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Abstract
We develop a thermodynamically consistent mixture model for avascular solid tumor growth
which takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and
molecular species. The mixture model is well-posed and the governing equations are of Cahn–
Hilliard type. When there are only two phases, our asymptotic analysis shows that earlier single-
phase models may be recovered as limiting cases of a two-phase model. To solve the governing
equations, we develop a numerical algorithm based on an adaptive Cartesian block-structured
mesh refinement scheme. A centered-difference approximation is used for the space discretization
so that the scheme is second order accurate in space. An implicit discretization in time is used
which results in nonlinear equations at implicit time levels. We further employ a gradient stable
discretization scheme so that the nonlinear equations are solvable for very large time steps. To
solve those equations we use a nonlinear multilevel/multigrid method which is of an optimal order
O (N) where N is the number of grid points. Spherically symmetric and fully two dimensional
nonlinear numerical simulations are performed. We investigate tumor evolution in nutrient-rich
and nutrient-poor tissues. A number of important results have been uncovered. For example, we
demonstrate that the tumor may suffer from taxis-driven fingering instabilities which are most
dramatic when cell proliferation is low, as predicted by linear stability theory. This is also
observed in experiments. This work shows that taxis may play a role in tumor invasion and that
when nutrient plays the role of a chemoattractant, the diffusional instability is exacerbated by
nutrient gradients. Accordingly, we believe this model is capable of describing complex invasive
patterns observed in experiments.
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1 Introduction
The uncontrolled growth of abnormal cells often results in cancer. Cancer is an enormous
societal problem. For example, cancer is newly diagnosed at a rate of every thirty seconds in
the United States and is currently the second leading cause of death for adults (after heart
disease). In the past 35 years, tremendous resources have been spent in understanding and
identifying the root causes of cancer and to develop effective treatment strategies. While
much progress has been made—roughly 2/3 of people diagnosed with cancer typically live
for more than 5 years—there is much more work to be done to prevent, treat and control or
eliminate this complex disease.

In the past several years, the body of research on mathematical models of cancer growth has
increased dramatically. See for example the review papers [1,7,17,42,59,60,63]. Most
models fall into two categories: discrete cell-based models and continuum models. In
discrete modeling, individual cells are tracked and updated according to a specific set of
biophysical rules. Examples include cellular automaton modeling (e.g., see
[2,13,30,47,49,66]), hybrid continuum-discrete models (e.g., [4,41,55]), and agent-based
models (e.g., [12,46,56]). These approaches are particularly useful for studying
carcinogenesis, natural selection, genetic instability, and interactions of individual cells with
each other and the microenvironment. On the other hand, these methods can be difficult to
study analytically, and the computational cost increases rapidly with the number of cells
modeled.

In larger-scale systems where the cancer cell population is on the order of 1,000,000 or
more, continuum methods provide a good modeling alternative. The governing equations are
typically of reaction-diffusion type. Early work (e.g., [19,20,43]), used ordinary differential
equations to model cancer as a homogeneous population, as well as partial differential
equation models restricted to spherical tumor growth geometries. Linear and weakly
nonlinear analysis have been performed to assess the stability of spherical tumors to
asymmetric perturbations (e.g., [16,18–20,22,29,40,51]) as a means to characterize the
degree of aggression. Reaction-diffusion equations have been successfully used to model
brain tumors (e.g., glioma, see [45,48,63]). Further, various interactions of the tumor with
the microenvironment have also been studied (e.g., [8–10,26,27,61]).

Very recently, nonlinear modeling has been performed to study the effects of shape
instabilities on avascular, vascular and angiogenic solid tumor growth. Cristini et al. [29]
performed the first fully nonlinear simulations of a continuum model of avascular and
vascularized tumor growth in 2d that accounts for cell-to-cell and cell-to-matrix adhesion.
Using a boundary integral method, it was found that instability provides a mechanism for
tumor invasion that does not require an external nutrient source such as would occur from a
developing neovasculature during angiogenesis. Li et al. [51] extended this model to 3d
using an adaptive boundary integral method. Zheng et al. [70] also extended this model to
include a hybrid continuum discrete model of angiogenesis (based on earlier work of
Anderson and Chaplain [5]) and investigated the nonlinear coupling between growth and
angiogenesis in 2d using finite element/level-set method. Recently, Hogea et al. [44] used a
level-set method to investigate tumor progression in a homogeneous, isotropic growth
environment and employed a continuous model of angiogenesis.
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Using the model developed by Zheng et al., Cristini et al. [28] and Frieboes et al. [38]
examined the competition between heterogeneous cell proliferation, caused by spatial
diffusion gradients, and stabilizing mechanical forces, e.g., cell-to-cell and cell-to-matrix
adhesion. In particular, it is shown that microenvironmental substrate gradients may drive
morphologic instability with separation of cell clusters from the tumor edge and infiltration
into surrounding normal tissue. Local regions of hypoxia are observed to increase the
instability. Similar results were also obtained using a hybrid continuum discrete model by
Anderson et al. [6] who also considered the effect of the microenvironment on mutations
and the selection of tumor cell phenotypes. Macklin and Lowengrub [52–54] developed a
highly accurate level-set/ghost fluid method to further investigate the long-time dynamics
and the effect of microenvironmental inhomogeneities on tumor growth in 2d. Very
recently, Frieboes et al. [37,67] simulated tumor growth and angiogenesis in 3d using a
diffuse interface, multiphase mixture model.

Most of the previous modeling has considered single-phase tumors. Recently, multiphase
mixture models have been developed to account for heterogeneities in cell-type and in the
mechanical response of the cellular and liquid tumor phases (e.g., [3,9,10,14,21,23,25,34–
37,67]). In these models, the multicell spheroid is described as a saturated porous medium,
comprising of at least a solid phase and a liquid phase, and can be generalized to incorporate
any number of additional phases, as needed to describe solid tumors containing multiple cell
types. The governing equations consist of mass and momentum balance equations for each
phase, interphase mass and momentum exchange, and appropriate constitutive laws to close
the model equations. The multiphase approach represents a more general, and natural
modelling framework for studying solid tumor growth and it gives a more detailed account
of the biophysical process of tumor growth than that in single-phase models. However, due
to the complexity of the models, most of the analyses and numerical simulations are one-
dimensional or radially symmetric. Recently, two-dimensional simulations of a mixture
model were performed to study the development of tumor cords and the formation of
fibrosis [58]. As mentioned above, diffuse-interface, mixture models have also been used to
study 3d tumor growth and angiogenesis [37,67].

