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Abstract

In this article, we present a new multiscale mathematical model for solid tumour growth which
couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We
perform nonlinear simulations of the multi-scale model that demonstrate the importance of the
coupling between the development and remodeling of the vascular network, the blood flow
through the network and the tumour progression. Consistent with clinical observations, the
hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular
network dramatically affecting the flow, the subsequent network remodeling, the delivery of
nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix
degradation by tumour cells is seen to have a dramatic affect on both the development of the
vascular network and the growth response of the tumour. In particular, the newly developing
vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in
delivering nutrients.
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1 Introduction

Cancer growth, and as a particular example in this paper, solid tumour growth, is a
complicated phenomenon involving many inter-related processes across a wide range of
spatial and temporal scales, and as such presents the mathematical modeller with a
correspondingly complex set of problems to solve. The aim of this paper is to formulate a
multi-scale mathematical model of solid tumour growth, incorporating three key features:
the avascular growth phase, the recruitment of new blood vessels by the tumour
(angiogenesis) and the vascular growth and host tissue invasion phase.

Solid tumours are known to progress through two distinct phases of growth—the avascular
phase and the vascular phase. The initial avascular growth phase can be studied in the
laboratory by culturing cancer cells in the form of 3D multicell spheroids. It is well known
that these spheroids, whether grown from established tumour cell lines or actual in vivo
tumour specimens, possess growth kinetics which are very similar to in vivo solid tumours.
Typically, these avascular nodules grow to a few millimetres in diameter. Cells towards the
centre, being deprived of vital nutrients, die and give rise to a necrotic core. Proliferating
cells can be found in the outer cell layers. Lying between these two regions is a layer of
quiescent (or hypoxic) cells, a proportion of which can be recruited into the outer layer of
proliferating cells. Much experimental data has been gathered on the internal architecture of
spheroids, and studies regarding the distribution of vital nutrients (e.g. oxygen) and
metabolites within the spheroids have been carried out. See, for example, the recent reviews
by Walles et al. [69], Kim [37], Kunz-Schughart et al. [39], Chomyak and Sidorenko [19]
and the references therein.

The transition from the relatively harmless and confined dormant avascular state to the
vascular state, wherein the tumour possesses the ability to invade surrounding tissue and
metastasise to distant parts of the body, depends upon the ability of the tumour to induce
new blood vessels from the surrounding tissue to sprout towards and then gradually
surround and penetrate the tumour, thus providing it with an adequate blood supply and
microcirculation. Tumour-induced angiogenesis, the process by which new blood vessels
develop from an existing vasculature, through endothelial cell sprouting, proliferation and
fusion, is therefore a crucial part of solid tumour growth. Sustained angiogenesis is a
hallmark of cancer [33]. Mature endothelial cells are normally quiescent and, apart from
certain developmental processes (e.g. embryogenesis and wound healing), angiogenesis is
generally a pathological process implicated in arthritis, some eye diseases and solid tumour
development, invasion and metastasis. Tumour-induced angiogenesis is believed to start
when a small avascular tumour exceeds a critical diameter (~2 mm), above which normal
tissue vasculature is no longer able to support its growth. At this stage, the tumour cells
lacking nutrients and oxygen become hypoxic. In response, the tumour cells secrete a
number of diffusible chemical substances—tumour angiogenic factors (TAF)—into the
surrounding tissues and extracellular matrix (ECM). The TAF diffuses into the surrounding
tissue and eventually reach the endothelial cells (EC) that line nearby blood vessels. ECs
subsequently respond to the TAF concentration gradient by degrading the basement
membrane surrounding the parent vessel, forming sprouts, proliferating and migrating
towards the tumour. It takes approximately 10-21 days for the growing network to link the
tumour to the parent vessel, and this vascular connection subsequently provides all the
nutrients and oxygen required for continued tumour growth. An excellent summary of all the
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key cell-biological processes involved in angiogenesis can be found in the comprehensive
review articles of Paweletz and Knierim [54] and Carmeliet [16]. Once vascularized the
solid tumours grow rapidly as exophytic masses. In certain types of cancer, e.g. carcinoma
arising within an organ, this process typically consists of columns of cells projecting from
the central mass of cells and extending into the surrounding tissue area. The local spread of
these carcinoma often assume an irregular jagged shape. By the time a tumour has grown to
a size whereby it can be detected by clinical means, there is a strong likelihood that it has
already reached the vascular growth phase.

Cancers also possess the ability to actively invade the local tissue and then spread
throughout the body. Invasion and metastasis are the most insidious and life-threatening
aspects of cancer [43,44]. Indeed, the prognosis of a cancer is primarily dependent on its
ability to invade and metastasize. Many steps that occur during tumour invasion and
metastasis require the regulated turnover of extracellular matrix (ECM) macromolecules,
catalyzed by proteolytic enzymes released from the invading tumour. Proteases give cancers
their defining characteristic—the ability of malignant cells to break out of tissue
compartments. Motility, coupled with regulated, intermittent adhesion to the extracellular
matrix and degradation of matrix molecules, allows an invading cell to move through the
extracellular matrix [28,40,44].

The most significant turning point in cancer, however, is the establishment of metastasis.
The metastatic spread of tumour cells is the predominant cause of cancer deaths, and with
few exceptions, all cancers can metastasize. Metastasis is defined as the formation of
secondary tumour foci at a site discontinuous from the primary tumour [43,44]. Metastasis
unequivocally signifies that a tumour is malignant and this is in fact what makes cancer so
lethal. In principal, metastases can form following invasion and penetration into adjacent
tissues followed by dissemination of cells in the blood vascular system (hematogeneous
metastasis) and lymphatics (lymphatic metastases).

Since the seminal work of Greenspan [32] the mathematical modeling of avascular solid
tumour growth, like its subject, has been rapidly expanding. Most models in this area consist
of systems of nonlinear partial differential equations (e.g. see [13-15]), and may be
described as macroscopic. The review paper of Araujo and McElwain [6] provides an
excellent overview. See also the recent reviews by Quaranta et al. [62], Byrne et al. [12],
Sanga et al. [64], Graziano and Preziosi [31] and Roose et al. [63]. Likewise, modeling
tumour-induced angiogenesis has a well-established history beginning with the work of
Balding and McElwain [9]. The review papers of Mantzaris et al. [49] and Chaplain et al.
[18] provide an excellent overview of the work in this area. However, unlike avascular
growth and angiogenesis, vascular tumour growth has received considerably less attention in
the mathematical modeling literature. See [17,52] for early work on vascular tumour growth
and invasion.

Recently, Zheng et al. [71] developed and coupled a level-set method for solid tumour
growth with a hybrid continuous—discrete model of angiogenesis originally developed by
Anderson and Chaplain [4]. This work served as a building block for studies of
chemotherapy [65] and morphological instability and tumour invasion [20,27]. Hogea et al.
[34] have also begun to investigate tumour induced angiogenesis and vascular growth using
a level-set method coupled with a continuous model of angiogenesis. Following the strategy
pioneered by Zheng et al. [71], Frieboes et al. [26] coupled a mixture model with a lattice-
free continuous—discrete model of angiogenesis (originally developed by Planck and
Sleeman [55]) and studied vascular tumour growth in three dimensions. In these works,
however, the effects of blood flow through and subsequent remodeling of the vascular
network were not included. Recently, the effects of blood flow through a vascular network
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on tumour growth were considered by Alarcdn et al. [1], Lee et al. [41], Bartha and Rieger
[10], Welter et al. [70] using cellular automaton (CA) tumour growth models coupled with
network models for the vasculature. These authors investigated vascular network
inhomogeneities, the stress-induced collapse of blood vessels and the implications for
therapy. Because of the computational cost of simulating cell growth using CA, these studies
are limited to small scales.

