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Abstract
We develop a thermodynamically consistent phase-field model to simulate the dynamics of
multicomponent vesicles. The model accounts for bending stiffness, spontaneous curvature, excess
(surface) energy, and a line tension between the coexisting surface phases. Our approach is similar
to that recently used by Wang and Du [J. Math. Biol. 56, 347 (2008)] with a key difference. Here,
we concentrate on the dynamic evolution and solve the surface mass conservation equation
explicitly; this equation was not considered by Wang and Du. The resulting fourth-order strongly
coupled system of nonlinear nonlocal equations are solved numerically using an adaptive finite
element numerical method. Although the system is valid for three dimensions, we limit our studies
here to two dimensions where the vesicle is a curve. Differences between the spontaneous
curvatures and the bending rigidities of the surface phases are found numerically to lead to the
formation of buds, asymmetric vesicle shapes and vesicle fission even in two dimensions. In
addition, simulations of configurations far from equilibrium indicate that phase separation via
spinodal decomposition and coarsening not only affect the vesicle shape but also that the vesicle
shape affects the phase separation dynamics, especially the coarsening and may lead to lower
energy states than might be achieved by evolving initially phase-separated configurations.

I. Introduction
Biomembranes form the basic structural units for compartmentalizing biological systems.
Biomembranes are complex structures whose fundamental components include lipids,
proteins, and cholesterol. The morphology and structure of membranes play an important
role in their biological function [1]. Vesicles are closed biomembranes consisting of
different types of lipids and cholesterol and serve as important, but simplified models of
more complex cell membranes [2]. Vesicles are liquidlike yet exhibit bending resistance,
e.g., Refs. [2,3]. When several types of lipid and choletesterol are present, phase
transformations may occur on the membrane leading to the formation of domains or rafts.
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From a biological point of view, rafts may play significant roles in regulating protein
activity since particular proteins may concentrate at or near rafts [4]. This may, in turn,
affect signaling and trafficking [5,6]. Rafts may also play a role in the budding and fission
processes during endocytosis and exocytosis [7] as well as in membrane adhesion and fusion
[8].

Recent experiments on giant unilamellar vesicles containing ternary mixtures of lipid
components and cholesterol have provided evidence of phase separation under a variety of
different driving mechanisms such as temperature and magnetic fields, light, polymer
anchorage, osmotic pressures, and chemical variations. See, for example, Refs. [9–19]. The
different phases coexist in the membrane (e.g., liquid-ordered and/or liquid-disordered
phases) forming domains rich in one phase and poor in the other. Spinodal decomposition,
coarsening, viscous fingering, vesicle budding, and fission are observed with concomitant
changes in membrane morphology.

By exploiting the scale difference between the bilayer thickness (nm range) and the vesicle
size (μm range), mathematical models have been developed in which the vesicle is treated as
an elastic surface [20]. While there have been many theoretical and numerical studies of
homogeneous vesicles using discrete and continuum models (e.g., see the reviews [3,21–24],
the recent papers [25–36] and the references therein), there are far fewer studies of
inhomogeneous systems although there has been an increasing focus on the inhomogeneous
vesicles in the past ten years.

Phase separation is a well-studied process in bulk phases. However, the dynamics of
spinodal decomposition into separated phases and their subsequent coarsening in
multicomponent vesicles is much richer than its materials science counterpart in alloys. In
vesicles, the phase separation process is strongly coupled to the shape dynamics and
curvature effects can dynamically influence the phase separation and vice versa. Using
discrete approaches such as Monte Carlo methods, dissipative particle dynamics, and
molecular dynamics, the dynamics of phase separation and domain formation, vesicle fission
and fusion have been simulated numerically. See, for example, Refs. [37–48]. Such atomistic
simulations however are limited by computational cost in the length and time scales they are
able to achieve.

Continuum methods provide a good modeling alternative to reach larger length and time
scales. Continuum models are also easier to analyze and parametrize. Phase separation
processes in the bulk have been successfully studied by continuum models. The continuum
approach is based on the generalized bending energy proposed by Helfrich [20]
supplemented by a line energy associated with the energy cost for the domain boundaries on
the vesicle, see Lipowsky [49], Seifert [50], and Julicher and Lipowsky [51,52]. In the
continuum description, budding and vesicle fission can be understood as a mechanism to
reduce the line energy of a multicomponent vesicle. Until recently, studies of
multicomponent vesicles have been limited to equilibrium investigations (e.g., Refs.
[18,50,52–61]) or dynamical simulations limited to small deformations or special shapes
(e.g., [62–66]) due to the difficulty in coupling phase separation and domain formation to
highly nonlinear surface evolution.

Very recently, phase-field models developed for single-component vesicles (e.g., see [25–
32]) have been extended to the multicomponent case [67,68]. In this approach, which we
follow here, the vesicle is defined implicitly as the level set of an auxiliary phase field
variable that varies smoothly, but rapidly, across the membrane. Accordingly, the membrane
has a small but finite thickness and thus this is also known as a diffuse-interface method.
The generalized Helfrich bending energy and the line tension are reformulated using a
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phase-field approximation. Evolution equations for the phase-field variable follow, roughly
speaking, from gradient descent of this energy. This approach eliminates the need for
introducing and evolving a surface mesh for the vesicle. Further, topological transitions such
as vessel fission or fusion are straightforwardly captured via changes in the level set
topology. However, further work is needed to interpret such changes since the details of
vesicle fission or fusion go beyond the level of description contained in the Helfrich model.