In this work, we develop, analyze and simulate numerically a thermodynamically consistent
mixture model for avascular solid tumor growth which takes into account the nonlinear
effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. Cell-to-
cell adhesion has also been investigated in previous mixture models (e.g., [3,23]), however
these older models behave like backward parabolic equations when the cellular fraction is
within a certain range and thus are ill-posed. More recently, well-posed continuum models
of adhesion have been considered by [11] and by [37,67] in the context of diffuse-interface,
mixture models. Here, we follow [37,67], and develop a well-posed mixture model. The
governing equations are of Cahn–Hilliard type and can be viewed as a regularization of
previous mixture models. Unlike [37,67] where a direct approach was taken to determine the
cell-velocity via energy variation, here we pose momentum equations for each component
with momentum exchange terms that are determined in a thermodynamically consistent
way. When there are only two phases, our asymptotic analysis shows that single-phase
models of the type used in [29,51] may be recovered as limiting cases of a two-phase model.

To solve the governing equations, we have developed a numerical algorithm based on an
adaptive Cartesian block-structured mesh refinement scheme which is ideal for nonlinear
multigrid methods. The basis of our algorithm is the algorithm developed by Wise et al. [68]
for anisotropic Cahn–Hilliard equations. A centered-difference approximation is used for the
space discretization so that the scheme is second order accurate in space. An implicit
discretization in time is used which results in nonlinear equations at implicit time levels. We
further employ a gradient stable discretization scheme (see [32,33]) so that the nonlinear
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equations are solvable for very large time steps. To solve those equations we use a nonlinear
multilevel/multigrid method which is of an optimal order O (N) where N is the number of
grid points.

Spherically symmetric and fully two dimensional nonlinear numerical simulations are
performed using our adaptive multigrid/finite-difference scheme. We investigate tumor
evolution in nutrient-rich and nutrient-poor tissues. A number of important results have been
uncovered. For example, we demonstrate that taxis of tumor cells up nutrient gradients
(nutrient-taxis) may drive fingering instabilities which are most dramatic when cell
proliferation is low, as predicted by linear stability theory. This is also observed in
experiments. Indeed, experimental evidence suggests that nutrient deprivation can
importantly contribute to increase the invasive behavior of a tumor. In some situations, the
tumor may even develop branched tubular structures (e.g., [57]) where premetastatic clusters
of tumor cells invade the host tissue [39]. This work shows that nutrient-taxis may play a
role in tumor invasion and that the diffusional instability is exacerbated by nutrient
gradients. Accordingly, we believe this model is capable of describing complex invasive
patterns observed in experiments.

The paper is organized as follows. The general tumor mixture model is formulated in Sect.
2. An example of two component mixture model is given in Sect. 3. We present the gradient
stable nonlinear multigrid/finite-difference scheme used to solve the Cahn–Hilliard type
system of equations in Sect. 4. The nonlinear simulations are presented in Sect. 5. We
conclude this paper in Sect. 6 with a summary and a brief description of future work. In the
Appendix, we demonstrate the thermodynamic consistency of the constituent relations.

2 The general tumor mixture model
2.1 The mass equation

Define the volume fractions of the water and cellular (solid) components to be ϕk for k = 0,
1,..., N – 1. In the following, without loss of generality, we assume that component 0
identifies the water component. The remaining components are solid phases. Arguing that
the tissue is saturated, we have the following constraint

(1)

Assuming that the densities of the components ρk are constant, the equations for the volume
fractions are:

(2)

where vk are the component velocities, Γk is the mass exchange term and Jk is the
component flux.

The mixture density and velocity, respectively, are defined by  and

. The mixture density is conserved, i.e., ∂t ρ ∇ · (ρv) 0. This implies that
the fluxes, the mass-exchange terms and the component velocities are constrained to satisfy
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(3)

If the densities are matched, ρk = ρ, then the mixture velocity is incompressible, i.e.,

(4)

The constitutive equations for Jk and vk that are consistent with the second law of
thermodynamics are derived in Appendix A and are given in Sect. 2.3. The biophysically
consistent constitutive equations for Γk are also given in Sect. 2.3.

2.2 The momentum equation
For each component, the balance of linear momentum is

(5)

where we have neglected inertial forces. In Eq. (5), σk is the stress tensor, Fk are external
forces per unit mass acting on the system and πk are the forces per unit volume due to
interactions with other components. Arguing that the linear momentum for the mixture
satisfies

(6)

gives the constraint on the interaction forces

(7)

The constitutive relations for the momentum interaction forces πk consistent with the second
law of thermodynamics are derived in Appendix A and are given in Sect. 2.3.

2.3 Constitutive relations
For simplicity, we consider isothermal systems here. Introduce Ψk to be the Helmholtz free
energy per unit volume of the kth component. Note that the free energy may also depend on
the concentrations of chemical species whose presence may induce the taxis of cells (e.g.,
chemotaxis, haptotaxis, etc.). Then, suppose that the (generalized) Helmholtz free energy
takes the following form:

(8)

The dependence of Ψk upon the gradients of volume fraction arises naturally through the
expansion of a nonlocal interaction potential among the phases (see for example Cahn and
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Hilliard [24], Davis and Scriven [31], Wise et al. [67]) and represent the effects of weakly
nonlocal interactions. We also note that a nonlocal model of cell interaction (and adhesion)
has been recently considered by Armstrong et al. [11].

In this paper, we assume the tumor cells behave like a viscous fluid. Extensions to include
viscoelasticity of the components can be incorporated following the framework of Yue et al.
[69]. The inclusion of elastic effects and residual stress can be incorporated following
Araujo and McElwain [9] and Bowen [15]. From Appendix A, a thermodynamic analysis
reveals that the stress tensor and interaction forces may be taken to be

(9)

(10)

(11)

(12)

(13)

where p is the pressure and μjk is the species chemical potential:

(14)

Mjk is the flux mobility,  is a symmetric, positive definite tensor, αk in Eq. (10) is a
symmetric, positive definite matrix, and δjk = 1 if j = k and δjk = 0 otherwise. Assuming
isotropy,

(15)

where ηk and νk are viscosity coefficients. More generally,  could depend on the
orientation of fibers in the tissue. The first term on the right of the interaction forces in Eq.
(10) represents the contribution due to pressure, the second term on the right represents the
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contribution due to the chemical potential and the third term on the right represents the
contribution due to interphase drag.