In this paper, we couple an improved continuum model of solid tumour invasion (following
[48]) that is capable of spanning the 102 um-cm scale and accounts for cell-cell, cel-ECM
adhesion, ECM degradation, and tumour cell migration, proliferation, and necrosis with a
model of tumour-induced angiogenesis (following [50]) that accounts for blood flow
through the vascular network, non-Newtonian effects and vascular network remodeling, due
to wall shear stress and mechanical stresses generated by the growing tumour, to produce a
new multi-scale model of vascular solid tumour growth. As in [71], the invasion and
angiogenesis models are coupled through the tumour angiogenic factors (TAF), that are
released by the tumour cells, and through the nutrient extravasated from the neo-vascular
network. As the blood flows through the neo-vascular network, nutrients (e.g. oxygen) are
extravasated and diffuse through the ECM triggering further growth of the tumour, which in
turn influences the TAF expression. In addition, the extravasation is mediated by the
hydrostatic stress generated by the growing tumour and, as mentioned above, the hydrostatic
stress also affects vascular remodeling by restricting the radii of the vessels. The vascular
network and tumour progression are also coupled via the ECM as both the tumour cells and
the ECs upregulate matrix degrading proteolytic enzymes which cause localized degradation
of the ECM which in turn affects haptotactic migration.

We perform simulations of the multi-scale model that demonstrate the importance, on
tumour invasion of the host tissue, of the nonlinear coupling between the growth and
remodeling of the vascular network, the blood flow through the network and the tumour
progression. Consistent with clinical observations, the hydrostatic stress generated by
tumour cell proliferation shuts down large portions of the vascular network dramatically
affecting the flow, the subsequent network remodeling, the delivery of nutrients to the
tumour and the subsequent tumour progression. In addition, ECM degradation by tumour
cells is seen to have a dramatic affect on both the development of the vascular network and
the growth response of the tumour. In particular, when the ECM degradation is significant,
the newly formed vessels tend to encapsulate, rather than penetrate, the tumour and are thus
less effective in delivering nutrients.

The outline of the paper is as follows. In Sect. 2, we present the mathematical models, and
we briefly describe the numerical techniques in Sect. 3. In Sect. 4, we present numerical
results, and future work is discussed in Sect. 5. Details of the mathematical modeling and
numerical methods are presented in the supplementary materials.

2 The mathematical model

Here, we present the non-dimensional model, starting first with the model of tumour
invasion in Sect. 2.1 and followed by the model of tumour-induced angiogenesis in Sect.
2.2. Here, time is non-dimensionalized by the characteristic tumour cell proliferation time
(i.e., /Ay where 1, ~ 2/3 day ™1 is the mitosis rate) and space is non-dimensionalized by the

characteristic diffusion penetration length (i.e., (D% /%)"* ~ 200 um, Where p* and A%, are
characteristic values of the oxygen diffusion coefficient and uptake rate in the proliferating
tumour region, respectively). The non-dimensionalization of the parameters and the
corresponding values used in the numerical simulations are presented in the supplementary
materials.
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2.1 The tumour invasion model

To accurately model tumour growth in heterogeneous tissues, we develop a mathematical
model that accounts for spatially dependent cell necrosis, cell apoptosis, cell-cell and cell-
matrix adhesion, matrix degradation, cell proliferation and cell migration. The model is
based on continuum reaction—diffusion equations that describe these processes and is a
generalization and improvement of earlier models (see the reviews listed previously and
recent work by Macklin and Lowengrub [45-48]). We present the model in 2D, but it is
equally valid for the 3D case as well.

Let Q denote a tumour mass, and let 2 denote its boundary. The tumour can be divided into
three regions: a proliferating rim Qp where the tumour cells have sufficient nutrient levels
for proliferation; a hypoxic/quiescent region 2 where the nutrient levels are too low for
normal metabolic activity but not so low that the cells begin to die; and a necrotic region Qy
where the nutrient level has dropped so low that the tumour cells die and are degraded.
Because necrosis is irreversible, we track the necrotic core and its interface X separately of
the tumour interface. See Fig. 1.

2.1.1 Nutrient transport—We model the net effect of nutrients (e.g., oxygen and
glucose) and growth-promoting and —inhibiting factors with a single nutrient . Here, we
focus our attention on the role of oxygen which is supplied by the vascular network via the
red blood cells. This can be modelled using the haematocrit which represents the volume
fraction of red blood cells contained in the blood. Oxygen and other nutrients are supplied

by the preexisting bulk vasculature and the neo-vasculature at rates Ay and 17, , diffuses
throughout the cancerous and non-cancerous tissue, is uptaken in the non-necrotic portions
of the tumour, and decays elsewhere (see below). Wherever the oxygen level inside the
tumour drops below a threshold value o, the tumour cells become hypoxic (quiescent),
cease proliferating and uptake nutrient at a lower rate. If the oxygen level falls further below
a threshold value oy, then the tumour cells become necrotic. Inside the necrotic core,
oxygen reacts with cellular debris to form reactive oxygen species [29,38], which we model
by a decay term. Since oxygen diffusion occurs more rapidly than cell-mitosis (the time
scale on which the equations are non-dimensionalized), these processes are described by the

quasi-steady reaction diffusion equation

0=V - (DVo) - 17 (o) 0'+/lgre (X, 1, Bpre, P, )+ Ao, (X, 1, Bpeo, P, 0, ), (1)

where D is the diffusion coefficient, the parameter 2% combines the effects of oxygen uptake
and decay and takes the form

lessue_PrT (Ep) outside Q

= Ao inQ,
’ 610-_(0' ) inQ,
Ay inQ, (2)

where p, and g, are smooth interpolating functions (the precise forms are given in the
supplementary materials) and Eg is the density of the original ECM which is used to assess
changes in uptake/decay in the host microenvironment (see Sect. 2.1.3). The interpolating

Oyt0y

function g, satisfies 9o ( > )=5H, where oy and oy are the oxygen concentration
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thresholds for quiescence and necrosis, respectively and Ay is the rate of oxygen uptake by
quiescent cells in the hypoxic tumour. Further, Aissue and 4, are the rates of oxygen uptake
in the host microenvironment and in the proliferating tumour regions respectively, and Ay is
the rate of oxygen decay in the necrotic portion of the tumour. We note that because the
location of the viable, hypoxic, and necrotic tumour regions depends upon the oxygen
concentration o, the uptake/decay term A? introduces nonlinearity.

The two remaining terms Ape(X, 7, Byre, P, 0) and A7, (X, 1, Byeo, P, 0, h) in Eq. 1 reflect the
oxygen-tissue transfer from the pre-existing and neo-vascular blood vessels respectively,
and are given by:

A=A Bore (x.1) (1 = ) (1 = 1q), ®

and

o (Rh =) L
/lgeozz;;aneo (X, (—_ - hmin) (I = c(Pyesser, P)) (1 — o),
1, (4)

where T;re and 1 are constant transfer rates from the pre-existing and neo-vascular vessels.
Here, Bpye is the (non-dimensional) blood vessel density of the pre-existing vessels whose
locations are assumed to be unchanging in time. In fact, we take a uniform distribution of
pre-existing vessels in the host tissue and Bpye satisfies Eq. 19 below where MDE is assumed
to degrade the pre-existing vasculature. The function By (X, t) = 1ne0 IS the characteristic or
indicator function of the neo-vasculature (i.e., equal to 1 at the locations of the new vessels),
and 1o is the characteristic function of the tumour region @ (i.e., equal to 1 inside the
tumour and 0 in the tumour exterior). Further, P is the oncotic (solid/mechanical/
hydrostatic) pressure, Pyessel and h are the dimensional pressure and the haematocrit in the
neo-vascular network, respectively. The constants Hp and hyi, reflect the normal value of
haematocrit in the blood (generally about 0.45) and the minimum haematocrit needed to
extravasate oxygen, respectively. The haematocrit is modelled via the blood flow in the
vascular network and is determined from the angiogenesis model. This provides one aspect
of the coupling between the tumour growth and angiogenesis models. A second mode of
coupling between the two models occurs through the cutoff function ¢ (Pyessel, P) which is
given by:

0 AP<0
¢ (Pyessel» P) =3 peutoff (AP) 0 < AP <1,
1 AP >1 (5)

where peytoff iS @ cubic, interpolating polynomial given in the supplementary materials.
Namely, large oncotic pressures may prevent extravasation and transfer of oxygen from the
vessels into the tissue. Later, we will discuss how the oncotic pressure may also constrict the
neovessels. Further, in Eq. 5,
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AP=—2 (P— @)

Pgcae Pressel (6)

where Pyesse i @ characteristic pressure scale and Pgcq)e is a scale factor. Note that we could
have analogously taken the oxygen transfer rate from the pre-existing vessels to also be
coupled to the haematocrit and blood vessel pressure. This will be explored in a future work.