In the context of multicomponent vesicles, Campelo and Hernandez-Machado [67,69]
developed a phase-field framework to simulate pearling instabilities driven by polymers
anchored to a tubular membrane. Accordingly a local polymer density is introduced and is
coupled to the spontaneous curvature. However, only homogeneous polymer distributions
were used.

A fuller coupling of membrane and surface phases was recently developed by Wang and Du
[68] in order to simulate equilibrium states. In this work, a pair of phase-field variables were
introduced such that one variable characterizes the vesicle (via a level set) while the other
describes the distribution of the surface phases. The bending stiffness and spontaneous
curvatures may depend on the surface phase distribution. Equations for both phase-field
variables follow from a gradient descent algorithm where penalty terms are added to the
system energy to enforce the conservation of the surface phase masses (which is sufficient
for finding equilibrium states), surface area conservation and the conservation of the volume
enclosed by the vesicle. The three-dimensional results obtained demonstrate the
effectiveness of using phase-field methods to simulate highly complex vesicle and surface
phase equilibrium morphologies that are qualitatively consistent with experiments.

In this paper, we develop a thermodynamically consistent phase-field model to simulate the
dynamics of multicomponent vesicles. The model accounts for bending stiffness,
spontaneous curvature, excess (surface) energy, and a line tension between the coexisting
surface phases. Our approach is similar to that used by Wang and Du [68] with a key
difference. Here, we solve the surface mass conservation equation explicitly. This equation
was not considered in [68]. The equation for the vesicle phase-field variable follows from an
energy dissipation principle (second law of thermodynamics [70]) while taking into account
the mass conservation equation for the surface phases. This results in a fourth-order strongly
coupled system of nonlinear nonlocal equations. Although the system is valid for three
dimensions, we limit our studies here to two dimensions where the vesicle is a curve. The
equations are solved numerically using an adaptive finite element numerical method,
implemented using the adaptive finite element method (FEM) toolbox AMDiS [71], together
with a semi-implicit time-stepping algorithm which removes high-order time step
constraints. We perform a study of the dynamics of two-dimensional vesicles containing two
surface phases (i.e., liquid-ordered and liquid-disordered phases). We find that differences
between the spontaneous curvatures and the bending rigidities of the surface phases may
lead to the formation of buds, asymmetric vesicle shapes, and vesicle fission even in two
dimensions. In addition, simulations of configurations far from equilibrium indicate that
phase decomposition via spinodal decomposition and coarsening not only affect the vesicle
shape but also that the vesicle shape affects the phase-separation dynamics and may lead to
lower energy states than might be achieved by evolving initially phase-separated
configurations.

The paper is organized as follows. We first review the sharp-interface framework. We then
derive the thermodynamically consistent phase-field model. The adaptive finite element
method is briefly presented, followed by numerical results that demonstrate the strong
coupling between surface phase composition and the vesicle shape during evolution. Finally,
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conclusions are discussed together with plans for future work. An appendix provides some
details regarding the sharp-interface energy variations.

II. Energy and Dynamic Evolution: Sharp-Interface Framework
The starting point for membrane modeling in the sharp interface context has traditionally
been the generalized bending energy proposed by Helfrich [20] in the single component case
and by Lipowsky [49], Seifert [50], and Julicher and Lipowsky [51,52] for phase-separated
multicomponent membranes. When the phases are not separated, a more general energy may
be formulated, e.g., see [62–64,72] for special cases with limited phenomenological
coupling between the surface phases and the membrane geometry and parameters. Here, we
briefly summarize a general sharp-interface formulation [73] as it provides a motivation and
guide for the phase-field model considered in the next section.

Consider a two-component system with mass density ρA and ρB for components A and B,
respectively. The concentration variable is defined as u = (ρA − ρB)/(ρA + ρB). Note that in
most examples, the two components correspond to liquid-ordered and liquid-disordered
surface phases, e.g., Refs. [10,11,74]. Assuming that the membrane parameters depend on u,
the energy to be minimized is the sum of the following contributions:

i. The normal bending energy

ii. the Gaussian bending energy

iii. the excess energy associated with the presence of the membrane

iv. the line energy

where Γ is the membrane surface (assumed to have zero thickness), H is the total curvature
(twice the mean curvature), H0(u) is the spontaneous curvature, K the Gaussian curvature,
bN(u) is the normal bending stiffness, bG(u) is the Gaussian bending stiffness, and γ(u) is the
surface tension (excess energy associated with the membrane surface). Further, σ is the line
tension, W(u) = 1/4(1 − u)2(1 + u)2 is a double well potential that describes the tendency of
the two surface components to phase separate and δ is a small parameter that effectively
describes the thickness of the transition layer on the membrane that separates the A and B
components. Hereafter, we will take σ = 1 which corresponds to rescaling all the energies by
the line tension.