In the liquid phase, it makes sense to assume that the liquid is inviscid (e.g., Byrne and
Preziosi [23]). We further neglect body forces. Then, the momentum equation (5) in the
liquid (k = 0)

(16)

becomes a multicomponent Darcy's law:

(17)

where p′ is a modified pressure

(18)

Thus, the interaction forces among the solid components influence the motion of the liquid
through the modified pressure and the drag velocities αk (vk – v0).

We further consider the following form of the Helmholtz free energy:

(19)

where c1,..., cL are the concentration of taxis inducing chemical and molecular species, χkl
are taxis coefficients and ∈kj measures the strength of component–component interactions
(Wise et al. [67]). Assuming ∈kj is constant, we then obtain

(20)

and thus the momentum balance equation (5) for the solid components becomes

(21)

where  is the modified chemical potential

(22)
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Using Eq. (19),  reduces to

(23)

Equations (21) and (23) together with the generalized Darcy's law (17) for the liquid
component, the incompressibility condition

(24)

and the volume fraction equation

(25)

completes the system of equations governing the tumor mixture. Note that the biophysical
processes arise in the mechanics through the chemical potential (23) and the mass exchange
terms Γk. Equations governing the chemical species c1,..., cL must be posed in addition to
this system (see Sect. 3.2 for an example).

3 Examples of tumor mixtures
3.1 Two component mixtures: tissue and water

Let us now specialize to the case of mixtures containing solid matter (e.g., tissue,
extracellular matrix, etc.) and water. An example of a three component mixture model is
given in [50]. In this case N = 2 and we also assume that the densities are matched ρ0 = ρ1 =
ρ, there are no body forces Fk = 0 and that there are no component fluxes Jk = 0 (i.e., Mjk =
0). We further assume that the nutrient plays the role of a chemoattractant. Taking ∈jk = ∈/2,
then the system of Eqs. (17), (21), (24) and (25) reduces to

(26)

(27)

(28)

(29)

The modified chemical potential  is given by

Cristini et al. Page 8

J Math Biol. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(30)

where σ is the concentration of a vital nutrient (e.g., oxygen or glucose). The
incompressibility condition (28) and the viscosity term  make the system nonlocal. In the
following, we discuss a simplification in which the system is localized but the viscosity term
may be kept. We will then consider the fully nonlocal model.

A local model—The solution to the incompressibility condition (28) can be written as

(31)

Then,

(32)

Using Eq. (32) in Eq. (27), we get

(33)

The local model is obtained by taking p′ and ζ constant, and dropping Eq. (26) since the
velocity in the liquid is determined uniquely (under these assumptions) by ϕ1 and v1. In this
case, Eq. (33) becomes

(34)

where we have used ϕ0 = 1 – ϕ1. Assuming zero viscosity, , and

(35)

where M is a permeability, then Eq. (34) becomes a generalized Darcy's law:

(36)

In general, including viscous terms, we get an elliptic equation for v1:

(37)

Using Eq. (37) in Eq. (25) gives the generalized, nonlocal Cahn–Hilliard equation
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(38)

where

(39)

We remark that this equation is analogous to the nonlocal equation derived in Byrne and
Preziosi [23] except that the  contains high order derivative terms due to ∈ (weakly
nonlocal interactions).

If the viscosity is equal to zero, using Eq. (36) in Eq. (29) gives a local Cahn–Hilliard
equation with variable mobility:

(40)

(41)

This system is similar to the cell-to-cell interaction model described in Ambrosi and Preziosi
[3], except that  contains high order derivatives.

The full nonlocal system—In this case, we deal directly with Eqs. (26) and (27). Using
Eq. (26) in Eq. (27), we get the Stokes system

(42)

In Sect. 3.4, a matched asymptotic analysis shows that the term on the right-hand side of Eq.
(42) mimics surface tension-like cell-adhesion forces in a certain limit. Further by taking

(43)

where M is a permeability matrix, then Eq. (26) becomes

(44)

Next, from the incompressibility condition (28) and Eq. (44), we obtain

(45)
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Putting together all the equations, we get a system entirely involving ϕ1, p′ and v1:

(46)

(47)

(48)

This is an interesting system for a variety of reasons. First, if , that is the solid phase is
inviscid, then this system has no solution in two or more dimensions because of the presence
of the nongradient term on the right-hand side of Eq. (46). The viscous terms are needed to
balance the nongradient part of the cell-adhesion forces. In addition, the system (46)–(47) is
equivalent to a pressure-stabilized form of the incompressible Stokes Equations with an
additional force ( ) (see Shen [62]).

In spherical coordinates, the system (46)–(48) can be reduced to the generalized nonlocal
Cahn–Hilliard equation

(49)

(50)

Note that this equation is very similar to that obtained using the local approximation (cf.
Eqs. (38), (41)). In the spherical geometry, the viscosity may be set to zero because the
right-hand side of Eq. (46) becomes a perfect derivative.

To summarize, our two component mixture model comprises Eqs. (26–30). To close the
model we must specify an equation for the nutrient and provide the constitutive equations
for the Helmholtz free energy and the mass exchange term. In addition, boundary and initial
conditions must be posed. A complete model formulation is given in the next section. It
should be noted that both local and nonlocal models are well posed.

3.2 A complete model formulation
For the rest of the paper, we shall consider a special case of the mixture model developed in
the previous section, i.e., two component mixtures consisting of tumor tissue and water.
Furthermore, we focus on the local model of two component mixtures described in the
previous section. The governing equations are given by

(51)
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(52)

We pose Eqs. (51), (52) in a domain Ω. On ∂Ω, we impose the Neumann boundary
conditions:

(53)

where n is the unit normal vector.

The initial condition ϕ1(·, 0) is given. For simplicity of notation, in the remainder of the
paper, we replace ϕ1 by ϕ,  by μ, and Γ1 by Γ. Note that ϕ0 = 1 – ϕ1.