The oxygen source terms in Egs. 3 and 4 are designed such that for sufficiently large transfer
z::eo'

rates 71;’1.6 and the oxygen concentration ¢ ~ 1 the spatial locations of the pre-existing

and neo- vessels. In practice, we will take 1. _ large but Ta;’m small which models the supply
of only a small amount of oxygen in the host tissue from pre-existing vessels. We will
assume a parent vessel, located at the boundary of the computational microenvironment
domain as discussed below, supplies the bulk of the oxygen in the host tissue. Note that
oxygen flux conditions across the pre-existing and neo-vasculature could be imposed (e.g.,
see [1]).

The boundary conditions for Eq. 1 are taken to be a combination of Dirichlet and Neumann
conditions. In particular, in the simulations we present below, we assume a parent vessel
coincides the upper boundary of the computational domain and therefore we impose 6 =1 (a
Dirichlet condition). Zero Neumann conditions, d4/an = 0, are imposed along the other
boundaries of the computational domain.

2.1.2 Tumour mechanics and the cell velocity—The tumour cells, the ECM and host
(non-cancerous) cells are influenced by a combination of forces which contribute to the
cellular velocity field. The proliferating cells generate an oncotic mechanical pressure
(hydrostatic stress) that also exerts force on the ECM and host cells. The cells respond to
pressure variations by overcoming cell—cell and cell-ECM adhesion and migrating through
the microenvironment. The ECM may also deform, degrade and remodel in response to
pressure and to enzymes released by the cells. The cells may respond haptotactically to
adhesion gradients in the ECM.

Following previous work, we assume that all solid phases move with a single cellular
velocity field and we model the cellular motion within the ECM as incompressible fluid
flow in a porous medium. In the future, we plan to use mixture models (e.g., [2,7,8,11,21])
to relax these assumptions. In this simplified description of tumour mechanics used here,
Darcy's law is taken as the constitutive assumption and thus the velocity is proportional to
the forces in the problem. See [2] and [11] for a motivation of this approach from a mixture
modeling perspective. Accordingly, the non-dimensional velocity is given by

u=—uVP+y,.VE, (7)

where x is the cell-mobility which models the net effects of cell—cell and cell-matrix
adhesion, E is the ECM density (e.g. a non-diffusible matrix macromolecule such as
fibronectin, collagen or laminin) and yg is the haptotaxis coefficient. Models for x and yg are
given in Sect. 2.1.3. Further assuming that the density of tumour cells is constant in the
viable region, the growth of the tumour is then associated with the rate of volume change:
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V.u=Ad,, ®)

where Ap is the non-dimensional net proliferation rate. This implies that the non-dimensional
pressure satisfies:

—A-(uVP)=1, -V - (x.VE). 9

We assume that in the proliferating region, cell-mitosis is proportional to the amount of
nutrient present and that apoptosis may occur. Volume loss may occur in the necrotic core
and there is no proliferation in either the host microenvironment or the hypoxic/quiescent
regions. We therefore take

0 ifx¢ Q
- oc-A ifxeQ,
PT) 0 ifxeQ,
_GN ifXEQ.N (10)

where A is the non-dimensional apoptosis rate (“pre-programmed” cell death); and Gy is the
non-dimensional rate of volume loss in the necrotic core as water is removed and cellular
debris are degraded. Assuming a uniform cell-cell adhesion throughout the tumour, cell-cell
adhesion can be incorporated as a surface-tension like jump boundary condition at the
tumour-host interface 2

1
[P]=(Pinper — Pouter)zaK, (11)

where G is a non-dimensional parameter that measures the aggressiveness of the tumour (the
strength of cell proliferation relative to cell-cell adhesion) and « is the mean curvature of the
interface. At the necrotic boundary X we assume P is continuous. We assume that no voids
form and therefore we take

[u - n] =0 which implies that [zVP -n]=[y,VE - n], (12)

where n is the unit outward normal to ~. For simplicity, we will also assume that [VE - n] =
0. At necrotic boundary, we assume analogous conditions. The velocity of the tumour—host
interface 2 is then given by:

V=—=uVP n+y,VE -n, (13)

and the velocity of the necrotic boundary Xy is
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Vy==uVP -ny+x,VE -n,, (14)

where ny, is the outward unit normal vector along 2. In the far-field at the boundaries of the
computational domain, the pressure is assumed to satisfy zero Neumann boundary
conditions gP/on = 0.

2.1.3 Tumour-microenvironment interaction—We model tumour microenvironment
by introducing an extracellular matrix density E that represents the density of non-diffusible
matrix macromolecules such as fibronectin, collagen, elastin and laminin, etc. In addition, as
mentioned earlier, we keep track of the density E of the original ECM and the pre-existing
blood vessel density By to assess the level of oxygen uptake and supply, respectively, in
the microenvironment.

The tumour interacts with the microenvironment by responding to the nutrients supplied by
the pre-existing and the neo-vasculature (e.g. see Eq. 1), remodeling the ECM locally by
secreting both MDE and ECM macromolecules and by a hetereogeneous response to
pressure and ECM adhesion gradients through non-constant cell-mobility and haptotaxis
coefficients. In order for tumours cells to migrate into the porous matrix, they must
overcome cell-matrix adhesion. However, in experiments, a maximum migration speed is
obtained that depends on the level of integrin expression (e.g. [24,53]) and correspondingly
a non-monotonic dependence of cell migration velocity on integrin expression and adhesion
gradients in the ECM has been predicted [23,24]. This has been explained by the fact that
while some integrins are required for focal adhesion based migration, too much focal contact
strength can retard the detachment of cell's trailing edge from the ECM. While we do not
model integrin expression directly here, we take this effect into account by making the
haptotaxis coefficient a non-monotone function of E:

/\_/,_,v_mm . E<§E;m cutoff
Xe= pX(E) Ei(mn cutoff <EZ< Emax cutoff °
X £ min E> max cutoff (15)

where xg, min is the non-dimensional haptotaxis in low/high-density ECM, p, is a non-
monotone interpolating function with a maximum yg max located at

1=y =4 . ;
E=> (Emi_n cutoff + Emax cutoﬂ'). See the supplementary materials for the precise form of p,.
Although the mobility x may also be non-monotone, for simplicity, we take a monotone
decreasing function of E here:

/jmax —u E<E§nn cutoff
H=q Py (E) Emin cutoff = E < Enwx cutoff
HMmin E> max cutoff (16)

where p,, is a smooth interpolating function (see the supplementary materials for a precise
form). In a future work, we will investigate non-monotonic cell mobilities x. In addition, the
mobility and chemotaxis parameters may also be functions of oxygen concentration o as
hypoxic conditions may result in upregulation of HIF-1a target genes that may result in
decreased cell-cell adhesion, among other effects, and therefore enable cells to more easily
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migrate through and invade the tumour microenvironment (e.g., see [25,36,56]). These
effects will also be explored in a forthcoming work.

In order to migrate through the ECM and invade the host tissue, tumour cells secrete matrix
degrading proteolytic enzymes (MDE), e.g. matrix metalloproteases and urokinase
plasminogen activators, which cause the degradation of the ECM, provide space for the
cells, and enhance the attachment of the cells to ECM macromolecules enabling the cells to
exert traction forces to propel themselves through the ECM. In addition, the tumour cells
remodel the ECM by secreting insoluble matrix macromolecules and possibly reorienting
them. We note that during the angiogenic response of the host vasculature, an analogous
molecular cascade occurs as tumour angiogenesis factors (TAF) and ECM macromolecules
(e.g. fibronectin, collagen, laminin) bind to specific membrane receptors on ECs and
activate the cells' migratory machinery. This leads to a remodeling of ECM similar to that
described above for tumour cells. Here, we will not consider the effect of orientational
remodeling. We model the remaining processes as follows. For the MDE, we take

oM -M -M -M
_:V . (DM VM)"’/lplod(l - M)lllv - ’ldecayM+/lspr. pl’()d. ISpI'OUY tipS

ot 17)

where M is the nondimensional MDE concentration, Dy, = Dy is the diffusion coefficient

-M -M . . .
(assumed to be constant), Apoq. and Agpy. proq. are the non-dimensional rates of production of
MDE by the viable tumour cells (2y = Qp U Qy) and the sprout tip ECs, respectively.