For constant bG the Gaussian bending energy is proportional to the Euler characteristic of
the membrane (Gauss-Bonnet theorem, e.g., Ref. [75]) and so changes in shape, which

Lowengrub et al. Page 4

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preserve the topology, do not change the energy. The Gauss modulus, however, influences
membrane processes that change topology such as vesicle fission or fusion. Further, recent
work [18,60,76] suggests that differences in the Gauss moduli of coexisting surface phases
may explain the vesicle shape and surface phase distribution in experiments, especially in
the neighborhood of a neck. Here, for simplicity, we will omit the possible dependency of
bG on u, thus we will not consider contributions of the Gaussian bending energy. These will
be incorporated in a future work.

In [73] a thermodynamically consistent sharp-interface model for the evolution of a
multicomponent vesicle is derived from the total energy E[Γ, u] = EB + ES + ET. Taking the
time derivative of the energy we obtain

(1)

where δE/δu and δE/δΓ are the variational derivatives of the total energy E[Γ, u] with
respect to Γ and u, respectively. Further, v is the velocity of Γ. For completeness, the
variational derivatives are defined in the Appendix. Note that we have implicitly assumed
that u is extended off Γ such that the derivative in the normal direction ∂u/∂n = 0 in the
neighborhood of Γ [73].

The surface mass conservation equation for u is

(2)

where v = Vn + T and q is a surface mass flux. The simplest thermodynamically consistent
system of equations for u and Γ, without constraints on the volume or the surface area (e.g.,

required for conservation of these quantities), is obtained by taking  to yield
[73]

(3)

(4)

(5)

where n is the unit outward normal to Γ and ξu, ξV, and ξT are non-negative mobility
coefficients. The incorporation of constraints on the volume and surface area for
conservation can easily be done using Lagrange multipliers or by adding penalty terms to
the total energy. The first equation is a Cahn-Hilliard type equation on an evolving surface,
the second equation accounts for the evolution of the surface in normal direction is related to
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the Willmore flow problem, and the third equation models the tangential movement. For
more details on the model we refer to [73].

III. Phase-Field Approximation
Next we derive a thermodynamically consistent phase-field model which approximates the
sharp-interface description of vesicle evolution described in the previous section. Our
approach is similar to that used by Wang and Du [68] with the key difference being how we
treat the surface phase concentration u which we point out below. In this approach, the
vesicle membrane is defined implicitly through a phase-field variable ϕ such that ϕ = 1
inside the vesicle, ϕ = 0 outside the vesicle with a smooth, but rapid transition across the
vesicle Γ = {x ∈ Ω: ϕ(x) = 1/2}, where Ω ⊂ ℝ2,3 is a volume domain with Γ(t) ⊂ Ω for t ∈
[0, T]. The membrane is characterized by a diffuse transition layer with a small but finite
thickness ε. This eliminates the need for introducing and evolving a surface mesh for the
membrane. Further, topological transitions such as vessel fission are straightforwardly
captured via changes in the ϕ = 1/2 level set topology. The evolution equations are extended
off the membrane Γ and the phase-field equations are solved in Ω. Accordingly, the phase
concentration u is now interpreted as an extended variable which is defined not only on Γ
but also in Ω.

A. Model derivation
The phase-field equations are derived using an energy variation approach together with a
surface mass conservation equation for u. The free energy functional of the system is
defined to be F[ϕ, u]. We defer the specific definition of F until later in this section when we
consider the different constituent components, e.g., the bending and surface energies, line
tension, etc.

To satisfy energy dissipation, and hence the second law of thermodynamics (assuming a
constant temperature) [70], we require

(6)

where  and  denote variational derivatives of F with respect to ϕ and u, respectively.
To make further progress, we derive and use the mass conservation equation for u in Eq. (6).

In the phase-field framework, it can be shown that if G(ϕ) is a double-well potential, i.e.,
G(ϕ) = 36ϕ2(1 − ϕ)2, and ε is a small parameter, i.e., the interface thickness, then

(7)

where C is a constant that depends on the specific form of G (equal to 1 for the specific
choice of G given above) and δΓ is the surface δ function. See [25,71,77,78] for example.
We note that there are other diffuse-interface approximations of the surface δ function. Since
−1 ≤ u ≤ 1, we may define the total mass difference between the surface phases in an
arbitrary domain Ωa ⊂ Ω as
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(8)

i.e., M ≈ MA − MB, where MA and MB are the masses of the A and B phases in Ωa. Then,
conservation of mass follows from

where Ωa is assumed to be independent of time with boundary ∂Ωa. We may also assume
that Ωa ∩ Γ(t) ≠ ∅. The flux j denotes the net flux of mass and m the normal on ∂Ωa.
Arguing that this equation holds for arbitrary Ωa, we thus obtain the local mass conservation
equation

(9)

Multiplying by μ, with μ defined by

(10)

we obtain

(11)

It remains now to determine the flux mass flux j consistent with the decrease of the free
energy. Using Eq. (11) in Eq. (6), we obtain

If we now define

(12)
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(13)

where B(ϕ) is a non-negative mobility function that is localized near the interface, e.g., B(ϕ)
= 36ϕ2(1 − ϕ)2, which is introduced to ensure that the mass flux is localized near the
interface. Further, βu and βϕ are non-negative mobility coefficients and the scaling in ε is
chosen such that the equations are consistent with the sharp interface limit as ε → 0. With
these choices, we obtain