Following previous models, a biologically consistent mass exchange given Γ is given by

(54)

where the first term represents cell-mitosis with a rate proportional to the nutrient
concentration. The second term represents the mass converted to the fluid phase due to cell
death (apoptosis). The parameter λp is the proliferation rate per unit mass concentration, and
λA is the apoptosis rate per unit mass.

Next, we consider the Helmholtz free energy. Using that ϕ0 = 1 – ϕ1, we define:

(55)

and we take

(56)

to be a double-well potential, where fe and fc are convex functions. The former, fe, represents
repulsive forces among the cells while the latter, fc, accounts for adhesive forces.

To describe the contribution from taxis, i.e., third term in Eq. (52), we suppose χ01 = 0. That
is, there is no taxis of the liquid component. To simplify notation, define χσ = χ11. Putting
these results together gives the chemical potential:

(57)

The nutrient evolution equation is an advection–diffusion equation. We assume the
consumption of the nutrient to be proportional to the local nutrient concentration and cellular
fraction. This gives:
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(58)

where Dσ is the nutrient diffusion coefficient and λσ is the nutrient uptake rate. The far field
boundary condition for nutrient is given by

(59)

where σ∞ is the nutrient concentration in the far field tissue, assumed to be uniform.

Combining Eqs. (51), (54), (57) and (58), the governing equations are as follows:

(60)

(61)

(62)

with boundary conditions:

(63)

(64)

As pointed out earlier, this model is similar to those of Ambrosi and Preziosi [3] and Byrne
and Preziosi [23], however their models behave like backward parabolic equations when the
cellular fraction is within a certain range and thus are ill-posed. In contrast, our mixture
model is well-posed and the governing equations are of Cahn–Hilliard type. We will further
show that the two component mixture model converges to the classical sharp interface limit
given in [29] in Sect. 3.4.

3.3 Nondimensionalization
Before analyzing the complete two component mixture model described in the previous
section, it is convenient to recast the model in dimensionless form, and thereby identify the
key dimensionless parameter groups. We define

(65)

where ϕT is the characteristic solid tumor volume fraction,  is a characteristic taxis
coefficient, f̄ is a characteristic interaction energy, and we assume
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(66)

where DT and DH are the diffusion coefficients for tumor and health tissue respectively.

Introduce the intrinsic taxis time scale  corresponding to the rate , and
the diffusional length . We may then define the following nondimensional
parameters:

(67)

where ∈′ represents the relative strength of intermixing to interaction energy,  represents
the relative strength of cell–cell interactions (adhesion),  represents the relative rate of cell
mitosis to taxis,  represents the relative rate of cell apoptosis to taxis, and α represents the
relative rate of taxis to nutrient uptake.

Since diffusion occurs more slowly than taxis (e.g., minutes vs. hours), we have α ≪ 1.
Therefore, we can approximate the nutrient equation by a quasi-steady diffusion-reaction
equation.

Dropping the primes, replacing f̃ by f, the dimensionless system is:

(68)

(69)

(70)

where

(71)

and , i.e., the diffusion constant outside the tumor is  times larger than that
inside.

The boundary conditions are given by:

(72)

(73)
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3.4 Matched asymptotic expansions
In this section, we briefly present a matched asymptotic analysis to show that the two
component mixture model converges to the classical sharp interface limit equations given in
[29].

Suppose there is a single smooth transition layer of width ∈ separating the tumor ΩT and
host ΩH domains. Let Σ be a curve (the analysis may easily be extended to surfaces)
centered in the transition layer. Away from Σ, we suppose that the solutions may be written
as a regular expansion in the parameter ∈:

(74)

Near Σ, we introduce a local normal-tangential coordinate system with respect to the curve
Σ. Let Σ = (X (s, t), Y (s, t)) where s is arclength and t is time. Let r be defined as the signed
distance along the normal from a point (x, y) to Σ. Then, introduce a local coordinate
transformation from (x, y) to (r, s). The orientation of Σ is chosen so that ΩT lies on the left
of Σ if the curve is traversed along the direction of increasing s, which means the normal n =
(∂Y/∂s, – ∂X/∂s) points into the region ΩH. Near Σ, we assume that in the stretched local
coordinate system z = r/∈, the solutions have a regular expansion

(75)

In a region of overlap, where both the outer and inner expansions are valid, the
representation must match:

(76)

Expanding and equating equal powers of ∈ gives the matching conditions:

(77)

(78)

Expansions and matching conditions for σ and μ may be similarly identified.

Substituting the outer and inner expansions into Eqs. (68–70) and matching powers of ∈
using appropriate local coordinate transformations in the inner region, and the matching
conditions, one obtains the sharp interface equations which are given as follows. At leading
order, the nutrient satisfies the quasi-steady diffusion equation:

(79)

(80)
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where σ = σ(0) and ϕ = ϕ(0), are the leading order terms in the outer expansions. Further, we
obtain ϕ(0) = 1 in ΩT and ϕ(0) = 0 in ΩH.

By matching the inner and outer expansions near Σ, we obtain the boundary conditions for
nutrient and its flux at leading order

(81)

where [·] denotes jump of the quantity across the interface.

The far field boundary condition for nutrient is given by:

(82)

We define the bulk velocity u via Darcy's law:

(83)

where p = μ(1) + χσσ(0) is the modified pressure (and μ(1) = f″(ϕ(0))ϕ(1) – χσσ(0)). We note that
from outer expansions we obtain that μ(0) is a constant (μ(0) = 0), so p is defined in terms of
μ(1). Also from outer expansions we arrive at the continuity equation for velocity field:

(84)

The normal velocity at the tumor interface is given by:

(85)

By matching the inner and outer expansions near Σ, we obtain the boundary condition for
the modified pressure p:

(86)

where , and , is the cell-cell adhesion parameter, κ is the local
total curvature.

It should be noted that the sharp interface limit is an extension (inclusion of taxis) of
previous single phase models.

3.5 Linear analysis
In this section, we perform a linear stability analysis of the sharp interface limit equations
(79–86) we obtained in the preceding section. In [29,51], Cristini et al. and Li et al. analyzed
the linear stability of perturbed radially symmetric and spherically symmetric tumors. Here,
we extend their results to take into account taxis due to nutrient.