Further, Aﬁmy is the rate of decay (it is assumed that MDE is not used up as a result of the
interaction with the ECM (Quaranta, private communication)). Finally, Lsprout tips IS the
characteristic function of the sprout tips. In particular, 1 gprout tips = 1 in small circle centered
at each sprout tip and tends to zero smoothly, and rapidly, outside these circles. Because the
diffusion coefficient of MDE, Dy, is much smaller than that for oxygen diffusion the full
time-dependent diffusion equation is used [67]. In the far-field (boundary of the
computational domain), we take the zero Neumann boundary conditions 8M/an = 0.

The ECM density satifies:

OE

—(;)7= - /ldEgrad“tionEM+/lPr°d-(l —E) lsz‘, +’lspr. prod. Lsprout tips.

(18)

-E -E . . . .
where Apgog. and Agpr. prog. are the non-dimensional rates of production of ECM by the viable

. -E . . . .
tumour cells and sprout-tip ECs and Agegradasion iS the non-dimensional rate of matrix
degradation by the MDE.

Finally, the original ECM and the pre-existing blood vessel density are assumed to be

degraded by the MDE:

OBpre
ot

B OEy E
== ’ldegmdationM Bpre and ot == /ldegl'adationM Eo,

(19)
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-B -E . . .
Where Agegradation ANd Adegradation @ré NON-dimensional degradation rates.

2.1.4 Tumour angiogenic factors—When tumour cells become hypoxic/quiescent, they
are assumed to secrete tumour angiogenic factors (TAF), which diffuse into the surrounding
tissue and attract ECs. ECs respond to the TAF by binding with it, proliferating and
chemotaxing up the TAF gradient. The diffusion coefficient of TAF is similar to that of
oxygen and so we model the production, diffusion, decay, and binding of TAF by

=T =T =T
OZV . (DI‘VT)+’lp1‘Od. (l - T) lSl” - /ldecayT - /lbindingTISPFOllf tipS (20)

where T is the non-dimensional TAF concentration, Dt = D is the diffusion coefficient

=T =T =T . .
(assumed to be constant) and Aproq., Adecay, @aNd Apinging denote the non-dimensional
production, natural decay and binding rates of TAF. In the far-field at the boundary of the
computational domain, we also take zero Neumann boundary conditions 8T/on = 0.

2.2 Angiogenesis model

We begin with a description, in Sect. 2.2.1, of an initial mathematical model for the growth
of a hollow capillary network in the absence of any blood flow. This follows [4]. Then,
following [50], we will add the effects of blood flow and vascular network remodeling in
Sects. 2.2.2 and 2.2.3, respectively.

2.2.1 Basic network model—As described earlier, TAF and ECM macromolecules bind
to specific membrane receptors on ECs and activate the cells' migratory machinery. The
model of EC migration given below describes how capillary sprouts emerging from a parent
vessel migrate towards a tumour, leading to the formation of a vascular network that
supplies nutrients for continued development. (See the supplementary materials for a
schematic diagram). At this level, since there is no flow or vessel remodeling, this model
may perhaps be considered more appropriate at describing in vitro endothelial cell migration
and capillary sprout formation. The model, inspired by the tumour angiogenesis model
developed by Anderson and Chaplain [4], assumes that endothelial cells migrate through (i)
random motility, (ii) chemotaxis in response to TAF released by the tumour and (iii)
haptotaxis in response to ECM gradients. If we denote by n the non-dimensional endothelial
cell density per unit area, then the non-dimensional equation describing EC conservation is
given by

on

Z2=V - (D) = V- (o DT = ¥ - (e VE)

(21)

See [50] and the supplementary materials for the non-dimensionalization. The diffusion
(random migration) coefficient is D = D (assumed to be constant), and the chemotactic and

haptotactic migration are characterised by the functions )(meuﬁ)?srpmm/ (1+6 - T), which
reflects the decrease in chemotactic sensitivity with increased TAF concentration and

,\/fpmus)?imm, where for simplicity we have taken the haptotactic migration parameter to be
constant. In a future work, we will investigate the heterogeneous response of the ECs to the

ECM as discussed earlier in Sect. 2.1.3. The coefficients D, X/srpmut and /?fpmm characterise
the non-dimensional random, chemotactic and haptotactic cell migration, respectively.
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The displacement of each individual EC, located at the tips of each growing sprout, is given
by the discretised form of the EC mass conservation equation (21) on a regular Cartesian
mesh. The migration of each cell is consequently determined by a set of coefficients (P0—P4)
emerging from this equation, which relate to the likelihood of the cell remaining stationary,
moving left, right, up or down. These coefficients incorporate the effects of random,
chemotactic and haptotactic movement and depend upon the local chemical environment
(ECM density and TAF concentration). Proliferation of the endothelial cells at the capillary
tips and branching at capillary tips are implemented in the model at the discrete level. Tip
branching depends on the TAF concentration at a given spatial location. (See the
supplementary materials and [4] for details). Using the above model it is possible to generate
“hollow” capillary networks which are structurally similar to those observed experimentally.

2.2.2 Modelling blood flow in the developing capillary network—Blood is a
complex multiphase medium, composed of many different constituents, including: red blood
cells (erythrocytes), white blood cells (leukocytes), and platelets involved in clotting
cascades. These solid elements represent approximately 45% of the total blood composition
—red cells are predominant—and are carried in the plasma, which constitutes the fluid
phase. A measure of the solid phase is given by the blood haematocrit, which represents the
volume fraction of red blood cells contained in the blood. The average human haematocrit
has a value of around 0.45. Because of its multiphasic nature, blood does not behave as a
continuum and the viscosity measured while flowing at different rates in microvessels is not
constant. The direct measurement of blood viscosity in living microvessels is very difficult
to achieve with any degree of accuracy. However, by comparing the flow distribution in a
numerical network (generated by a mathematical model) with a similar experimental system,
Pries et al. [60] obtained

Happarent=Mplasma * Hrels

where zpjasma IS the plasma viscosity, and e is the relative viscosity that accounts for the
effects of the blood haematocrit and the radius of the vessel. The apparent blood viscosity
generally increases with decreasing capillary radius, although the precise relationship is
nonlinear since it is actually haematocrit-dependent. See the supplementary materials for the
precise form of s

In order to calculate the flow within the entire interconnected network of capillaries, it is
first necessary to decide upon a local relationship between the pressure gradient vessel AP
and flow rate Q at the scale of a single capillary element of length L and radius R. Such a
relationship in the case of a non-Newtonian fluid can be approximated by the following
Poiseuille-like expression:

- :ﬂR4APvessel
8Auz\pparemL (22)

In order to determine the pressure (and flow rate) and in the vascular network of
interconnected capillary elements having distributed radii, one simply conserves mass (or
flow if the fluid is incompressible) at each junction where capillary elements meet. (See the
supplementary materials for a schematic diagram.) Hence, for each node (i, j) the following
expression can be written:
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N
Z Qi.jx=0
k=1 (23)

where the index k refers to adjacent nodes and N = 4 in a fully connected regular 2D grid as
considered in this paper (or N = 6 in 3D). This procedure leads to a set of linear equations
for the nodal pressures (Pyessel i) Which can be solved numerically using any of a number of
different algorithms including successive over-relaxation (SOR). Once the nodal pressures
are known, Eq. 22 can be used to calculate the flow in each capillary element in turn. A
more complete discussion of the procedure can be found in McDougall et al. [51,66]. The
evolution of haematocrit h in the vessels is also calculated using mass conservation once the
flow is determined.

