), and eventually to invasive carcinoma.

HPV carcinogenesis as a consequence of HPV integration
Research points to the fact that infection with HPV leads to expression of viral oncogenes,
which modify numerous cellular pathways, cause chromosomal instability and facilitate
cancer development. The HPV oncogenes E6 and E7, as expressed from episomal HPV
genomes, together inactivate cellular genes involved in cell cycle regulation, the DNA
damage response and apoptosis, and thus enable the virus to complete its lifecycle [134–
137]. However, expression of these two oncogenes is tightly regulated by the virus, and
occurs only at low levels. After integration of HR-HPV genomes into the host genome,
however, expression of the viral oncogenes E6 and E7 increases significantly, usually due to
loss of the E2 gene, which normally regulates viral gene expression in a negative fashion
[138]. These increased levels of E6 and E7 now have the potential to affect cellular
processes in ways that the lower levels of episomally expressed E6 and E7 did not. For
example, E6 and E7 expressed together at high levels can cause polyploidy by deregulating
cellular genes that normally control the G2M phase transition and progression through
mitosis, such as the genes controlling centrosome homeostasis [139]. E6 itself exhibits a
number of oncogenic activities, of which perhaps the best known is its ability to stimulate
the degradation of several important proteins, including p53, by forming a ternary complex
with the E6AP ubiquitin protein ligase and the target. However, E6 also binds to and
inactivates or degrades other proteins in an E6AP-independent manner, and can act at the
mRNA level to affect activities of proteins such as human telomerase reverse transcriptase
[140–146]. Meanwhile, the E7 protein binds to, inactivates and accelerates the degradation
of several members of the retinoblastoma protein family, thus removing some of the
‘brakes’ on replication that would otherwise be present [147–149]. The acute loss of the
retinoblastoma protein family members by E7 induces centrosome amplification and
aneuploidy, and there has been some question of whether the chromosomal instability
induced by E7 facilitates integration, or whether integration is necessary before the
increased levels of E7 can create chromosomal instability. A 2004 paper investigated this
question and found that HPV16 E7-induced chromosomal instability was only observed
after integration of HPV16 into the host genome. This observation, combined with the
evidence presented earlier, strengthens the idea that HR-HPV integration is a significant
event in cervical carcinogenesis that precedes the development of the chromosomal and
genetic abnormalities that will ultimately drive malignant transformation [150].

Conclusion & future perspective
This article has presented several key points in support of the idea that inflammation can
induce HPV integration, and subsequently, carcino genesis. Inflammation is a known
cofactor in cervical carcinogenesis. It is likely to act by inducing ROS production, which
causes DNA damage; this DNA damage in turn can facilitate HPV integration and high
levels of oncoprotein expression. These oncoproteins then act on cellular pathways in ways
that promote cellular transformation and tumor formation. Consistent with this sequence,
chromosomal instability induced by HPV is only observed after HPV integration. Therefore,
it is likely that inflammation provides the DNA damage needed for HPV integration, which
then leads to chromosomal instability and cancer.
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As summarized above, chronic inflammation, by causing oxidative DNA damage, may
indeed serve as a mechanism for facilitating HPV integration, and subsequently,
carcinogenesis. However, any other mechanism that induces chronic oxidative DNA damage
in cells could also facilitate HPV integration. In the case of HBV infection, the virus itself is
capable of increasing ROS, thereby leading to an increase in viral integration [151,152]. In
fact, unpublished work from our own laboratory has demonstrated that the small isoform of
HPV16 E6, E6*, can increase oxidative stress and DNA damage in both noncancerous
immortalized cells and cervical cancer cell lines. This suggests that in at least some cases,
HPV itself can cause the conditions needed for its integration, and this will be a topic of
future research.

The possibility also exists that the ROS produced as a consequence of inflammation affects
HPV integration in a less direct manner. ROS is known to act as a signaling molecule and
has been demonstrated to increase viral DNA replication in liver cancer [153]. Therefore, it
is possible that ROS increases the number of copies of the HPV genome present in cells,
thereby increasing the mathematical probability that HPV would integrate into the host
genome by some mechanism not explored in this review. Also, it is possible that
inflammation works by increasing the number of CIN2 lesions by mechanisms not discussed
in this review; this would also increase the mathematical probability of integration. In
support of this idea, Matsumoto and coworkers found that smoking inhibits regression of
low-grade CIN, implying that the inflammatory conditions caused by cofactors such as
smoking could indeed increase the number of precancer lesions [154].