(14)

where we have assumed the natural boundary condition ∇μ · n = 0 holds on ∂Ω. Finally,
using the identity εu∇ϕ · ∇∂tϕ − ε∇ · (u∂tϕ∇ϕ) = −ε∇ · (u∇ϕ)∂tϕ and the definition of j from
Eq. (13) in Eq. (9), the governing equations can be written as

(15)

(16)

(17)

At this point, several remarks are in order. This system differs from that considered by
Wang and Du [68] in that Eq. (17) follows from mass conservation and energy dissipation
whereas in Ref. [68] both the ϕ and u equations were derived by energy variation only. In
Ref. [68], mass conservation of the surface phase was only approximately enforced by
introducing a corresponding penalty term in the system energy and the surface phase
conservation equation was not considered.

In the region near the membrane, an asymptotic analysis of the equations (not shown) would
roughly speaking give ∂tϕ ∼ −V/ε and ε−1G′(ϕ) − εΔϕ ∼ H. From these results, it can be seen
that the structure of Eqs. (15)–(17) is analogous to the sharp interface model in Eqs. (3)–(5).
We note that a general treatment of partial differential equations on surfaces within a phase
field approximation is discussed in [79,80].

We next present the specific form of the free energy F[ϕ, u] by considering the phase-field
representation of the normal bending energy, the excess (surface) energy associated with the
membrane and the line energy associated with the presence of different surface phases.

B. Phase-field representation of energy terms
1. Normal bending energy—Consider the phase-field approximation of the sharp-
interface normal bending energy EB. If bN(u) = 1 and H0(u) = 0 the problem reduces to the
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classical Willmore energy, for which phase-field approximations are known. In one
approach [29,30,32], the curvature of the vesicle is obtained directly by H ∼ ∇ · (∇ϕ/|∇ϕ|)
and |∇ϕ| is used to approximate the surface δ function. Thus, the phase-field approximation
of the bending energy (in the absence of spontaneous curvature) is the integral of the product
of these functions. This approach is easily generalized to nonzero spontaneous curvature. An
alternative approach [81–83], which we follow here, is related to a conjecture of DiGiorgi
[77,83]. The corresponding phase-field bending energy is

with G(ϕ) = 36ϕ2(1 − ϕ)2 being the double well potential. The variational derivative δFB/δϕ
is

In the more general case the energy is [25]

and the variational derivative becomes

Note that for bN = 1 and H0 = 0 both the free energy and the variational derivatives reduce to
the special case mentioned above.

2. Excess energy—Consider the phase-field approximation of the sharp-interface excess
(surface) energy ES. If γ(u) = 1 the phase-field approximation is also well known [84,85] and
is given by

The variational derivative is
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With γ(u) the energy was extended in [80] to

which yields the variational derivatives

Again if γ = 1 both the free energy and the variational derivatives reduce to the classical
results.

3. Line energy—Consider next the phase-field approximation of the sharp-interface line
energy EL. An appropriate energy was introduced in [79] and was used later by Wang and
Du [68]. The phase-field energy is given by

with the variational derivatives given by

4. Volume and surface area constraints—Following [25,68], we introduce penalty
terms to enforce volume and surface area conservation for evolving vesicles. Alternatively,
we note that Lagrange multipliers could be used to conserve volume and total vesicle
surface area [25,26] or local surface area [29–31]. The use of Lagrange multipliers in our
approach is straightforward and is currently under study. Here, we use the following phase-
field approximation of the volume of the vesicle:

(18)

and introduce the penalty term

(19)

where V0 is a prescribed volume and MV is a large positive constant. The functional
derivative δFV/δϕ is
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(20)

Similarly, we consider the phase-field approximation of the surface area

(21)

and the corresponding penalty functional

(22)

where A0 is the prescribed area and MA is a large positive constant. The corresponding
function derivative is

(23)

Note that the functional derivatives in Eq. (20) and Eq. (23) lead to nonlocal terms in the
evolution equations.

5. Total energy—The total energy free energy F[ϕ, u] of the vesicle model consists of the
sum of all the effects considered,

(24)

Correspondingly, the functional derivatives with respect to ϕ and u sum up to

and

Note that . Incorporating these functional derivatives in the evolution equations
(15)–(17) yields a fourth-order strongly coupled system of nonlinear nonlocal equations.
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We note that in the system considered by Wang and Du [68], an additional penalty term was
added to enforce ∇u · ∇ϕ ≈ 0 (i.e., the normal derivative ∂u/∂n ≈ 0). This was not found to
be necessary here because this condition is automatically enforced by having u satisfy the
mass conservation equation (17). For example, it can be seen that the leading term in an
asymptotic expansion near the vesicle membrane arises from the line tension term δFL/δu
and implies that ∂u/∂n = 0 to leading order.