2.2.3 Capillary vessel adaptation and remodeling—BIlood rheological properties
and microvascular network remodeling are interrelated issues, as blood flow creates stresses
on the vascular wall (shear stress, pressure, tensile stress) which lead to adaptation of the
vascular diameters via either vasodilatation or constriction. In turn, blood rheology
(viscosity, haematocrit, etc.) is affected by the new network architecture. Consequently, we
should expect adaptive angiogenesis to be a highly dynamic process. We follow the work of
Pries et al. [57,59-61] in incorporating vessel adaptation into our model. In particular, we
consider a number of stimuli that affect the vessel diameters. We account for the influence
of the wall shear stress (Syss), the intravascular pressure (Sp), a metabolic mechanism
depending on the blood haematocrit (Sp,), as well as the natural tendency for vessels to
shrink (Ss). These stimuli form a basic set of requirements in order to obtain stable network
structures with realistic distributions of vessels diameters and flow velocities. The
theoretical model for vessel adaptation assumes that the change in a flowing vessel radius
AR over a time step 4z, where time is scaled by the rate of the response of the vessel to wall
shear stress (ky,), is proportional to both the global stimulus acting on the vessel and to the
initial vessel radius R, i.e.

AR=(S wss+5p+S m+Ss) RAT. (24)

We refer the reader to the supplementary materials for the definitions of the stimuli and a
brief discussion. More details may be found in [50].

After the radius of the vessel is updated according to Eq. 24, the effect of the oncotic
mechanical pressure P, generated by the proliferating and invading tumour, on the vessel
radius is then taken into account. The tendency of the oncotic pressure to shrink the vessel is
modelled by the simple cutoff:

R — Rpin+(R — Ryin) - (1 = (P, Pressel)), (25)

where ¢ (P, Pyesser) is the cutoff function introduced earlier in Eq. 5 and Ry, is a threshold
minimum radius. This provides another means of coupling tumour invasion (and mechanics)
with the angiogenic response and the developing neo-vascular network. In particular, the
solid/mechanical pressure may constrict and cut off vessels in the neovasculature. To
prevent singularities in practice, the radius of the vessel is constrained to lie between 2.0 and
14 um which is the size of the parent capillary.
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Inclusion of the above mechanisms into our modeling framework now allows us to simulate
dynamic remodeling of a flowing vasculature. This significant improvement in angiogenesis
modeling, introduced by McDougall et al. [50], allows us to describe vascular growth in a
far more realistic manner, with areas of the capillary network dilating and constricting in
response to variations in perfusion-related stresses, stimuli and pressure mechanical forces
exerted on the host microenvironment by the invading tumour. The final step in the
development of the complete dynamic adaptive tumour-induced angiogenesis (DATIA)
model is to couple the network flow modeling approach outlined in this Section to the
“hollow capillary” model derived from the endothelial cell migration equations described
earlier. This is achieved through the role of wall shear stress.

Wall shear stress is known to play a leading role in the growth and branching of capillary
vessel networks [57,58]. In order to “bring the morphological and the physiological
concepts together” [68], the cell migration and flow models are coupled by incorporating the
mechanism of shear-dependent vessel branching in addition to sprout-tip branching via local
TAF concentrations. This enables the capillary network structures to adapt dynamically
through adjuvant vessel branching in areas of the network experiencing increased shear
stresses following anastomosis elsewhere in the system. We note that because the shear
stress is due to the blood flowing through the capillaries, vessel branching can only occur
after some degree of anastomosis has taken place. Therefore, the early stages of
angiogenesis are primarily characterised by branching at the capillary tips which depends
only on the TAF concentration. The combined effects of the local wall shear stress and TAF
concentration upon vessel branching probability have been implemented in the model as
described in the supplementary materials.

3 Numerical schemes

3.1 Tumour invasion model

The tumour invasion model described in Sect. 2.1 consists of a coupled system of nonlinear,
elliptic and parabolic (reaction—diffusion) differential equations that must be solved on a
complex, moving domain where the motion of the tumour/host boundary depends on
gradients of the solutions to these equations. Further, one of these solutions—the pressure—
is discontinuous across the tumour/host interface where the discontinuity depends on the
geometry (i.e. the curvature) of the interface which is an additional source of nonlinearity.
Therefore, standard finite difference methods cannot be used to accurately solve the system.
Instead, specialized methods that can accurately take into account discontinuities in
solutions and complex domains must be used. Here, we use a ghost-cell/level-set method
and adapt and extend the numerical techniques we recently developed to solve this system
[45-48]. In this approach, the equations are discretized on a regular Cartesian mesh and the
difference stencils near discontinuities are modified. We note that other alternatives exist
(see the discussion in [48]), but an advantage of our approach is that it can be implemented
in a dimension-by-dimension manner, making the extension to 3D straightforward, and our
algorithm is simpler to implement than the alternative approaches.

In this approach, the interface is captured as the zero set of an auxiliary function (the level-
set function) ¢ satisfying ¢ < 0 inside Q, ¢ > 0 outside ©Q, and ¢ = 0 on the tumour/host
interface 2. Typically ¢ is taken to be an approximation to the signed distance function, i.e. |
V¢ ~ 1. See the supplementary materials for a schematic diagram. The interface normal and
curvature can easily be calculated from ¢. The interface Xy separating viable tumour cells
from the necrotic cells is also captured using additional level set function boundary ¢y that
satisfies the same properties as ¢, only with Qy and 2y in place of Q and X.
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Away from X, the elliptic/parabolic equations can be discretized using centered finite
differences. However, near the interface, the difference stencils need to be modified to
account for possible jumps in solutions and in their normal derivatives. To do this, ghost
cells on either side of the interface are introduced and the variables are extrapolated across
the interface to ensure that the difference stencil effectively does not include nodes on the
other side of the interface. The resulting nonlinear system is solved using an iterative
algorithm. These techniques are described in the supplementary materials. See also [48] for
additional detail.

3.2 The dynamic tumour-induced angiogenesis model

For a fixed tumour geometry and TAF distribution, the tumour vasculature is first grown
using the basic network model given in Sect. 2.2.1; capillary tips may branch or anastomose
during this stage. Further, the Cartesian mesh for the tumour growth system coincides with
that used for the neo-vascular network. After a certain period of time, referred to as the
capillary growth duration time, the fluid flow is solved in the fixed neovascular network and
then the network is dynamically remodelled, following the algorithm described in Sects.
2.2.2 and 2.2.3, respectively. During the simulation of the flow, a CFL condition is imposed
on the time step: Az ~ min (Vcap, Qcap) Where Vg and Qcap are the velocity and flow rate in
a capillary element. The minimum is taken over the neo-vascular network. This ensures
haematocrit remains conserved during the simulation (e.g., [51]). Then process of blood
flow, followed by remodeling, is repeated for an amount of time referred to as the flow
duration time.

3.3 Overall computational solution technique

Initially, the avascular tumour, the pre-existing vascular network, the oxygen, ECM and
MDE concentrations are given. We will consider a single parent vessel placed at the top of
the computational domain. The algorithm then consists of iterating the following steps.

1. Solve Eg. 1 for the oxygen concentration where the oxygen source in Eq. 4 is
obtained from the haematocrit and the pressure in the existing vascular network and
the tumour mechanical pressure from the previous time step. We then use the
solution ¢ to update the position of the necrotic core:

dated revi .
QIPHIECZQPIVIONS | ({x:0m (x, <oy} N Q),

and to identify the hypoxic region Q. As described above, the necrotic core is
expanded to include previously necrotic tissue plus any tumour tissue where the
oxygen level has dipped below the necrotic threshold Xy. We then rebuild gy as a
level set function that represents the updated region Q. (Please see the
supplementary materials, [45,48] and the level set references above for information
on initializing a new level set function.)

2. Solve Eqg. 20 for the tumour angiogenic growth factor (TAF) and update the MDE
and ECM according to Egs. 17 and 18, respectively.

3. Determine the cellular mobility and solve for the tumour biomechanical pressure
from Eq. 9.

4. Update the position of the tumour/host interface 2 and the necrotic/viable Xy by
advecting the level set functions ¢ and ¢y with the appropriate velocities as
described in the supplement). If necessary, the level-set functions are re-initialized
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to be local distance functions to X' and Xy. (See the supplementary materials for
further details.)

5. From the updated tumour position, TAF, MDE and ECM fields, the neo-vascular
network is grown using the basic network model.

6. The process (1)—(5) is repeated until the growth duration time interval is reached.
At this point, the fluid flow in the neo-vascular network is determined and the
network is adapted. The hydrostatic pressure P and the TAF are held fixed during
this process. The flow and network adaption are repeated (for fixed tumour and
capillary tip positions) until the flow duration time is reached.