We consider a perturbation of a radially symmetric tumor interface Σ [29,51]:
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(87)

where r is the radius of the perturbed sphere, R is the radius of the underlying sphere, δ is
the dimensionless perturbation size and Yl,m is a spherical harmonic, l and θ are the polar
wavenumber and angle, and m and ϕ are the azimuthal wavenumber and angle.

We assume that the nutrient diffuses from the surface of a sphere of radius R0, where R0 >>
R, and the nutrient at R0 is assumed to be 1. It can be shown that the evolution equation for
the tumor radius R is given by:

(88)

where , and . We note that the radial velocity
is independent of χσ.

The equation for the shape perturbation δ/R is given by:

(89)

where  and  are the modified Bessel functions of the first kind. A complete
derivation is given in [50].

At the level of linear theory, perturbations consisting of different spherical harmonics are
superpositions of the above solutions. Observe that in 3d the shape perturbation depends on l
but not on m.

Figure 1 shows the rescaled rate of growth  as a function of unperturbed tumor radius R
in 2d. For a given  and diffusion constant D, evolution from initial condition R(0) occurs
along the corresponding curve. Note that for 3d, the results are qualitatively similar. Figure
2a characterizes the stability region by keeping  constant and varying  as a function of
the unperturbed radius R such that d(δ/R)/dt = 0:
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(90)

where  is the critical value which divides the plot into regions of stable growth (the region
 (i.e., below the curve)) and regions of unstable growth (the region ) for a given

mode l. We focus on the parameter  such that  which matches the surface
tension as in [29]. In the figure, only the 2d result is shown (3d is qualitatively similar). In
Fig. 2a, we plot  as a function of R, l = 2,  (solid),  (dashed), and χσ labeled.
The figure reveals that the taxis destabilizes the tumor evolution and the curves are pulled
downward when  is smaller. Figure 2b shows a similar result for l = 4. The result illustrates
that when l is larger, the curves shift to the right and hence mode l = 4 is more stable for this
set of parameters.

It should be noted that when the taxis is absent and the diffusion constant outside the tumor
is large, we recover the linear stability analysis in [29,51].

4 Numerical method
In this section we describe the nonlinear multigrid method used to solve Eqs. (68)–(73). The
basis of our approach is the solver developed by Wise et al. [68] for sixth-order strongly
anisotropic Cahn–Hilliard equations. In our work, the governing equation is of Cahn–
Hilliard type, which is a fourth-order nonlinear parabolic partial differential equation,
augmented with a diffusion equation for the nutrient. A centered-difference approximation is
used for the space discretization so that the scheme is second order accurate in space. If an
explicit time discretization method were used, a time step restriction of the order Δt ≤ Ch4,
where h is the grid size and C is a constant, would be required. To overcome the time step
restrictions, an implicit discretization in time is used here that results in nonlinear equations
at implicit time levels. However, most implicit schemes for Cahn–Hilliard equations have
time step restrictions due to solvability conditions. To overcome the solvability restrictions,
we further employ a gradient stable discretization scheme (see [32,33]) so that the nonlinear
equations arising from the discretization of the Cahn–Hilliard part are solvable for very large
time steps and that the system energy (in the absence of mass exchange terms) is
nonincreasing for any time step.

To solve the nonlinear equations at the implicit time level we use a nonlinear multilevel/
multigrid method whose complexity is optimal, i.e., the number of operations to solve the
equations is O(N), where N is the number of unknowns. We use block-structured Cartesian
mesh refinement, which is ideal for the nonlinear multigrid algorithm. The details of the
adaptive nonlinear multigrid algorithm can be found in the work by Wise et al. [68].

To perform mesh refinement, we first start with a multilevel, block-structured mesh, then we
refine the mesh by constructing new multilevel, block-structured mesh based on the
undivided gradient test (Wise et al. [68]). This test first finds the set of grid cells where the
finite differences of the cell volume fraction are large, then the set is expanded by buffering
and a new, refined Cartesian mesh is placed over the tagged regions. After the new grids
have been constructed, the field variables are transferred from the old grid to the new grid by
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interpolation [68]. Accordingly, the mesh will be refined in the diffuse interface region
where the cell volume fraction exhibits a sharp transition. We then solve the problem on the
refined mesh using the adaptive version of the FAS Multigrid method [64]. Figure 6 (last
row) shows the boundaries of the locally refined Cartesian mesh patches (each nested mesh
has one-half the mesh size of the parent mesh) at two times during the evolution. More
details of the adaptive mesh refinement can be found in Wise et al. [68].

5 Numerical results
Here, we investigate the nonlinear evolution of a tumor proliferating into surrounding tissue.
We focus on the parameter . We use the double-well potential f (ϕ) = 0.18ϕ2(ϕ – 1)2/4,
and so the convex functions fe and fc can be chosen as fe(ϕ) = 0.18 (4 (ϕ – 1/2)4 + 1/4) / 16

and fc(ϕ) = 0.18 (ϕ – 1/2)2 /8. We note that with this choice of f (ϕ),  in Eq. (86) which
matches the surface tension in [29,51]. We present a spherically symmetric tumor growth in
Sect. 5.1, then two-dimensional tumor growth showing invasion and the development of
branched tubular structures in Sect. 5.2.

5.1 Spherically symmetric tumor growth
We begin by comparing results from the sharp interface model (79–82) to the mixture model
in spherical geometries. In spherical geometry, the tumor velocity is given by Eq. (88). The
steady-state occurs at the point R* where V (R*) = 0. Note, if , there is no steady-state.
By setting V = 0 identically in Eq. (88) and using Newton's method, we find R* as a function
of  as shown in Fig. 3a.

Next, we investigate the nonlinear evolution of spherically symmetric tumors using the
model (68–73). We focus on the parameters the , ,  (i.e., the diffusion
constant outside the tumor is 1000 times larger than that inside) for our nonlinear
simulations. The initial shape of the tumor is given by:

(91)

In Fig. 3b, we show the convergence of steady state tumor interface positions generated
from nonlinear simulations with three values of ∈. The steady-state radii (circles) are
generated from three numerical simulations: ((i) ∈ = 0.025, N = 128, (ii) ∈ = 0.01, N = 512
and (iii) ∈ = 0.005, N = 1024), where N denotes the number of mesh points in the
simulation. The interface position (circles) at ∈ = 0 is the least-square fit using the data of
(i), (ii), and (iii). The result agrees very well with the steady state tumor interface position
predicted by sharp interface limit (star). The corresponding velocities at the tumor interface
during evolution in time for the above three numerical simulations is depicted in Fig. 3c.
The squared curve represents the linear extrapolated velocity at ∈ = 0 using the data of (ii)
and (iii). The solid curve represents the tumor velocities at the tumor interface predicted by
sharp interface limit. We see that as ∈ becomes smaller, the numerical results of the mixture
model approaches that from the sharp interface limit.