IV. Finite Element Discretization
In this section we briefly describe the finite element discretization for the fourth-order
system of nonlinear nonlocal equations (15)–(17) implemented using the adaptive FEM
toolbox AMDiS [71]. First, we consider the time discretization, where we split the time
interval [0, T] into discrete time increments 0 = t0 < t1 < … and associated time steps Δtk ≔
tk+1 − tk, with k = 0, 1, …. To discretize the equations in time, we use a semi-implicit
algorithm in which only the nonlocal terms V[ϕ] and A[ϕ] are treated explicitly. This allows
us to overcome the severe time step restrictions (Δtk ∼ Δx4, where Δx is the smallest mesh
spacing) required for stability by explicit methods and the high costs associated with solving
coupled nonlinear systems that arise from fully implicit time discretizations.

To discretize in space, let  be a conforming triangulation of Ω at time t = tm. Denote the
set of polynomials of degree 1 by ℙ1 and define the finite element space of globally

continuous, piecewise linear elements by , where X is an
appropriate function space. Let (ψi)i be the standard nodal basis of  and take

, ,  and .
Then, taking the inner product of Eqs. (15)–(17) with ψk, we obtain a linear system of

equations for , , , and .

In order to reduce the computational cost the mesh is locally adapted using a bisection
algorithm (see [71] and references therein) such that a fine mesh is used near the vesicle
membrane and a coarse mesh is used elsewhere. For local mesh adaptation, we use an L2-
like error indicator based on a jump residual [71,86] for the phase-field variable ϕ; see Fig. 1
for an example of an adaptively refined mesh. The number of elements in the simulations is
in the order of 100 000. Within the diffuse interface we use approximately five grid points.
Furthermore a simple strategy of time adaptivity is used, where the time step is inversely
proportional to the maximum of the normal or intrinsic normal velocity of the interfaces,
leading to time steps Δtk ∈ [10−5, 10−4].

V. Numerical Results
Next, we consider the application of the model and numerical algorithm to simulate the
dynamics of multicomponent lipid membranes in two dimensions. Take, for example,
ternary lipid mixtures which involve cholesterol long-chain and short-chain lipids as studied
in [11,60]. The long-chain lipids enrich a liquid-ordered L0 phase while the short-chain
lipids enrich a liquid-disordered Ld phase. The concentration u thus represents the rescaled
relative concentration of the two phases.

An accurate determination of all the material parameters involved is a challenging problem.
In principle, the parameters can be estimated by matching experimentally measured
membrane and computed shapes, e.g., see [52] for single-component membranes and
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[18,60,76] for ternary liquid ordered and/or disordered systems, although this approach may
not yield a unique set of parameters.

For membranes containing coexisting surface phases only values for selected average
compositions are known [11]. According to Ref. [14] no attempts have been made to
measure the normal elastic rigidity in phase-separated membranes. Measurements of the line
tension can be found in [14,16] and are found to strongly depend on cholesterol
concentration.

Here, we present a study in which we examine the influence of the spontaneous curvature
H0 and the normal bending stiffness bN. We do not consider the effects of a variable surface
energy γ as this is deferred to future work. Recall that the energy is rescaled by the line
tension and thus this parameter is fixed. The kinetic coefficients βu and βϕ are also fixed and
set to 1. This is the simplest possible situation. More complicated choices, e.g., a functional
dependency of βu on u, clearly will influence the dynamics. Indeed, in [87], the dynamics
was found to strongly depend on the cholesterol concentration. However, little is known
about the magnitude and functional dependence of these kinetic parameters which is why we
focus on the other parameters here and defer a more detailed study of βu to a future study.

In order to demonstrate the effect of the dependency of H0, bN, and γ upon u, we assume a
generic function h (i.e., h = H0, bN, γ)

where h−1 and h1 are the values for constant composition. Note that because the polynomial
energy W(u) is used, u may fall slightly outside the range of −1 to 1 by an amount that is
O(δ). In addition, this higher order interpolation is needed in order to assign values of the
parameters, within the diffuse interface that separates the surface domains, in an appropriate
way. In particular, a higher order interpolation yields more accurate results as the difference
between h−1 and h1 increases.

In addition, we consider the domain Ω ≔ (−1, 1)2 and use periodic boundary conditions. For
all the simulations presented here, we took the penalty parameters to be MV = 104 and MA =
103 which were found by numerical experimentation to give good results for volume and
surface area conservation. The widths of the diffuse interfaces separating the interior and
exterior of the vesicle (e.g., diffuse membrane) and separating the surface phase domains are
controlled by the parameters ε and δ which are set to be 0.1 and 0.01, respectively; these
choices are also a result of numerical experimentation and are similar to the parameters used
in [79] in which a Cahn-Hilliard equation is solved on implicitly described surfaces. We use
the same parameter set for all simulations. We note that with these parameters, our
simulations indicate that all structure remains tangential to the interface and no structure
forms normal to the interface within the diffuse layer. Furthermore, we introduce a
parameter εB > 0 in order to regularize the degenerate mobility function B ⇝ εB + B (see
also [79,88]), and we use εB = 10−4 here. Finally, in all the simulations, the initial vesicle
shape is an ellipse. In particular, the level-set {x∣ϕ(x, 0) = 1/2} is an ellipse and the initial
phase-field variable ϕ(x, 0) = ϕ0 is given by
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where rh(x) is a discrete approximation of the signed distance function of an ellipse.