7. Goto (1) and repeat the algorithm.

4 Computational results

In this work, we shall focus upon tumour growth coupled to angiogenesis in a square 4 x 4
mm region. Although we solve the non-dimensional equations, we present dimensional
results using the length scale ¢ ~ 200 um and the time scale 1/A, ~ 1.5 day. A parent
capillary vessel is located at the top of the computational domain. A pre-existing vasculature
is assumed to exist and provides a small level of nutrient uniformly throughout the host
tissue domain. Initially, a small cluster of proliferating cells is placed approximately 3 mm
from the parent vessel. The initial ECM is taken to be nearly constant (=1) but with small
random perturbations uniformly distributed throughout the computational domain. See the
time t = 0 plot in Fig. 2. Accordingly, whenever we calculate gradients of E, we actually
calculate the gradient of a smoothed version of E where a Gaussian smoothing with standard
deviation 3.0 is used (see [45,48]). We begin by demonstrating that in the absence of
tumour-induced angiogenesis, the small tumour cluster grows to an avascular tumour (2D)
spheroid. Actually, since there is a pre-existing vasculature this is an abuse of notation,
however, we still refer to this case as avascular since there is no neo-vascular network.
Then, tumour-induced angiogenesis is initiated and we present several simulations of
angiogenesis and vascular growth. Finally, we examine the effect of increased ECM
degradation by MDE and its effect on avascular and vascular growth. The parameters, and
non-dimensionalization, used in the simulations are given in in the supplementary materials.

4.1 Avascular growth to a multicellular (2D) spheroid

In Fig. 2, we present the growth of an avascular tumour. The spatial grid is 200 x 200 and
the time step At = 0.05 which is adapted to satisfy the Courant—Friedrichs—Lewy (CFL)
condition (see [45,46,48]). The red, blue and brown colors denote Qp, Qn, QN Which are the
proliferating, hypoxic/quiescent and necrotic regions, respectively. The non-dimensional
oxygen and ECM concentrations and the solid (oncotic) pressure are also shown. The
oxygen diffuses only a short distance (about 0.2 mm) from the parent vessel as can be
observed from the figure. However, the pre-existing vasculature (which yields a background
oxygen concentration of approximately 0.4), provides enough oxygen for the tumour to
grow. As the tumour grows, the pressure in the proliferating region increases, the oxygen is
depleted in the tumour and the ECM is degraded. A hypoxic/quiescent core forms at about 9
days when the tumour radius is approximately 0.34 mm (not shown). While the tumour
continues to grow and degrade the extracellular matrix, the pressure decreases and the
tumour growth starts to slow, as can be seen in Fig. 2. A necrotic core forms around day 15
when the radius of the tumour is approximately 0.5 mm. The pressure drops significantly to
reflect the volume loss in the necrotic core associated with the break-down of the necrotic
cells and the growth of the tumour slows even further as the tumour approaches a steady
state. As the growth of the tumour slows, the ECM degradation becomes more pronounced.
This actually causes a competition between two effects: the pressure-induced motion, which
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becomes more effective since the mobility increases when the ECM decreases, and
haptotaxis which tends to inhibit growth of the tumour into the less dense ECM outside the
tumour (recall that haptotaxis induces motion up ECM gradients). Further, the MDE also
degrades the pre-existing vessels which results in a reduction in the supply of oxygen. As a
result of haptotaxis and the reduced oxygen supply, the tumour actually shrinks slightly after
reaching a maximum radius of about 0.64 mm, see Fig. 3.

4.2 Tumour-induced angiogenesis and vasular growth: no solid pressure-induced
neovascular response

We next consider tumour-induced angiogenesis where there is no effect of the solid pressure
on either the radius of the new vessels or the extravasation of nutrient. In particular, we take
¢ (Pyessel, P) =0 in Egs. 4 and 25. Angiogenesis is initiated from the avascular tumour
configuration at t = 45 days from Fig. 2. At this time, ten sprout tips are released from the
parent vessel. The initial vessel radii are 6 um. The inlet pressure and outlet pressures in the
parent vessel are Pygssel in = 3, 660 Pa and Pyessel out = 2, 060 Pa, respectively. The growth
duration is t = 0.05 which means that the intravascular flow and vessel adaption algorithms
are called nearly every tumour growth time step. The flow duration is z = 0.25 with a time
step approximately equal to Az = 0.005 (again Az is adaptive to satisfy an intravascular CFL
condition). This means that 50 iterations of the flow and vascular adaptation algorithms are
performed every tumour growth time step. By flowing and adapting the vascular network so
frequently, we hoped that a relatively short flow duration time could be used to get a
reasonable approximation of the blood flow in the network. Indeed, preliminary simulations
showed that increasing the flow duration did not change the results qualitatively or, in some
cases depending on the vascular network configuration, quantitatively. In a future work, we
will quantify the effect of the flow duration upon the results.

The evolution of the tumour and the neo-vascular network is shown in Figs. 4 and 5. As can
be seen from the figures, it takes some time for flow to develop after angiogenesis is
initiated; flow first occurs after about 7 days (52 days of total growth time) in a region near
the parent vessel. This can be seen from the plots of haematocrit and oxygen which are
signatures of blood flow. Little additional oxygen diffuses to the tumour. Accordingly, the
tumour maintains a steady size (or shrinks a little due to the reasons described above). This
may be seen in Fig. 6. Some of the vessels continue to lengthen, branch and migrate towards
the tumour heading in particular for the hypoxic region where TAF is released.

After about 10 days (55 days of total growth time), a large loop forms through which blood
flows. The loop penetrates the tumour and provides the tumour cells with a direct source of
oxygen. The tumour responds by rapidly growing along the oxygen source and co-opts the
neo-vasculature and the hypoxic region shrinks and changes shape. As the tumour grows,
the hypoxic and necrotic regions start to grow again as well and the new vessels near the
tumour/host interface branch in response to wall shear stresses and increased TAF levels.
This results in increased anastomosis and blood flow. The increased oxygen supply in turn
causes large pressures to form in the proliferating region and the tumour to grow even more
rapidly, enhancing this effect. Because there is no response of the new vessels to these large
pressures, the tumour simply continues to co-opt the vessels creating an effective tumour
microvasculature. This microvasculature provides a nearly uniform source of nutrient in the
upper two thirds of the tumour; the lower third is primarily hypoxic and quiescent. As a
consequence, the tumour shape remains compact as the tumour grows.

In Fig. 5, the dimensional neo-vasculature radii (in m) and intravascular pressures (in Pa) are
shown together with the non-dimensional ECM and TAF concentrations. At early times, the
radii are small and TAF diffuses from the quiescent zone. The ring of lowered ECM

surrounding the tumour is clearly seen. The pressure is highest in the neo-vasculature closest

J Math Biol. Author manuscript; available in PMC 2011 February 10.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Macklin et al.

Page 18

to the inlet of the parent capillary where the highest pressures are. As blood flow starts, the
radii increase and the overall pressure decreases while the pressure in some vessels increases
as blood spreads throughout the network. This process continues as the tumour grows and
the vasculature continues to branch, anastomose and carry more and more flow. As the
hypoxic and necrotic regions shrink, the TAF distribution changes and the vessels respond
accordingly. Observe that the degraded ECM just outside the tumour does not prevent the
vessels from penetrating the tumour even though the sprout-tips have to migrate up ECM
gradients to accomplish this.

The first vessels that penetrate the tumour do not carry blood and thus the tumour does not
respond to their penetration. Instead, these vessels migrate towards the hypoxic region
where they tend to get stuck. This occurs because the TAF concentration is nearly uniform
(T =1) and so the sprout-tips to move randomly and tend to collide with their own trailing
vessel preventing further migration. At later times though, new vessels grow into the tumour
center and anastomose. This leads to blood flow and oxygen extravasation deep in the
tumour interior. Further, observe that the tumour grows so fast that it outruns the ring of
degraded ECM around its boundary and is growing into only very slightly degraded ECM.
The ECM in the tumour interior degrades rather slowly and the ECM signature of the
original avascular tumour spheroid can still be seen at late times.