In Fig. 4, the tumor evolution generated from the nonlinear simulations described previously
in Fig. 3 is shown. In (a), ∈ = 0.025 while ∈ = 0.01 in (b) and ∈ = 0.005 in (c). The dash-
dotted curve shows the nutrient concentration profile. The circled curve shows ϕ, (the circle
stands for the position of a mesh point). The solid curve shows the tumor velocity of the
mixture model and the dashed curve corresponds to the tumor velocity of the sharp interface
limit. Initially, the tumor grows rapidly with all tumor cells moving outward as the velocity
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is positive for the whole tumor (corresponding to the plot at t = 1 and t = 5). As the tumor
grows larger, cell death in center due to apoptosis overcomes proliferation because nutrient
is low (which implies a low proliferation rate). As a consequence, the tumor forms a low
pressure near the center so that the tumor cells are driven towards the center (corresponding
to the figure at t = 20, water is correspondingly fluxed outward). Finally, the tumor reaches
steady-state around time t = 42 with the cell proliferation balanced by apoptosis. We see that
as ∈ becomes smaller, the tumor interface becomes sharper, and the tumor velocity of the
mixture model becomes closer to that from the sharp interface limit.

Next, we investigate the effect of a smaller apoptosis rate on tumor evolution. We set
, all other parameters are same as the previous study. We note that when , R*

= 10.899 which is significantly larger than the critical radius R* = 4.7333 for . In Fig.
5, we show the tumor evolution generated from the nonlinear simulations for . In (a),
∈ = 0.025 while ∈ = 0.01 in (b) and ∈ = 0.005 in (c). In (a), we observe that at t = 30, cell
death in center due to apoptosis overcomes proliferation because nutrient is low. Indeed, the
nutrient concentration level near the center is almost 0 and the tumor cells are starved of
nutrient. As a result, the tumor volume fraction near the center drops to about 0.8 because
the tumor cells generated near the tumor/host interface are not able to replenish the center.
At t = 32, the tumor volume fraction near the center drops below the spinodal point (the
point where d2 f/d2ϕ changes sign), the tumor cells are not able to support the structure so
that it collapses, and it tends to form a ring due to cell-cell adhesion that pulls the cells from
the inner region toward the more dense periphery. There is no steady state solution and the
ring then travels towards the right boundary. If we compare this simulation to the case with

, we see that for , the steady state radius is much smaller and the tumor cells are
therefore able to replenish the center. Therefore, the tumor does not form a ring. In (b) and
(c), smaller ∈ implies a larger cell mobility via Eq. (68). Thus more tumor cells are able to
reach the center, the tumor volume fraction near the center is higher than that for smaller cell
mobility, and the tumor avoids the formation of a ring. Indeed, the tumor reaches steady
state at the time as labeled.

5.2 2D tumor growth
We first investigate tumor growth into a nutrient-rich microenvironment with a large
proliferation rate. We focus on the parameters , , , and χσ = 0, i.e., there is
no taxis. We note that this choice of parameters is consistent with that given in [29,54,70].

In Fig. 6, the morphological evolution of a tumor without taxis is shown from the initial
radius:

(92)

with ∈ = 0.005, and χσ = 0. The computational domain is Ω = [0, 25.6] × [0, 25.6]. The
coarsest mesh level is 32 × 32 and the finest level has equivalent resolution of a uniform
2048 × 2048 mesh. We note that for this mesh resolution, there are about six mesh points
across the tumor interface, and our empirical study shows that the interface can be well
resolved by placing about six points across the interface. At early times, the perturbation
size increases slowly and the tumor becomes ellipse-like, good agreement is obtained with
the results of the linear stability analysis (dash-dotted) and nonlinear simulations (solid) and
is improved as ∈ → 0 (the dotted curve shows the nonlinear result at smaller ∈). As the
tumor continues to grow, a shape instability develops and necks form around time t = 40.
The tumor develops large buds and the buds tend to bend inward around time t = 60 in a
manner similar to that seen in [29]. We note that while the numerical result in [29] illustrates
that the large buds would reconnect in the end, our numerical result shows that at larger
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time, though the large buds tend to advance toward each other, they never reach each other.
Instead, the tumor continues to spread out into the surrounding tissue. The last row shows
the boundaries of the locally refined Cartesian mesh patches (each nested mesh has one-half
the mesh size of the parent mesh) at two times during the evolution.

We next investigate tumor growth into a nutrient-poor microenvironment with low
proliferation rate. In this regime, cell apoptosis rate is small, so we set  in the
simulation, i.e., we neglect tumor apoptosis. We focus on the parameters  and .
We further use an adaptive mesh where the coarsest level is 32 × 32 and the finest level has
the equivalent resolution of a uniform 2048 × 2048 mesh.

We investigate the effects of the nutrient-taxis. It has been observed in experiments that
nutrient deprivation can importantly contribute to increase the invasive behavior of a tumor.
In some situations, the tumor may even develop branched tubular structures (e.g., [57]). We
show below that nutrient taxis in hypoxic and low-proliferating cells environment produces
branched invasive structures.

In Fig. 7a, the tumor evolution for , and χσ = 5 is shown (we note that if χσ = 0, i.e.,
when there is no taxis, the evolution is stable). The solid curve represents the tumor interface
and dash-dotted curve represents the linear results for the sharp interface model. The figure
illustrates that fingers develop around time t = 10 and get stretched out at time t = 20,
forming long, slim and invasive fingers, thereby increasing the surface area of the tumor and
allowing better access to nutrient. At later times, the fingers continue to stretch and the
fingers tend to bend inward (as in the case with linear , χσ = 0 considered previously).
There is good agreement between the and nonlinear results at early times although there is
significant deviation at later times due to strong nonlinearity. Figure 7b shows similar
simulations of tumor evolution for . All other parameters are the same as Fig. 7a. We
observe that the fingers are thicker for  than those for , and the spread of the
fingers into the surrounding tissue for  is more pronounced at early times. As before,
there is good agreement between the linear and nonlinear results at early times before
nonlinear effects dominate the evolution. Finally, in Fig. 8, contour plots of the nutrient
concentration are shown. We observe that the nutrient level decreases from the outer
boundary towards the center of the tumor with the most rapid decrease occuring in the
region near the tumor/host interface. This provides the driving force for the taxis of tumor
cells.