A. Symmetric shapes
We begin by considering the effect of only the line tension. In particular, we take the
spontaneous curvature H0(u) = 3.25 and the normal bending rigidity bN(u) = 1 to be constant
as well as γ(u) = 0. The initial concentration u0 is symmetrically distributed with u0 = −1
(blue) on the left half of the initial ellipse and u0 = 1 on the right half (red), as seen in Fig. 2.
Away from the ellipse, u0 tends smoothly, and rapidly to 0. Note that other smooth
extensions away from the interface could be used. The diffuse interface separating the two
surface domains is clearly seen. In the figure, u is plotted on the isocontours of ϕ from ϕ =
0.4 to ϕ = 0.6. Note that the membrane is characterized by the level-set {x∣ϕ(x, t) = 1/2}.

As the vesicle relaxes to reduce its energy, buds form at the vessel tips and a neck of
negative curvature develops at the vesicle center. This reflects the competition between the
tendency to reduce the bending energy and decrease the vesicle curvature while at the same
time maintaining constant vesicle volume and surface area. The resulting discocyte shape is
a common shape for homogeneous vesicles. Here, because the bending rigidity and
spontaneous curvature are independent of u, the surface phases evolve symmetrically with
the transition between the two confined being confined to the vesicle center. The line tension
tends to reinforce the discocyte shape, although since the simulation is two dimensional
there is not a significant advantage, as there would be for axisymmetric and three-
dimensional vesicles, for having the transition between the two surface phases occurring at
the minimum neck radius.

In Fig. 3 we present the evolution of the volume V[ϕ], the surface area A[ϕ], the mass
difference M(ϕ, u), and the total energy F[ϕ, u] and its components, the bending energy FB,
and the line tension FL, throughout the simulation. The maximal relative deviation of the
volume compared to its initial value is ≈0.2%. For the surface area, the relative deviation is
≈0.07%, and for the mass difference, the absolute deviation is ≈5 × 10−5. The bending
energy (dotted) dominates the total energy (solid) and thus the decrease in total energy is
due primarily to the reduction in bending energy. The line energy (dotted-dashed line) is
approximately constant throughout the simulation since the interface layers separating the
two surface phases are nearly equilibrated.

B. Asymmetric shapes
We next consider the effects of differences in spontaneous curvatures and bending energies
between the two phases. We also consider asymmetric initial surface phase distributions.

1. Asymmetric spontaneous curvature—We begin with a case such that the two
phases have different spontaneous curvatures: H(−1) = 2 and H(1) = 5. For simplicity, we
take a constant normal bending rigidity bN(u) = 1 and we take a symmetric initial
concentration u0. The evolution towards an asymmetric discocyte vesicle shape is shown in
Fig. 4. As the vesicle relaxes to equilibrium, the curvature of the u = 1 phase decreases while
that of the u = −1 phase increases. This occurs because in each surface phase, the vesicle
curvature tends toward the appropriate spontaneous curvature. Correspondingly, the surface
phase concentration also becomes asymmetric. Not only are the u = −1 and u = 1 phases
located at the corresponding vesicle ends but the u = −1 phase also nearly covers the neck
region. This is a consequence of volume, surface area, and mass conservation. A check of
these theoretically conserved quantities indicates that deviations from their initial values in
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the simulation are similar to that described previously for the symmetric vesicle. Indeed, this
is the case for all the simulations presented hereafter.

As an additional comparison, we repeat the previous simulation using an asymmetric initial
surface phase distribution. In particular, there is now more u = −1 phase. The simulation is
shown in Fig. 5. Not surprisingly, the results are similar and the u = −1 phase now fully
covers the neck region of the asymmetric discocyte.

2. Asymmetric normal bending rigidity—We next consider a case in which the normal
bending rigidities are different in the two surface phases. We correspondingly take bN(−1) =
1/2 and bN(1) = 5. For simplicity, a constant spontaneous curvature H0(u) = 3.25 is used and
the initial surface phase distribution is symmetric. The results are shown in Fig. 6. As the
vesicle relaxes towards equilibrium, a large nearly circular bud develops in the u = 1 phase
in response to the large bending rigidity. The u = −1 phase is pulled entirely through the
neck region and a much smaller bud forms in the u = −1 phase. Because of the large
difference between the bending rigidities, bN(1)/bN(−1) = 10, the discocyte shape is highly
distorted.

In Fig. 7, we now repeat the above simulation but with the initially asymmetric surface
phase, used previously in Fig. 5 such that there is more u = −1 phase present. In this case,
there is not enough u = 1 phase to form a large bud. Instead, a large bud forms in the
plentiful u = −1 phase which is attached to a small bud in the u = 1 phase by a narrow neck.
As the evolution proceeds, the neck narrows leading to vesicle fission which results in the
formation of a large vesicle consisting mostly of the u = −1 phase and a u = 1 rich small
vesicle. Because the u = 1 phase spans the neck region before pinchoff, the large vesicle has
a small region rich in the u = 1 phase while the small vesicle contains essentially no u = −1
phase.