This simulation shows that when the new vessels are not affected by the tumour solid
pressure, dramatic growth occurs as the tumour co-opts the host vasculature to create its own
microvasculature and receives a direct source of oxygen. In addition, the tumour growth and
angiogenesis processes are nonlinearly coupled as the vasculature responds to the growth by
migrating towards the ever changing TAF distributions and by branching and anastomosing
near the tumour—host interface. This leads to increased blood flow. At the same time, the
increased blood flow in the vascular network affects how the tumour grows, and in
particular speeds growth up. This then affects the response of the vasculature.

4.3 Tumour-induced angiogenesis and vasular growth: the effect of solid pressure-
induced neovascular response

Next, we consider, in Figs. 7, 8 and 9, the effect of solid/mechanical pressure-induced
vascular response on tumour-induced angiogenesis and vascular growth. We repeat the
simulation in Sect. 4.2 except with ¢ (Pyessel, P) non-zero as given in Eq. 5. This means that
transfer of oxygen from the neo-vasculature to the tissue may be significantly reduced and
the vessel radii may be correspondingly constricted. With the values of the parameters used
here (see the supplementary materials), a solid pressure-induced vascular response begins to
occur when the solid pressure P ~ 0.8.

At early times, the angiogenic response and the tumour growth is similar to the case
presented earlier in Figs. 4, 5 and 6. The newly developing vessels migrate, proliferate,
branch and anastomose. It also takes some time for flow to begin with significant flow
developing only after about 10 days (55 days of total growth time). Blood flow in the neo-
vasculature starts near the parent capillary and eventually the flow reaches the tumour.
Because the initial ECM is slightly different than that in Fig. 4 (due to the random
component) and due to the random component of the sprout tip motion, the vascular network
at early times is not identical to that obtained previously in Fig. 4.

In contrast to the case considered in Fig. 4, here the solid pressure prevents any delivery of
oxygen internally to the tumour and thus the delivery of oxygen is heterogeneous and
significant oxygen gradients persist in the tumour interior. There is no functional
microvasculature internal to the tumour. While the tumour responds by growing towards the
oxygen-delivering neo-vasculature, the solid pressure generated by tumour cell proliferation
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also constricts the neo-vasculature in the direction of growth (where pressure is highest) and
also correspondingly inhibits the transfer of oxygen from those vessels. As a consequence,
the overall solid pressure is significantly lower than that in Fig. 4. This makes the tumour
grow much more slowly than that in Fig. 4 as can be seen in Fig. 9. Note the vertical scale in
Fig. 9 is one half of that in Fig. 6.

The neo-vasculature in other areas of the host microenvironment then provide a stronger
source of oxygen. This triggers tumour-cell proliferation and growth in regions where
proliferation had been decreased previously. The heterogeneity of oxygen delivery and the
associated oxygen gradients cause heterogeneous tumour cell proliferation. Unlike the case
in Fig. 4, proliferation is confined to regions close to the tumour—host interface. This results
in morphological instability that leads to the formation of invasive tumour clusters (e.g.
buds) and a complex tumour morphology. This result is consistent with the theory and
predictions made earlier (see, for example, Cristini et al. [20,22,42], Anderson et. al.
[3,5,30], and Macklin and Lowengrub [45-48]), that substrate inhomogeneities in the
tumour microenvironment tend to cause morphological instabilities in growing tumours.

Although nutrient-providing, functional vessels are not able to penetrate the tumour during
growth, the growth of the tumour elicits a strong branching and anastomosis response from
the nearby neo-vasculature in the host microenvironment. Although there is an analogous
neo-vascular response seen in Fig. 4, the effect here is much more pronounced as the levels
of TAF are higher in these regions (because tumour hypoxia is increased) and thus the wall
shear stresses initiate more significant branching.

In Fig. 8, the dimensional neo-vasculature radii (in m) and intravascular pressures (in Pa) are
shown together with the non-dimensional ECM and TAF concentrations. As before, blood
flow causes a dilation of the vessels and an overall decrease of pressure as branching,
anastomosis and increased blood flow occurs throughout the neo-vascular network. The
constriction of neo-vessels in response to the solid pressure is clearly seen.

The tumour-secreted MDE degrades the ECM in the host microenvironment near the tumour
and in the tumour interior. As before (recall Fig. 5), the new vessels are still able to migrate
through the region of lower ECM even though this acts against haptotaxis. Because the
tumour grows more slowly than that in Fig. 5, only the tips of the invasive clusters outrun
the degraded ECM. As can be seen in Fig. 8, the host ECM is degraded in the region
between the invading clusters. The ECM signature of the original avascular tumour spheroid
can no longer be seen at later times.

This simulation shows even stronger nonlinear coupling between the tumour-induced
angiogenesis and the progression of the tumour compared to the prior case shown in Fig. 7,
8 and 9. The pressure-induced vascular response of constricting the radii of the neo-
vasculature and inhibiting blood-tissue oxygen transfer not only affects the tumour growth
dramatically, but also significantly affects the growth of the neo-vascular network, and vice-
versa.

4.4 Avascular growth to a multicellular (2D) spheroid with enhanced ECM degradation and

production

We next examine the effect of ECM degradation upon the results. In Fig. 10, we repeat the
simulation in Sect. 4.1 except that both the MDE degradation and production parameters are
increased (see the supplementary materials).

The tumour grows by uptaking oxygen delivered by the pre-existing (uniform) vasculature
and growth is more rapid than that for the avascular tumour shown in Sect. 4.1 (Fig. 2). This
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occurs because the mobility is larger here due to the enhanced degradation of ECM. This
effect overcomes the tendency of haptotaxis to keep the tumour away from the degraded
ECM.

The tumour reaches a nearly steady size, containing both a hypoxic and a necrotic core, that
is significantly larger than that shown in Figs. 2 and 3; the radius at 45 days is
approximately 0.78 mm (see Fig. 11). At the final time shown (45 days), the ECM is
significantly degraded in the host microenvironment and in the tumour necrotic core to the
point that there is even a thin annular “hole” in the ECM immediately surrounding the
spheroid, and a circular hole in the necrotic region where the density of ECM E = 0.

4.5 Tumour-induced angiogenesis and vascular growth: The effect of solid pressure-
induced neovascular response and enhanced ECM degradation and production

Next, we consider, in Figs. 12, 13 and 14, the effect of enhanced ECM degradation on
tumour-induced angiogenesis and vascular growth. We repeat the simulation shown in Sect.
4.3 except that the initial condition is the t = 45 day simulation from Fig. 10 and the MDE
parameters are the same as in that figure. (See the supplementary materials for the parameter
values.)

As in the simulation shown in Sect. 4.2, the new vessels grow and form loops near the
parent capillary. However, now because of the growing ECM annular hole surrounding the
tumour, the new vessels are not able to reach the tumour and are instead trapped by the
ECM hole due to haptotaxis. The vessels then encapsulate roughly the upper half of the
tumour.

As blood flows through the neo-vascular network and approaches the tumour, the tumour
responds by growing towards the flowing neo-vasculature that provide the oxygen source, as
in Sect. 4.3. The tumour elongates, constricts the neo-vasculature in its path and prevents the
transfer of oxygen from the neo-vasculature to the host. This limits tumour cell proliferation
and results in a roughly steady maximum solid pressure. Correspondingly, there is
heterogeneous oxygen supply, heterogeneous tumour cell proliferation and there are strong
oxygen gradients. As in Sect. 4.3, this results in a morphological instability of the growing
solid tumour.

As the tumour continues to grow, the neo-vasculature respond by increasing branching and
anastomosing near the tumour—host interface; similar dense blood vessel growth near the
tumour periphery has been observed clinically in glioma [35]. The denser vascular network
results in a broader supply of oxygen in the part of the tumour closest to the parent capillary.
Proliferation is increased and the top of the tumour flattens. The increased proliferation
leads to large solid pressures which then constrict the nearby new vessels and inhibit oxygen
supply. The tumour then begins to grow towards other vessels near the parent capillary and
the top of the tumour becomes unstable. Further, there is instability along the side of the
tumour that leads to the encapsulation of host domain inside the tumour. Also observe that a
small amount of oxygen is able to be delivered into the tumour interior at very late times as
haematocrit is trapped in a constricted vessel at a location where the pressure is sufficiently
low to allow extravasation.