The potential ability of E6* to increase ROS may play a role in the viral lifecycle, as it has
been shown that the differentiation of keratinocytes is favored under high oxygen
concentrations (21%) [155]. Since HPV infects the basal cells where oxygen concentration
is low, it is possible that the virus utilizes this function to drive differentiation, since the
virus is spread in terminally differentiated cells. One side consequence of this function could
be that over time and in some situations, this increase in oxygen would result in an increase
in the levels of ROS and subsequent DNA damage, leading to HPV integration and cancer
formation.

Two vaccines are currently on the market to prevent HPV-related cervical cancer,
Cervarix®, developed by GlaxoSmithKline, and Gardasil®, developed by Merck & Co.
However, these are both prophylactic and provide no benefit to individuals already infected
with the virus or against strains not included in the vaccine. Therefore, there is a need to
develop therapies that can benefit persons already infected with the virus who have not yet
developed advanced neoplasia. Anti-inflammatory agents provide a possible mode of
treatment. These agents have the potential to prevent the oxidative DNA damage induced by
inflammation, thereby preventing HPV integration and progression to cancer. This approach
has already been used in the treatment of other cancers, as therapies targeted against
inflammatory mediators have shown promising results in the treatment of lung, colon and
breast cancer [156–158]. For instance, TNF-α antagonists in patients with advanced cancer,
such as renal and ovarian cancers, have resulted in disease stabilization [159–161], and
COX-2 inhibitors can prevent recurrence of sporadic adenomatous polyps and adenomas in
people genetically predisposed to developing them [162,163]. Such therapies could be
particularly effective in preventing HPV-associated tumors, as they would be expected to
work both by their general mechanisms of reducing DNA damage, and by the very specific
mechanism of reducing HPV integration. This possibility is an exciting focus for future
work.
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Executive summary

Human papillomaviruses

■ Human papillomaviruses (HPVs) are double-stranded viruses that infect epithelial
cells.

■ The high-risk strains are associated with almost all cases of cervical cancer.

Immune response to HPV

■ The host immune response is limited mainly because the virus infects basal
epithelial cells, which are shielded from circulating immune cells.

■ The HPV virus is capable of downregulating the host immune response.

■ Despite these challenges, most HPV infections are cleared due to a strong
localized cell-mediated immune response by the host.

HPV-related cancer

■ HPVs are associated with development of a number of anogenital and
oropharyngeal cancers.

HPV integration

■ HPV integration is usually considered a necessary event in the progression of
cervical cancer. The frequency of integration for high-risk HPV genotypes in
cervical cancer is consistently high.

■ Experimental data suggest that HPV integration takes place during the transition
from low-grade to advanced lesions.

■ HPV integration results in the increased expression of the E6 and E7 viral
oncogenes responsible for cell transformation.

■ Although little is known of how this process occurs, studies suggest that DNA
damage and agents that induce DNA damage may play a role in HPV integration.

Cofactors for HPV oncogenesis

■ There are several factors associated with HPV oncogenesis, such as smoking,
long-term use of oral contraceptives, high parity and co-infection with other sexually
transmitted diseases.

■ Co-infection with certain sexually transmitted diseases is known to cause
inflammation, which increases reactive oxygen species (ROS) levels and can lead to
DNA damage.

Inflammation in cancer

■ Chronic inflammation is a known factor in the pathogenesis of several cancers.

■ Inflammation can increase ROS, thus leading to DNA damage.

Inflammation & ROS

■ Chronic inflammation induces the expression of proinflammatory cytokines,
which in turn cause ROS overproduction.

■ Free radicals react with all components of the cell to cause damage.

Model for inflammation-induced HPV integration
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■ HPV infections can cause cervical intraepithelial neoplasia 1 lesions. Inflammation
or other cofactors may then facilitate the progression to cervical intraepithelial
neoplasia 2 lesions.

■ ROS and reactive nitrogen species generated by inflammation induce double
strand breaks in both the viral and host DNA, allowing integration to occur.

HPV carcinogenesis as a consequence of HPV integration

■ HPV integration leads to high-level expression of the viral oncogenes, E6 and E7,
which cause cell transformation and eventually cancer.

Conclusion & future perspective

■ Inflammation induced by co-infection provides a plausible mechanism for HPV
integration to occur.

■ Other agents capable of inducing DNA damage in both the viral and host genome
can also play a role in HPV integration.

■ As a result, the use of anti-inflammatory agents as a therapy for individuals
already infected with the virus is an area deserving of future attention.
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Figure 1. Inflammation-induced HPV integration
CIN: Cervical intraepithelial neoplasia; HPV: Human papillomavirus; RNS: Reactive
nitrogen species; ROS: Reactive oxygen species.
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