It is important to note that the neck of a vesicle in three dimensions has a different character
than that of the vesicle simulated here since in a two-dimensional vesicle in three
dimensions, the mean curvature may be very small in magnitude because the two principle
curvatures have opposite signs. Here, the one-dimensional vesicle in two dimensions has
large curvature in the neck. In addition, in three dimensions, the line tension strongly favors
fission. Thus, it is interesting that we obtain fission even in two dimensions.

The corresponding total F[ϕ, u] (solid), bending FB[ϕ, u] (dotted), and line F[ϕ, u] (dotted-
dashed line) energies are shown in Fig. 8. At early times, the total energy is dominated by
the bending energy which decreases to the level of the line energy. As these effects compete,
the vesicle fissions and there is a rapid drop in the bending energy with a concomitant drop
in the total energy. The line energy slightly decreases at early times associated with the
equilibration of the interface layers separating the surface phases. After this initial decrease,
the line energy becomes roughly constant as the structure of the interface layers equilibrates.

C. Spinodal decomposition and coarsening
To further investigate the coupling between the motion of the interface—given by the phase-
field variable ϕ—with the evolution of the lipid concentration u, we take an initial surface
phase distribution far from equilibrium. We let u0 take random values around u = 0 in [−1,
1]. The corresponding initial mass is M[ϕ, u] (t = 0) = −0.029 997 3.

The initial condition and subsequent spinodal decomposition and surface phase coarsening is
shown in Fig. 9. The parameters are listed in the figure caption. As can be seen in the figure,
not only does the surface phase affect the shape of the interface but the shape of the interface
affects the spinodal decomposition and coarsening. In particular, observe that the u = 1
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phase, which is associated with a larger spontaneous curvature, forms preferentially in
regions of large curvature.

Interestingly, the nearly equilibrium configuration shown in Fig. 9(d) is quite different than
that obtained when the initial condition is already decomposed into large regions of u = −1
and u = 1 phases. Recalling Fig. 4, we note that when the vesicle is divided into two surface
phases, u = −1 and u = 1, buds form on the corresponding sides of the vesicle. In contrast,
when the decomposition occurs freely as in Fig. 9, the u = 1 phases comprise the large
curvature regions while the u = −1 phases are located in regions of small curvature. This is
an energetically more favorable configuration as seen in Figs. 10(a)–10(c). We observe that
while both the bending [Fig. 10(b)] and line [Fig. 10(c)] energies decrease in time, the line
energy for the simulation in Fig. 9 is strictly larger than that for the simulation in Fig. 4
because in Fig. 9 there are ultimately four interface layers that separate the surface domains
while in Fig. 4 there are only two such interface layers. It is thus the large reduction in
bending energy, associated with having the u = 1 and u = −1 phases in the regions of large
and small curvature, respectively, that is responsible for the fact that the total energy [Fig.
10(a)] is smaller for the configuration from Fig. 9(d) than that from Fig. 4(d). Thus, phase
separation via spinodal decomposition and coarsening not only affects the vesicle shape but
also the vesicle shape affects the phase separation dynamics.

VI. Discussion
We have developed a phase-field model to simulate the dynamics of multicomponent
vesicles. The model is derived using an energy variation approach together with the
conservation of the masses of the surface phases and accounts for bending stiffness,
spontaneous curvature, excess (surface) energy, and a line tension between the coexisting
surface phases. The phase-field model extends the sharp-interface description of the vesicle
dynamics, eliminates the need for introducing a surface mesh to track the membrane, and
allows topology changes, such as vesicle fission, to occur smoothly.

The model consists of a coupled system of fourth-order nonlinear nonlocal equations for a
variable ϕ that characterizes the vesicle membrane (as a level set of ϕ) and a variable u that
describes the concentration of the surface phases. The constraints of volume and surface
area conservation are implemented using a penalty approach which is the source of the
nonlocal terms in the system. The model is closely related to the phase-field model recently
introduced by Wang and Du [68] for simulating equilibrium states with the key difference
being that in [68] surface mass conservation was only approximately enforced using a
penalty approach and the surface mass conservation equation was not considered; this
equation plays an essential role in our model. Although the system is valid for three
dimensions, we limited our studies here to two dimensions where the vesicle is a curve.

To solve the model equations efficiently and accurately, an adaptive finite element method
is utilized together with a semi-implicit time discretization which removes high order time
step constraints. We then performed a study of the dynamics of two-dimensional vesicles
containing two surface phases (i.e., liquid-ordered and liquid-disordered phases). We found
that differences between the spontaneous curvatures and the bending rigidities of the surface
phases led to the formation of buds and asymmetric vesicle shapes. We also presented an
example of asymmetric spontaneous curvature-induced vesicle fission. In this example, two
asymmetric daughter vesicles are produced with each daughter vesicle being rich in one of
the surface phases. However, we observe that asymmetries in the neck region before fission
takes place can create a small domain of the other phase in a daughter vesicle. Finally, we
considered a configuration far from equilibrium and observed that not only does the spinodal
decomposition and coarsening of the surface phases affect the vesicle shape but also that the
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vesicle shape affects spinodal decomposition. In particular, for the parameters used here, it
is energetically more favorable for the surface phase with smaller spontaneous curvature to
form in the neck regions of the vesicle even though this configuration has a larger line
energy than if the surface phase boundaries were at the neck (i.e., four interface layers in
Fig. 9 versus two interface layers in Fig. 4).