Figure 13 shows the dimensional neo-vasculature radii (in m) and the intravascular pressures
(in Pa) together with the non-dimensional ECN and TAF concentrations. The results are
similar to those obtained before except that the tumour does not outrun the ECM hole
although at the top of the tumour, the hole is quite shallow.
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Interestingly, even though the initial tumour in Fig. 12 is larger than that in Fig. 7, the final
tumour size at t = 150 days is roughly the same for both cases (see Figs. 14 and 9). The
ECM hole present in the simulation in Fig. 12 prevents the new vessels from getting close to
the tumour during the early stages of growth; this allows the tumour in Fig. 7 to catch up and
even grow slightly larger than that in Fig. 12.

Furthermore, the enhanced matrix degradation increases the mobility x in the tumour
microenvironment relative to inside the tumour, resulting in a biomechanically responsive
microenvironment; the observed relatively compact morphology is consistent with the
predictions of Macklin and Lowengrub in [47] for this growth regime. (See the analogous
tumor-shapes in the upper row of the morphology diagram in Fig. 15, compared with the
upper right plot). Similarly, the lower matrix degradation in Sect. 4.3 decreases the mobility
in the tumour microenvironment relative to the tumour, yielding a biomechanically-
unresponsive microenvironment; the observed fingering morphology matches the
predictions in [47] for this growth regime. (Compare the tumor-shapes in the lower right
figures of the morphology diagram in Fig. 15 with the lower right plot).

Finally, in Fig. 16, we compare the average radii in the neo-vascular networks for the
simulations in Figs. 4, 7 and 12. At early times, the radii for the simulation in Fig. 4, where
the neo-vasculature does not respond to solid pressure, grows the fastest as blood flows
uninhibited through the network. Later, however, the simulation with lower ECM
degradation shows the most rapid radii increase. This occurs because the EC sprout-tips are
able to move more freely through the host domain and do not get caught by degraded ECM.
This provides the vascular network with a more widely varying flow response.

5 Conclusions and future directions

In this paper, we have coupled an improved continuum model of solid tumour invasion
(following [48]) with a model of tumour-induced angiogenesis (following [50]) to produce a
new multi-scale model of vascular solid tumour growth. The invasion and angiogenesis
models were coupled through the tumour angiogenic factors (TAF) released by the tumour
cells and through the nutrient extravasated from the neo-vascular network. As the blood
flows through the neo-vascular network, nutrients (e.g. oxygen) are extravasated and diffuse
through the ECM triggering further growth of the tumour, which in turn influences the TAF
expression. In addition, the extravasation is mediated by the hydrostatic stress (solid
pressure) generated by the growing tumour. The solid pressure also affects vascular
remodeling by restricting the radii of the vessels and thus the flow pattern and wall shear
stresses. The vascular network and tumour progression were also coupled via the ECM as
both the tumour cells and ECs upregulate matrix degrading proteolytic enzymes which cause
localized degradation of the ECM which in turn affects haptotactic migration.

We performed simulations of the multi-scale model that demonstrated the importance of the
nonlinear coupling between the growth and remodeling of the vascular network, the blood
flow through the network and the tumour progression. The solid pressure generated by
tumour cell proliferation effectively shuts down large portions of the vascular network
dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients
to the tumour and the subsequent tumour progression. In addition, ECM degradation by
tumour cells was seen to have a dramatic affect on both the development of the vascular
network and the growth response of the tumour. In particular, when the ECM degradation is
significant, the newly formed vessels tended to encapsulate, rather than penetrate, the
tumour and were thus less effective in delivering nutrients.
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There are many directions in which this work will be taken in the future both in terms of
modeling additional biophysical effects as well as algorithmic improvements. Regarding the
algorithm, we plan to upgrade the solid pressure/nutrient solver by solving for P and o as a
coupled system. This will prevent oscillations that may occur by lagging P in the source
term for nutrient. We also plan to accelerate the solver for the intravascular pressure to
improve performance of the coupled algorithm.

Regarding the model, we plan to develop a more detailed analysis of the effect of solid
pressure on the constriction and collapse of vessels in the microvasculature and on the
corresponding response of the microvascular network. We also plan to include the effects of
the venous system. Other features, such as the recruitment of pericytes by the vascular ECs
will also be investigated. In addition, we will incorporate more realistic models for soft
tissue mechanics.

The work presented here demonstrates that nonlinear simulations are a powerful tool for
understanding phenomena fundamental to solid tumour growth. A biophysically justified
computer model could provide an enormous benefit to the clinician, the patient, and society
by efficiently searching parameter space to identify optimal, or nearly optimal,
individualized treatment strategies involving, for example, chemotherapy and adjuvant
treatments such as anti-angiogenic or anti-invasive therapies. This is a direction we plan to
explore in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic of the tumour regions. Qp, 2 and Qy are the proliferating, quiescent/hypoxic
and necrotic regions, respectively
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The evolution towards a steady-state avascular multicell (2D) spheroid. The tumour regions
(black proliferating Qp, dark grey hypoxic/quiescent Qn, light grey necrotic Qy), the
oxygen, mechanical pressure and ECM are shown at times t = 0, 15 and 45 days. An
animation is available with the supplementary materials
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The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic
region (closed dot) and the necrotic region (inverted triangle) as a function of time for the

simulation in Fig. 2
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Fig. 4.

Tumour-induced angiogenesis and vascular tumour growth. The vessels do not respond to
the solid pressure generated by the growing tumour. The tumour develops a microvascular
network that provides it with a direct source of oxygen and results in rapid growth with a
compact (sphere-like) shape. The colour scheme is the same as in Fig. 2 and the times
shown are t = 48 (3 days after angiogenesis is initiated), 52.5, 55.5, 58.5, 63 and 67.5 days.
An animation can be found online with the supplementary materials
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Fig. 5.

Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM
and TAF concentrations from the simulation shown in Fig. 4. The times are the same as in
Fig. 4
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The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic
region (closed dot) and the necrotic region (inverted triangle) as a function of time for the

simulation in Fig. 4
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Fig. 7.

Tumour-induced angiogenesis and vascular tumour growth. The vessels respond to the solid
pressure generated by the growing tumour. Accordingly, strong oxygen gradients are present
that result in strongly heterogeneous tumour cell proliferation and shape instability. The
color scheme is the same as in Fig. 2 and the times shown are t = 48 (3 days after
angiogenesis is initiated), 52.5, 67.5, 82.5, 105 and 150 days. An animation is available
online with the supplementary materials
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Fig. 8.

Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM
and TAF concentrations from the simulation shown in Fig. 7. The times are the same as in
Fig. 7
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Fig. 9.

The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic
region (closed dots) and the necrotic region (inverted triangle) as a function of time for the
simulation in Fig. 7
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Fig. 10.

The evolution towards a steady-state avascular multicell (2D) spheroid with enhanced ECM
degradation. The MDE production and degradation parameters are larger than those used in
Fig. 2. See the supplementary materials where there is also an animation available online.
The times shown are t = 0, 15 and 45 days
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Page 36

The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic
region (solid dot) and the necrotic region (inverted triangle) as a function of time for the

simulation in Fig. 10
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Fig. 12.

Tumour-induced angiogenesis and vascular tumour growth with enhanced ECM
degradation. The times shown are t = 48 (3 days after angiogenesis is initiated), 52.5, 67.5,
82.5, 105 and 150 days. An animation is available online with the supplementary materials
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Fig. 13.
Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM
and TAF concentrations from the simulation in Fig. 12. The times are the same as in Fig. 12
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The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic
region (solid dot) and the necrotic region (inverted triangle) as a function of time for the

simulation in Fig. 12
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Fig. 15.

Left predicted tumour morphological response to microenvironmental nutrient availability
(increases along horizontal axis) and biomechanical responsiveness (increases along vertical
axis) from [47] (reprinted with permission from Elsevier). Right Tumour morphology and
ECM profile at 150 days with enhanced matrix degradation (top, Sect. 4.5) and lower matrix
degradation (bottom, Sect. 4.3)
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Fig. 16.
Average vessel radii. Simulation from Fig. 7 (solid), simulation from Fig. 4. (solid dots),
simulation from Fig. 12 (diamond)
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