In Fig. 9, we show the morphological evolution of tumors with larger taxis coefficient χσ =
10. As before, there is good agreement between the linear and nonlinear results at early
times. When χσ is larger, the instability is more pronounced, forming slimer, more invasive
fingers, and we observe that the tumor pinches off and forms a small satellite tumor near the
center at time t = 15 in Fig. 9a. The numerical results therefore reveal that the tumor may
suffer from nutrient-taxis-driven fingering instabilities which are most dramatic when cell
proliferation is low. This suggests that nutrient-taxis may play a role in tumor invasion and
that the diffusional instability is exacerbated by nutrient gradients.

In Figs. 10 and 11, the morphological evolution is shown of tumors evolving from a
different initial condition:

(93)
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As before, the morphological evolution is shown for two values of χσ (χσ = 5 for Fig. 10 and
χσ = 10 for Fig. 11) and . Qualitatively, the evolution is similar to that obtained for
the initial radius given in Eq. (92). (Here, however the tumor with  bends away from
the boundary of computational domain in order to more up nutrient gradients). We observe
that the tumor exhibits a more branched tubular structure. This reminiscent of the in vitro
experimental observations in [57] where tumor spheroids were embedded into a collagen gel
in hypoxic conditions. After 24 h, cell colonies were analyzed by microscopy and
representative spheroids photographed. A typical branching morphology from the
experiment is shown in Fig. 12.

6 Conclusion
In this work, we have developed, analyzed and simulated numerically a thermodynamically
consistent mixture model for avascular tumor growth. The derivation of governing equations
relied on mass and momentum balance equations and thermodynamic consistent constitutive
laws are employed to supplement those equations. We then reduced the model to a special
case which is similar to the closure models of Ambrosi and Preziosi [3]. The mixture model
takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and
molecular species. Cell-to-cell adhesion was also investigated in previous works (e.g.,
[3,23]), however their models behave like backward parabolic equations when the cellular
fraction is within a certain range and thus are ill-posed. In contrast, our mixture model is
well-posed and the governing equations are of Cahn–Hilliard type. When there are only two
phases, an asymptotic analysis showed that single-phase models of the type used in [29,51]
can be recovered as limiting cases of a two-phase model.

To solve the governing equations, we developed a numerical algorithm based on an adaptive
Cartesian block-structured mesh refinement scheme. A centered-difference approximation
was used for the space discretization so that the scheme was second order accurate in space.
An implicit discretization in time was used which resulted in nonlinear equations at implicit
time levels. We further employed a gradient stable discretization scheme (see [32,33]) so
that the nonlinear equations were solvable for very large time steps. To solve these equations
we used a nonlinear multilevel/multigrid method which was of an optimal order O (N)
where N was the number of grid points.

Spherically symmetric and fully two dimensional nonlinear numerical simulations were
performed using our adaptive multigrid/finite-difference scheme. We investigated tumor
evolution in nutrient-rich and nutrient-poor tissues. A number of important results have been
uncovered. For example, we demonstrated that taxis of tumor cells up nutrient gradients
(nutrient-taxis) may drive fingering instabilities which are most dramatic when cell
proliferation is low, as predicted by linear stability theory. This is also observed in
experiments. Indeed, experimental evidence suggests that nutrient deprivation can
importantly contribute to increase the invasive behavior of a tumor. In some situations, the
tumor may even develop branched tubular structures (e.g., [57]) where premetastatic clusters
of tumor cells invade the host tissue [39]. This work showed that nutrient-taxis may play a
role in tumor invasion and that the diffusional instability is exacerbated by taxis up nutrient
gradients. Accordingly, we believe this model is capable of describing complex invasive
patterns observed in experiments. Further development of the model to incorporate more
realistic biophysical processes such as necrosis, angiogenesis and soft tissue mechanics is
underway.
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Appendix A: Derivation of the interaction terms
In this Appendix, we demonstrate the thermodynamic consistency of the constituent laws
(9), (10) and (12) given in Sect. 2.3. See Bowen [15] and Araujo and McElwain [9] for
additional insight on the theory of mixtures.

A.1 The energy equation
Let uk be the internal energy of the kth component and let internal energy of the mixture be

. Now, let Ω be an arbitrary fixed domain. For simplicity, we consider here
the case in which the system is isothermal. Then, the integral form of the mixture energy
balance equation is

(94)

where n is the outward normal to ∂Ω,  is the advective derivative with respect
to the velocity vk, tkj are generalized forces that arise due to nonlocality (i.e., dependence of
free energy on a nonlocal adhesion potential), zkl are generalized forces that arise due to

taxis, r is the mass-averaged rate of heat supply  and rk is the heat added to
each phase to keep the mixture isothermal. In Eq. (94), the first term on the right represents
the traction and the internal energy fluxes, the second term on the right represents the
generalized force due to the presence of gradients of volume fraction or nonlocality in the
internal energy, the fourth term represents the generalized forces due to the variation of
chemical factors and the fifth represents the energy change due to applied body forces.

Correspondingly, the local energy balance equation is given by

(95)

where ∈k are energy interaction terms that satisfy

(96)

To make further progress, we turn to the second law of thermodynamics.
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A.2 Thermodynamics
Define ηk to be the entropy of each component. Accordingly, the mass-averaged entropy of

the mixture is . Define the temperature of the mixture to be θ (which is
constant because we are dealing with isothermal mixtures). The second law for the mixture,
in the form of the Clausius-Duhem inequality [65], is

(97)

where  and  is the diffusion flux. In terms of components, the Clausius-
Duhem inequality is

(98)

where  is the entropy flux for each component and  and wk = vk – v is the
diffusion velocity.