The phase-field approach and the associated numerical method described here provides a
general framework for studying the dynamics of multicomponent vesicles and
biomembranes. Although they were not considered in this work, the effects of surface
energy and Gaussian bending stiffness differences between the surface phases will be
incorporated in a future work. Recent studies have shown, for example, that differences in
the Gaussian bending stiffness may play an important role in the vesicle dynamics and
equilibrium shapes [18,60]. While the techniques described in [89,90] can be used for
calculating the Gaussian curvature in phase-field models, there may be other more
straightforward approaches.

The model presented here can be straightforwardly extended to systems with more surface
components and more realistic thermodynamics, e.g., Refs. [13,91,92] and to vesicles in three
dimensions. The presence of a fluid flow may also induce surface-phase separation,
budding, and vesicle fission, e.g., Ref. [47], and can be incorporated within this framework
by coupling the phase-field model with the Stokes or Navier-Stokes equations for fluid flow,
e.g., see [27,29,30,32] for such coupling for homogeneous vesicles. The presence of
membrane proteins within the phases can also have an important influence on the vesicle
shape and surface phase distribution, e.g., Refs. [52,93], and can be modeled by
incorporating the concentration(s) of membrane proteins in the phase-field model described
here via an additional protein energy and introducing coupling between the protein and the
bending rigidity and spontaneous curvature, e.g., see [94–96]. Vesicle-vesicle and vesicle-
substrate adhesion can also be modeled by introducing adhesion potentials in the phase-field
framework, e.g., Refs. [97,98].

After reviewing we became aware of another approach in which adaptive finite elements are
used to solve a phase-field model of vesicle deformation [99], in which a one-component
model is used.
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Appendix: Sharp-Interface Energy Variation
The total energy in the sharp-interface model presented in Sec. II is E[Γ, u] = EB + ES + ET.

The variational derivatives  and  are given by

where [73]
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K is the Gaussian curvature, and
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FIG. 1.
Typical adaptively refined mesh. The mesh corresponds to the simulation of spinodal
decomposition at t = 0.0406 shown in Fig. 9.
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FIG. 2.
(Color online) Evolution of the concentration u on the isocontours of ϕ from ϕ = 0.4 to ϕ =
0.6 is shown at times t = 0 (a), t = 0.0006 (b), t = 0.0024 (c), and t = 0.0120 (d); H0(−1) =
H0(1) = 3.25, bN(−1) = bN(1) = 1.
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FIG. 3.
(a) The volume, (b) surface area, (c) mass, and (d) the total energy F[ϕ, u] (solid), the
bending energy FB[ϕ, u] (dotted), and the line energy FL[ϕ, u] (dotted-dashed line) for the
simulation shown in Fig. 2.
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FIG. 4.
(Color online) Evolution of the concentration u on the isocontours of ϕ from ϕ = 0.4 to ϕ =
0.6 is shown at times t = 0 (a), t = 0.0005 (b), t = 0.001 (c), and t = 0.02 (d); H0(−1) = 2,
H0(1) = 5, bN(−1) = bN(1) = 1.
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FIG. 5.
(Color online) Evolution of an asymmetric concentration u on the isocontours of ϕ from ϕ =
0.4 to ϕ = 0.6 is shown at times t = 0 (a), t = 0.0005 (b), t = 0.001 (c), and t = 0.02 (d);
H0(−1) = 2, H0(1) = 5, bN(−1) = bN(1) = 1.
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FIG. 6.
(Color online) Evolution of the concentration u on the isocontours of ϕ from ϕ = 0.4 to ϕ =
0.6 is shown at times t = 0 (a), t = 0.0005 (b), t = 0.0010 (c), and t = 0.0100 (d); H0(−1) =
H0(1) = 3.25, bN(−1) = 1/2, bN(1) = 5.
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FIG. 7.
(Color online) Fission of a vesicle. The evolution of the asymmetric concentration u on the
isocontours of ϕ from ϕ = 0.4 to ϕ = 0.6 is shown at times t = 0 (a), t = 0.0010 (b), t = 0.0020
(c), and t = 0.0161 (d); H0(−1) = H0(1) = 3.25, bN(−1) = 1/2, bN(1) = 5.
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FIG 8.
The total energy F[ϕ, u] (solid), the bending energy FB[ϕ, u] (dotted), and the line energy
FL[ϕ, u] (dotted-dashed line) for the simulation shown in Fig. 7.
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FIG. 9.
(Color online) Spinodal decomposition. The evolution of the concentration u(x, t) on the
isocontours of ϕ from ϕ = 0.4 to ϕ = 0.6 is shown at times t = 0 (a), t = 0.001 (b), t = 0.01 (c),
and t = 0.04 (d), H0(−1) = 2, H0(1) = 5, bN(−1) = bN(1) = 1.
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FIG. 10.
A comparison of the total energies (a), the bending energies (b), and the line energies (c) for
the simulations in Fig. 4 (labeled “decomposed initial u”) and Fig. 9 (labeled
“decomposition”).
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