Since the system is isothermal, it is useful to use the Helmholtz free energy rather than the
internal energy. The Helmholtz free energy per unit mass ψi of each component is

(99)

In addition, define Ψk = ρkϕkψk to be Helmholtz free energy per unit volume.

Next, we take into account that the mixture components are incompressible, that is the
densities ρk are constant. This implies that the terms in Eq. (95) involving ∇vk and vk are not
independent. Let p be a scalar function (e.g., Lagrange multiplier). Then,

(100)

where we have used the volume fraction equation (2) together with the conservation of mass
(3). Next, observe that only relative velocities are important. Without loss of generality, let
us measure velocities relative to that of component 0 (the liquid phase). For example,

(101)

Using Eqs. (100), (101) and (96), Eq. (95) may be re-written, upon summing over k, as the
following equation for the entropy components:
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(102)

where δjk = 1 if j = k and is zero otherwise.

A.3 Justification of constitutive relations
We next demonstrate that the constitutive relations (9), (10) and (12) posed in Sect. 2.2 are
consistent with the second law of thermodynamics (98). We begin with the free energy. Let
us take

(103)

where cl, l = 1,..., L are chemical factors that may induce taxis. Note that the dependence of
Ψk on cl's in Eq. (8) is suppressed [e.g., Eq. (19)]. From Eq. (103) we get

(104)

Using the identities

(105)

(106)

the total derivative of the Helmholtz free energy for the kth component is given by

(107)

Using Eqs. (103), (2), the definition of the chemical potential
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(108)

in Eq. (102) we obtain

(109)

Using the constitutive relations given in Sect. 2.2 together with

(110)

then Eq. (109) becomes

(111)

where . Thermodynamic consistency then requires the
right-hand side of Eq. (111) be nonnegative which is the case for the constitutive relations in
Eqs. (9), (10) and (12) if Γk = 0. In principle, one may also choose Γk such that the right-
hand side is positive using Arrhenius kinetics, for example.
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Fig. 1.
Two dimensional tumor growth, . Rescaled rate of growth  as a function of
unperturbed radius tumor radius R,  and  labeled
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Fig. 2.
Spherically symmetric tumor growth. Apoptosis parameter  as a function of unperturbed
radius R from condition (90) in 2d, R0 = 13, , and χσ labeled. Solid: ; Dashed:

. The two curves that intersect the y-axis correspond to the relation between  and the
stationary radius for  and 0.5. a l = 2. b l = 4
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Fig. 3.
Spherical symmetric tumor growth, , , , and χσ = 0. a Steady-state radius
as a function of A by setting V (R*) = 0 in Eq. (88). b Convergence of steady state interface
position with respect to ∈. Circle: nonlinear simulations of steady state interface positions
for ∈ = 0.005, ∈ = 0.01 and ∈ = 0.025, the interface position at ∈ = 0 is the least-square fit
of those at ∈ = 0.025, ∈ = 0.01 and ∈ = 0.005; Star: interface position predicted by sharp
interface model. c Convergence of tumor interface velocity with respect to ∈. ,  and χσ
are the same as (a). Circle: ∈ = 0.005; Star: ∈ = 0.01; Plus: ∈ = 0.025; Square: Linear
extrapolation of ∈ = 0.01 and ∈ = 0.005; Solid: Sharp interface model given in Eq. (88)
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Fig. 4.
Details of the evolution of the tumor interface in time corresponding to the numerical
simulation in Fig. 3. a ∈ = 0.025, b ∈ = 0.01, c ∈ = 0.005. Dash-dotted: nutrient
concentration profile; Dashed: tumor velocity predicted by the sharp interface limit given in
Eqs. (79–81); Solid: the tumor velocity of mixture model. The tumors reach steady state by
the end of the simulations
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Fig. 5.
The evolution of the tumor interface in time for . a ∈ = 0.025, b ∈ = 0.01, c ∈ =
0.005. Dash-dotted: nutrient concentration profile; Dashed: tumor velocity predicted by the
sharp interface limit given in Eqs. (79–81); Solid: the tumor velocity of mixture model. The
tumors reach steady state by the end of the simulations for (b) and (c)
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Fig. 6.
Evolution of the tumor surface (2d), , , , ∈ = 0.005, χσ = 0, and initial
tumor surface as in Eq. (92). The ϕ = 0.5 contour is shown, where in the interior of the shape
ϕ ≈ 1 and in the exterior ϕ ≈ 0. Solid: nonlinear simulation; Dash-dotted: solution from
linear analysis. Dotted: ∈ = 0.002, the coarsest level is 32 × 32 and the finest level has the
equivalent resolution a uniform 4096 × 4096 mesh. The last row shows the boundaries of
the locally refined Cartesian mesh patches (each nested mesh has one-half the mesh size of
the parent mesh) at times t = 20 and 100
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Fig. 7.
Evolution of the tumor surface, with , , ∈ = 0.005, χσ = 5, and the initial tumor
surface as in Eq. (92). The ϕ = 0.5 contour is shown, where in the interior of the shape ϕ ≈ 1
and in the exterior ϕ ≈ 0. a ; b . Solid: nonlinear simulation; Dash-dotted: linear
results
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Fig. 8.
Contour plots of nutrient concentration evolution corresponding to the simulation in Fig. 7a
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Fig. 9.
Evolution of the tumor surface for , , ∈ = 0.005, χσ = 10, and the initial tumor
surface as in Eq. (92). The ϕ = 0.5 contour is shown, where in the interior of the shape ϕ ≈ 1
and in the exterior ϕ ≈ 0. a ; b . Solid: nonlinear simulation; Dash-dotted: linear
results
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Fig. 10.
Evolution of the tumor surface, with , , ∈ = 0.005, χσ = 5, and the initial tumor
surface as in Eq. (93). The ϕ = 0.5 contour is shown, where in the interior of the shape ϕ ≈ 1
and in the exterior ϕ ≈ 0. a ; b 
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Fig. 11.
Evolution of the tumor surface, with , , ∈ = 0.005, χσ = 10, and the initial tumor
surface as in Eq. (93). The ϕ = 0.5 contour is shown, where in the interior of the shape ϕ ≈ 1
and in the exterior ϕ ≈ 0. a ; b 
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Fig. 12.
In vitro experimental evidence. Hypoxia-induced invasive growth with a branched tubular
structure from the study by Pennacchietti et al. [57]
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